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Understanding the relationship between stem radial growth and climatic conditions in plantation 
productivity is important to identify the climatic factors that most influence tree growth. This study aims 
to determine the climatic factors that most influence the stem radial growth of eucalypt trees plantation 
in the coastal Zululand area of South Africa. Daily stem radius was measured using automated point 
dendrometers located on 18 sample trees of Eucalyptus grandis × Eucalyptus urophylla (GU) and E. 
grandis × Eucalyptus camaldulensis (GC) hybrid clones. Daily averages of climatic data (temperature, 
solar radiation, relative humidity and wind speed) and total rainfall were also obtained from the site over 
the study period. Several statistical models that cope with the issue of multicollinearity were applied. 
Weather variables, together with tree age, explained a substantial amount of the variation (87% for GC 
clone and 79% for GU clone) in the daily stem radius. This study indicates that tree age is the most 
important factors that influence stem radius during the juvenile stage (up to 2 years) in all seasons. In 
winter, temperature, relative humidity and wind speed appear to be more important than the other 
weather variables.  
 
Key words: Tree radial growth, latent variables, multicollinearity, ordinary least squares, partial least squares, 
principal component regression, plantation. 

 

 
INTRODUCTION 
 
Increasingly, eucalypts have become the most widely 
planted hardwood species in the world (Turnbull, 1999). 
At present, eucalypts provide sawn timber, mine props, 
pulp and paper, fiberboard, poles, firewood, charcoal, 
essential oils, nectar for honey, tannin, shade, and 
shelter. Most eucalypt plantations are established and 
managed for profit. The rate of growth is an important 
economic factor, and plantations with faster growth will 
be available for processing earlier compared with slower 
growth plantations. Tree growth and wood production are 
product    of    the    interaction    between    genetic    and  
 

environmental factors (Callaham, 1962). Some studies 
have found significant effects of environmental factors on 
wood property variation in Eucalyptus (February et al., 
1995; Searson et al., 2004; Drew and Pammenter, 2006). 
Extensive literature on genetic factors affecting the 
growth of trees can be found in the work of Kozlowski 
and Pallardy (1997). The most recent work by Downes et 
al. (2009) provides an excellent overview on measuring 
stem growth and wood formation. Other examples are 
those by Drew et al. (2009), which focussed on 
differences in daily stem diameter variation and growth  in 
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two hybrid eucalypts, and Zweifel et al. (2006) who 
studied the intra-annual radial growth and water relations 
of trees and the implications on growth mechanisms.  

In a study that considered the data extracted from the 
same database as used in this study, Drew et al. (2009) 
found that the Eucalyptus grandis × Eucalyptus urophylla 
(GU) clone had fewer days on which net growth occurred 
than did the E. grandis × Eucalyptus camaldulensis (GC) 
clone. However, when growth did occur, the GU grew for 
longer each day and at a higher rate than did the GC. 
Thus, it still had an overall larger net stem increment 
during the study period. Drew et al. (2009) studied the 
relationship between stem radius and climatic factors 
using the correlation matrix.  

Weather variables such as temperature, radiation, 
rainfall, humidity, and wind speed all contribute to the 
growth of the tree. For instance, Downes et al. (1999) 
studied daily radial stem growth in irrigated Eucalyptus 
globulus and Eucalyptus nitens in relation to climate over 
a 12-month period using multiple linear regression 
models. The study, which was conducted in southern 
Australia, showed that daily weather variation accounted 
for 40 to 50% of the variance in the daily increment of 
stem radius. Downes et al. (1999) also argued that 
understanding the relationship between weather and the 
rate and pattern of stem growth will facilitate the 
prediction of wood properties at a given site. Our 
approach provides an alternative one to the methods 
used by Downes et al. (1999). A study by Phipps (1982) 
presented a general discussion regarding problems 
inherent to developing climatically sensitive tree-ring 
chronologies from eastern North America. The same 
study by Phipps (1982) indicated that tree ring collections 
from eastern forests are typically not climatically sensitive 
as western collections. A general treatment of 
dendroclimatology can be found in the work of Fritts 
(1976). Other studies such as those by D’Arrigo et al. 
(1992), Hofgaard et al. (1999) and Schweingruber et al. 
(1993) reported that late spring or summer temperatures 
had a positive effect on annual growth. Zweifel et al. 
(2001) showed that radius change could be determined 
by stem water content and wood bark growth, including 
the degradation of dead phloem cells. The water related 
fraction is a short-term effect lasting from a few hours to 
several weeks, and can either have positive or negative 
effects on stem radius, depending on the changing turgor 
of stem tissues (Zweifel et al., 2001).  

The contribution of each climatic variable is often 
influenced, by correlation, with one or more other climatic 
variables. However, studies that consider the effects of 
colinearity into account are limited. Studies commonly 
use diameter at a given tree age as an indicator of growth 
rate and pattern. Most eucalypt plantations are limited by 
rainwater for growth, therefore identification of the 
relationship between natural climatic conditions and 
radial increment is important for eucalypt plantation 
managers. In order to manage resources effectively,  it  is 

 
 
 
 

important for tree growers to understand the properties of 
the material being produced. This paper describes the 
effects of climatic variation on radial growth of GU and 
GC hybrid clones established in Zululand on the eastern 
coast of South Africa. The focus of this study is to 
determine the climatic factors that influence radial growth 
during the juvenile (the first 2 years of age) stages of tree 
growth. This is mainly because these data are the data 
collected on phase one of the data collection process. 
Moreover, the study of juvenile trees is very important, to 
have a productive matured tree. The primary question 
addressed by this study concerns the extent to which 
classical regression approaches are successful in 
detecting and estimating the effects of climatic conditions 
on stem radial growth. A secondary aim is to present 
latent variable modeling approaches, namely partial least 
squares (PLS) and principal component regression, for 
better estimation and detection of effects of the climatic 
variables.  
 
 
MATERIALS AND METHODS 
 
Study design 
 

The research site is located near the town of KwaMbonambi in 
KwaZulu-Natal, South Africa, (28.53°

 
S, 32.14°

 
E, 55 M a.m.s.l), 

approximately 200 km north-east of the city of Durban. On average, 
the site receives 1,000 mm of rainfall per annum and has a mean 
annual temperature of 21°C (Drew et al., 2009). The Eucalyptus 
fiber research experiment was initiated in July, 2001 and a huge 
database acquired. The experiment was designed to run over a 7-
year period and was divided into separate phases. Each phase 
ended with the destructive sampling of study trees to measure 
anatomical characteristics of the wood. The results presented in this 
paper are based on the data collected during the first of these 

phases, from April, 2002 until August, 2003. The data were used by 
Drew et al. (2009) and this particular study is extracted from the 
same database put in place by Sappi (One of the leading suppliers 
of coated fine paper and chemical cellulose). However, the two data 
sets are not exactly the same. Two commercially deployed 
Eucalyptus hybrid clones, GU and GC, were planted at the study 
site (Drew, 2004). According to the South African soil classification 
system, the soil was identified as Rhodic Ferralsol Hutton by a 
limited soil survey undertaken at the site (Soil classification 
workshop group, 1991). The soil is medium grade sand with clay 
percent in the lower B-horizon not exceeding 40%, and in A-horizon 
not exceeding 10% with an average depth of A-horizon 20 cm and 
total potential rooting depth in excess of 1.8 m (Drew et al., 2009). 
Planting took place on 16 July, 2001, prior to which in April, 2001, 
stumps of trees from the previous rotation were treated with 
herbicide (to prevent coppicing), and harvest slash was burned. 
Each rooted cutting was planted between existing stumps, with 

approximately 2 L of water and 125 g granular fertilizer, the 
equivalent of 8 g nitrogen, 12 g phosphorus and 8 g potassium per 
plant. The two clones were planted in alternating rows seven trees 
wide each (Figure 1), with spacing between trees of 3 m (east to 
west) × 2.5 m (north to south). These rows have been numbered 
from 1 to 6, starting at row (GC) closest to the entrance gate. Each 
row of clones consists of three plots of 12 trees each with two 
surrounding rows of trees (Figure 1). This effectively separates 
each plot by four rows of trees, an important part of the design 
since periodic destructive sampling is required in the experiment. 
The plots were established as pairs, such that for any phase  of  the
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Figure 1. The layout of the experimental plots at the research site in eastern South Africa.  

 
 
 

research, a GU and a GC plot could be measured simultaneously 
(Drew, 2004). From the 18 plots (Figure 1), plots 9 and 10 were 
chosen for monitoring during project Phase 1. Within a 12-tree plot, 
nine trees were selected from each clone for intensive monitoring of 
radial growth and other physiological characteristics (Drew, 2004). 
Measurements of stem radius were obtained from hourly 
dendrometer readings in the 18 sample trees. Automatic point 
dendrometers were mounted at 9 months of age at 1.3 m above the 
ground on the north side of each tree to measure the radius of the 
main stem with a rod held against the outside surface by constant 
force. The data for stem radius used in this paper has 8640 
observations from the two clones. Half the data set is from the GU 
clone and the remaining half is from the GC clone. Daily 
measurements were used in our analysis. Daily averages of stem 
radius were obtained by cumulating and averaging the hourly 
measurements. Meteorological data was obtained using an 
automatic weather station (MCSystems, Cape Town, South Africa) 
located approximately 300 m from the research trial site (Drew et 
al., 2009). Hourly measurements were made of total rainfall (mm), 
temperature (ºC), relative humidity (%), wind speed (m/s) and total 

solar radiation (mJ/h). Daily total rainfall and daily averages of the 
other weather variables were used in the analysis. 

 
 
Data analysis 

 
Statistical analysis was undertaken using R-statistical software. R is 
a free software that can be downloaded from the R-project website 

R Core Team (2012). The simplest approach in detecting climatic 
effects is by the use of traditional regression methods. However, 
this   traditional   method  assumes  that  the  climatic  variables  are 

uncorrelated since one of the failures of regression methods is due 
to multicollinearity. Multicollinearity problem arises when the 
predictors (in our case the climatic variables) are correlated. To 
overcome this, we applied principal component regression and PLS 
regression. These methods were applied to the combined data set 
as well as to the data set for separate clones. Extensive discussion 
of these methods can also be found in Rodriguez-Nogales (2006), 
Dine et al. (2002), Fekedulegn et al. (2002), Maitra and Yan (2008), 
Mevik and Cederkvist (2004), and Haenlein and Kaplan (2004).  

 
 
RESULTS AND DISCUSSION 
 

The variables included in the study are major climatic 
variables and one non-climatic variable (tree age) as 
previously described. The overall ordinary least squares 
(OLS) model was significant with an R

2
 = 0.791 and 

adjusted R
2
 = 0.79 (Table 1). This indicates that about 

79% of the variation in stem radius is explained by the 
predictors (the five weather variables together with age of 
a tree) included in the model. An attempt to explore lags 
was made by considering lags up to 15 days. The use of 
five weather variables lagged by 15 days increased the 
variance explained by 0.3% only. Therefore, we did not 
consider the lags as an important issue at this age of the 
tree. 

The predictors included in the model are therefore 
important for  determining  radial  tree  growth.  However,  
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Table 1. Summary OLS model. 
 

Predictor (climatic variables) Estimate Standard error t-value p-value 

Intercept  -16558.67 550.61 -30.07 0.000 

Temperature  23.73 12.65 1.88 0.061 

Solar radiation 2865.35 222.01 12.91 0.000 

Rainfall  2.57 6.21 0.41 0.679 

Wind speed  1426.83 77.02 18.53 0.000 

Tree age  313.22 2.21 142.05 0.000 

R
2
 = 0.791 Adj R

2
 = 0.79 

 
 

 
Table 2. Correlation matrix of predictors. 
 

Variable Temperature Relative humidity Solar radiation Rainfall 

Temperature 1    

Relative humidity -0.320** 1   

Solar radiation 0.617** -0.498** 1  

Rainfall  -0.107** 0.272** -0.258** 1 

Wind speed  0.406** -0.385** 0.374** 0.099** 
 

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-

tailed). 

 
 

 
Table 3. The eigen value decomposition of the correlation matrix. 

 

Eigen values Proportion of total Cumulative proportion of total 

2.375 0.396 0.396 

1.252 0.209 0.605 

1.083 0.181 0.786 

0.625 0.104 0.890 

0.412 0.069 0.959 

0.253 0.042 1 

 
 

 
the individual t-ratios (estimated coefficient/standard 
error) for the coefficients of the most important climatic 
variables, that of rainfall and temperature, are non-
significant (Table 1). This is an indication of the presence 
of multicollinearity among the predictors. From the 
correlation matrix of predictors (Table 2), temperature 
and solar radiation were highly correlated. The correlation 
coefficient was 0.62 and highly significant (p < 0.001). 
The correlation between wind speed and temperature 
was 0.41, which was also highly significant (p < 0.001). 
This shows the existence of significant multicollinearity 
among the independent climatic variables. Multicollinearity 
inflates the standard error of the regression coefficients, 
which results in low t-statistic values and a failure to 
reject the null hypothesis. The application of classical 
linear regression models therefore does not have a 
powerful inference on the regression coefficients. To 

address this problem, principal  component  regression  and 

PLS regression techniques were used. All predictors 
were treated as continuous variables with different unit of 
measurements [for instance, rainfall (mm) and temperature 
(°C)]. It might make more sense to standardize the 
predictors before trying principal components. This is 
equivalent to performing principal components analysis 
on the correlation matrix of predictor variables. Table 3 
shows the eigen value decomposition of the correlation 
matrix of the original or the covariance matrix of the 
standardized predictors. The first five principal 
components captured 95.9% of the information in the 
correlation matrix. Table 4 shows the eigen vectors 
corresponding to each of the eigen values of Table 3. We 
constructed the principal components corresponding to 
each eigen value by linearly combining the standardized 
predictive variables using the corresponding eigen vector. 
Hence, the six principal components are computed as 
follows:  
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Table 4. The eigen vectors associated with the eigen values of Table 3. 
 

Eigen vector 1 Eigen vector 2 Eigen vector 3 Eigen vector 4 Eigen vector 5 Eigen vector 6 

0.495 -0.239 -0.031 0.601 -0.463 0.347 

-0.488 -0.415 0.085 0.301 -0.362 -0.593 

0.546 -0.144 0.168 0.238 0.553 -0.539 

-0.207 -0.255 -0.808 0.259 0.396 0.127 

0.413 -0.280 -0.431 -0.594 -0.366 -0.279 

-0.068 -0.774 0.354 -0.266 0.241 0.378 

 
 

 
Table 5. Summary of OLS model that uses principal components as predictors. 

 

Coefficient Estimates Standard error t-value p-value 

Intercept 16025.71 36.70 439.659 <2e-16*** 

PC1 60.83 23.82 -2.554 0.0107* 

PC2 -5402.82 32.80 -164.713 <2e-16*** 

PC3 1987.07 35.27 56.34 <2e-16*** 

PC4 -1742.90 46.42 -35.547 <2e-16*** 

PC5 1330.27 57.18 -23.263 <2e-16*** 

PC6 1425.38 72.99 19.530 <2e-16*** 
 

*Significance at the 0.05 level. ***significance at the 0.001 level. 
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where Z1 is the standardized value of temperature, Z2 is 
the standardized value of relative humidity, Z3 is the 
standardized value of solar radiation, Z4 is the 
standardized value of rainfall, Z5 is the standardized 
value of wind speed, and Z6 is the standardized value of 
age  

The principal components constructed above were 
used in a linear regression model. Stem radius was used 
as the dependent variable and the principal components 
as independent variables (Table 5). The rank of the 
predictive power did not line up with the order of the 
principal components. For instance, the first principal 
component was less explanatory for the target than the 
second or the third, even though the first principal 
component contains more information on the six original 
explanatory variables. The principal components technique 
arrives at uncorrelated standardized linear combinations 
(SLCs) that capture only the characteristics of the X-
vector or predictive variables. No significance is given as 
to how each predictive variable is related to the response 
variable. In a way, it is an unsupervised dimension 
reduction technique (Maitra and Yan, 2008) and therefore 
requires the use of other analytical methods such as 
PLS.  

In comparing the importance of the constructed 
principal components, five components explained most of  

the variation in the predictors (95.9%). The scree plot (not 
shown here) showed that almost all the variation in 
predictors (about 96%) was explained by the first five 
principal components. Therefore, a linear model that 
used the first five principal components as latent 
explanatory variables was fitted (Table 6). The R

2
 value 

0.78 for the reduced model was close to the R
2
 value for  

the model with all six components (R
2
 = 0.79). Once 

again, the rank of the predictive power did not correspond 
with the order of the principal components. In other 
words, principal component one appears to have less 
explanatory power for the dependent variable as 
compared to other components. By transforming the 
principal components back to the original explanatory 
variables, the estimated coefficients of the original 
variables are given in Table 7. That means, firstly, the 
principal components were obtained. These principal 
components are uncorrelated and an ordinary regression 
model was fitted using the principal components as 
explanatory variables. The five principal components 
appear to have significant effect on the radial measure 
(Table 6). The estimated coefficients for the original 
measured variables were obtained by transformation 
from the estimated coefficients for principal components. 
The estimates of the regression coefficients in Table 7 
show that all predictors have a positive relationship with 
stem radial measure. Moreover, the five latent variables 
that produced the above estimated coefficients are 
significant (Table 6). This indicates the significant effect 
of climatic variables on radial measure. Separate 
estimates for GU and GC clones also  show  the  positive



1238         Afr. J. Agric. Res. 
 
 
 

Table 6. Summary of OLS results for the model that uses the first five principal components. 
 

Coefficient Estimates Standard error t-value p-value 

Intercept 16025.71 37.50 427.35 <2e-16*** 

PC1 60.83 24.34 -2.50 0.0124* 

PC 2 -5402.82 33.52 -161.20 <2e-16*** 

PC 3 1987.07 36.04 55.14 <2e-16*** 

PC 4 -1742.90 47.43 -36.75 <2e-16*** 

PC 5 1330.27 58.43 -22.77 <2e-16*** 
 

*Significance at the 0.05 level. ***Shows significance at the 0.001 level.  
 
 

Table 7. The estimated coefficients of the original climatic variables estimated by using principal component regression. 

 

Predictors (Climatic variables) Estimates for combined data Estimates for GU clone Estimates for GC clone 

Intercept  -16558.67 -19048.26 -14069.07 

Temperature  90.48 165.33 15.64 

Relative humidity  581.14 680.05 482.29 

Solar radiation  694.56 802.99 586.20 

Rainfall  16.81 27.82 5.79 

Wind speed 834.13 902.12 766.24 

Tree age 6201.39 6764.65 5638.85 

 
 

Table 8. Estimated coefficients of the original set of climatic variables using PLS method. 

 

Climatic variable  Estimates for both clones Estimates for GU clone Estimates for GC clone 

Temperature 55.42 128.02 54.42 

Relative humidity  596.58 696.94 596.58 

Solar radiation 761.13 874.50 761.13 

Rainfall  35.13 47.59 35.13 

Wind speed  814.29 880.65 814.29 

Tree age 6191.69 6754 6191.69 
 
 

 

effect of weather variables together with tree age (Table 
7). Partial least square regression (PLS) can overcome 
the deficiencies of OLS regression in the case of highly 
collinear data. Moreover, partial least squares allow an 
analysis of the data in terms of independent latent 
variables or components. Applying PLS method to the 
data, the minimum root mean square error of prediction 
(RMSEP) is observed for five components model. The 
value of the X-variance for the model with five latent 
variables is 93.5 %. This means a model with five latent 
variables has explained 93.5 % of the variation in the 
original predictors. The variation explained in the 
response variable is 79.1 %. This is the same amount of 
variation explained by the ordinary least square 
regression. Therefore, the model formulated by five latent 
variables fits the data well with a high predictive power. 
The coefficients for the original set of variables when 
partial least square regression was applied to GC, GU 
and pooled data sets are indicated in Table 8. It appears 
that the estimated coefficients for the original set of 
variables for the GC clone are smaller than that of the GU 

clone for all climatic variables. This indicates that the GU 
clone has on average a larger stem radius than the GC 
clone. The signs of the estimated coefficients for the GU 
clone and the signs for the estimated coefficients of the 
pooled data set are the same. However, the estimated 
coefficient of temperature is negative for the GC clone 
while it is positive for the GU clone and pooled data set. 
This indicates that the effect of temperature on stem 
radius goes in opposite directions for the two clones for 
this site and age class. The possible reason for this could 
be the difference in genetic makeup the two clones. 
Moreover, the effect of weather variables may depend on 
the season of the year. The site difference cannot be a 
possible reason for this difference as site difference is 
controlled by the design. In the design the plots were 
established as pairs such that a GU and a GC plots are 
measured simultaneously (Figure 1). For the rest of the 
climatic variables the effect follows the same direction for 
the two clones with some differences in magnitude. 

In order to test whether the components that produced 
these coefficients are significant or not, latent variables or 
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Table 9. Summary of OLS results for the model that uses the PLS components as 
predictors. 
 

Coefficient Estimates Standard error t-value p-value 

Intercept 16025.71 36.70 436.64 <2e-16*** 

T1 5932.81 32.29 178.23 <2e-16*** 

T2 1193.6 45.41 26.28 <2e-16*** 

T3 318.38 30.45 10.46 <2e-16*** 

T4 299.85 40.22 7.46 9.83e-14*** 

T5 212.74 48.99 4.34 1.42e-05*** 

T6 78.66 58.87 1.336 0.182 
 

***Significance at the 0.001 level. 

 
 

Table 10. Summary of OLS results for the model that uses the first five PLS components as 
predictors. 
 

Coefficient Estimates Standard error t-value p-value 

Intercept 16025.71 36.70 436.64 <2e-16*** 

T1 5932.81 32.29 178.23 <2e-16*** 

T2 1193.6 45.41 26.28 <2e-16*** 

T3 318.38 30.45 10.46 <2e-16*** 

T4 299.85 40.22 7.46 9.83e-14*** 

T5 212.74 48.99 4.34 1.42e-05*** 
 

***Significance at the 0.001 level. 

  
 

Table 11. RMSE and RMSECV values for all prediction 

methods. 
 

Parameter OLS PCR PLS 

RMSE 3410.01 3484.53 3410.4 

RMSECV 3414.39 3413 3413 
 
 

 

PLS components were constructed while fitting the PLS 
regression. After determining these latent variables, 
T1…T6 sequentially, the relationship between these latent 
constructs and the response was estimated by ordinary 
linear regression. The sample correlations between any 
pair of the latent constructs were zero. A linear model 
was then applied using the same radial measure as the 
dependent variable and the six PLS components, T1…T6, 
as the independent variables. Summary results for the 
model that uses the PLS components as predictors is 
shown in Table 9. The PLS components were extracted 
in order of significance. The first five components were 
significant, while the last component was not. The values 
of R

2
 and adjusted R

2
 for this model were 0.7908 and 

0.7907, respectively. Table 10 shows the summary 
results for the model that involves only five PLS 
components. From the results, it can be seen that all the 
coefficients listed in Tables 9 and 10 were the same for 
the first five components. This shows that the coefficients 
of the PLS latent variables do not change by adding or 
dropping latent variables from the model. The results of 
the PLS  model  show  that  all  climatic  variables  had  a  

significant effect on growth.  
With regard to the predictive powers of these models, a 

comparison was made based on RMSE and the RMSE of 
cross-validation (RMSECV, Table 11), a measure of the 
model’s ability to predict new samples. The OLS model 
had the smallest RMSE value (Table 11). The second 
smallest RMSE values belong to the PLS model. 

The RMSE for PLS was actually very close to the 
RMSE for the OLS model. However, this comparison was 
from the point of view of model fit. Under the condition of 
no multicollinearity, this might indicate that the OLS 
model fitted the data better than the other two methods. 
For comparisons of models intended for prediction, it is 
inadequate to look just at model fit. As prediction is the 
objective, the PLS model that gave the lowest RMSECV 
value is preferred. For the data set to which these models 
were applied, the PLS model had the highest predictive 
ability with the lowest number of factors. In order to 
identify differences between clones, separate PLS model 
was fitted to data for each clone. For both clones, the 
optimum number of PLS components was five. These 
five    components    were   significant,    while   the   sixth 
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Table 12. Percent of variance captured by PLS components for GU clone. 
 

Component  
Climatic variables and age  Radius 

This component Cumulative total  This component Cumulative total 

 T1 20.53 20.53  77.53 77.53 

 T2 17.66 38.19  1.86 79.04 

 T3 30.25 68.44  0.35 79.39 

 T4 15.27 83.71  0.14 79.53 

 T5 9.8 93.51  0.04 79.57 
 
 
 

Table 13. Percent of variance captured by PLS components for GC clone. 

 

Component 
Climatic variables and age  Radius 

This component Cumulative total  This component Cumulative total 

 T1 20.47 20.47  84.74 84.74 

 T2 12.25 32.72  2.06 86.80 

 T3 25.85 58.57  0.25 87.05 

 T4 24.28 82.85  0.11 87.16 

 T5 10.68 93.53  0.05 87.21 
 

 
Table 14. Standardized regression weights for both principal component regression 

and PLS regression models. 
 

Predictor  

(climatic variables) 

PLS model  PCR model 

GU GC  GU GC 

Temperature  0.016 -0.003  0.020 0.002 

Relative humidity  0.086 0.078  0.083 0.075 

Solar radiation 0.107 0.101  0.098 0.091 

Rainfall 0.006 0.004  0.003 0.001 

Wind speed 0.108 0.116  0.110 0.119 

Tree age  0.829 0.876  0.830 0.878 
 

 
 

component was not significant (Table 9). The percentage 
of total variation in radial measure captured by the 
number of components for the GU clone is less (Table 
12: 80% with p-value < 0.0001) than the amount of 
variation captured for the GC clone (Table 13: 87.21% 
with p-value < 0.0001). The percentage of total variation 
in climatic variables and tree age captured by the five 
components PLS model for the GU and GC clones is 
almost the same (93.5%).  

In order to determine the most important drivers of 
variation in short-term stem radial measure (for the first 2 
years of tree age) for the two clones, we applied 
standardized regression weights for both PLS and 
principal component regressions. This can be obtained 
by fitting the models on standardized variables. The 
factor with the highest coefficient in absolute value is the 
most important factor in explaining the variation in radial 
measure. The standardized regression weights 
(coefficients) for our predictors, when PLS regression and 
principal components regression were applied to GC  and 

GU data sets, are indicated in Table 14. It appears that 
tree age is the most important predictor of stem radius 
using both models and for both clones. Among climatic 
variables, it appears that wind speed, followed by solar 
radiation, is the most important driver of the variation in 
stem radius over the growth period of 2 years. However, 
the biological plausibility of these results is questionable. 
Moreover, we found the negative effect of temperature for 
GC clone. This might be due to the dependence of 
weather variables on season. The weather variables are 
likely to change over the year. This relative effect of 
weather variable might change from one season to the 
other. We analyzed the same data by season in order to 
see for the season effect. Summary results by season 
are shown in Tables 15 and 16. In spring and summer, 
none of the weather variables has significant effect. The 
only variable that has significant effect on stem radius is 
tree age. In winter, all predictors have significant effect on 
stem radius for GU clone, while for GC clone all have 
significant effect with the exception of rainfall. In  autumn, 
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Table 15. Summary results of ordinary regression model for summer and autumn. 
 

Predictor 

Summer 

GC clone GU clone 

Estimate p-value Estimate p-value 

Intercept 2763.099 0.265 2695.785 0.588 

Temperature -2.143 0.963 -17.097 0.854 

Relative humidity  5.088 0.781 9.983 0.786 

Solar radiation  167.126 0.712 371.769 0.683 

Rainfall 0.291 0.990 0.422 0.993 

Wind speed -47.827 0.813 -80.071 0.844 

Tree age  185.506 0.000 231.252 0.000 

 R
2
 = 0.107 R

2
 = 0.045 

Predictor 

Autumn 

GC clone GU clone 

Estimate P-value Estimate P-value 

Intercept -11156.222 0.000 15921.22 0.000 

Temperature  -12.152 0.578 28.38 0.377 

Relative humidity 8.632 0.441 19.62 0.233 

Solar radiation 1055.849 0.028 1907.87 0.007 

Rainfall 13.029 0.550 23.89 0.029 

Wind speed 378.068 0.011 476.58 0.029 

Tree age  316.093 0.000 382.49 0.000 

 R
2
 = 0.929 R

2
 = 0.9 

 
Table 16. Summary results of ordinary regression model for winter and spring. 

 

Predictor 

Winter 

GC clone  GU clone 

Estimate p-value  Estimate p-value 

Intercept -12364.279 0.000  -14159 0.000 

Temperature 137.832 0.000  159.339 0.000 

Relative humidity  39.106 0.000  46.699 0.000 

Solar radiation  1980.674 0.000  1775.888 0.021 

Rainfall -5.541 0.442  -7.936 0.046 

Wind speed 659.705 0.000  698.642 0.002 

Tree age  266.982 0.000  312.839 0.000 

 R
2
 = 0.896  R

2
 = 0.841 

Predictor 

Spring 

GC clone  GU clone 

Estimate P-value  Estimate P-value 

Intercept -2217.472 0.077  -8561.296 0.002 

Temperature  -20.944 0.366  -40.28 0.434 

Relative humidity -0.688 0.941  -2.816 0.893 

Solar radiation 56.458 0.855  110.533 0.872 

Rainfall -1.488 0.870  -1.53 0.939 

Wind speed 31.297 0.788  65.365 0.801 

Tree age  262.869 0.000  403.825 0.000 

 R
2
 = 0.282  R

2
 = 0.158 

 
 

solar radiation, wind speed and tree age have significant 
effects on the  stem  radius  for  both  clones.  In  autumn, 

rainfall appears to have significant effect on stem radius 
for   GU  clone, while it has  no  significant  effect  on  GC  
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clone. The insignificant effect rainfall in winter and 
autumn for GC clone might be due to genetic factor, 
which needs further study. Temperature has significant 
effect and positively related to stem radius in winter for 
both clones (Table 16). In summer, autumn and spring, 
temperature has no significant effect on stem radius 
(Tables 15 and 16). Therefore, the effect of weather 
variables on stem radius is dependent on season.  

Daily stem size variation is important as the net 
increment of a forest stand is ultimately determined by 
the accumulation of daily increment events (Drew et al., 
2009). Several factors might affect the daily stem size of 
trees. For instance, the study by Zweifel et al. (2006) 
indicates that there is a strong dependence of radial 
growth on the current tree-water relations and only 
secondary dependence on the carbon-balance. The 
availability of soil water and the degree to which storage 
tissues were saturated were also factors affecting the 
diurnal course of stem radius changes (Zweifel et al., 
2001). Whitehead and Jarvis (1981) have suggested in 
theoretical approaches, that the diurnal stem radius 
fluctuations are coupled to tree-water relations by 
changing water potential gradients within the tree. 
Studies by Downs et al. (1999) and Deslauriers et al. 
(2003) consider the effect of weather on daily stem 
growth. Deslauriers et al. (2003) studied daily stem radial 
growth of balsam fir to show that total rainfall and 
maximum temperature were positively correlated with the 
stem radius. Climatic variables are highly inter-correlated, 
and the use of OLS to estimate the parameters of the 
response function results in instability and high variability 
of the regression coefficients. As a result, the regression 
coefficients become much larger than would seem 
reasonable physically or practically, and may fluctuate 
widely in sign and magnitude. Accordingly, it was 
observed that the ordinary regression estimates inflated 
the percentage of variation in the stem radial growth 
accounted for by climatic conditions. Ordinary regression 
inferences from such correlated climatic variables can 
result in misleading and confusing conclusions relating to 
variables of major interest to dendroecologists in terms of 
magnitude, sign, and standard error of the coefficients as 
well as R

2
 (Fekedulegn et al., 2002). 

Both principal component regression and PLS 
regression methods have an advantage over OLS 
regression because they do not require that the 
explanatory variables be orthogonal. The principal 
components are orthogonal, eliminating the multicollinearity 
problem. However, the problem of choosing an optimum 
subset of predictors remains. A possible strategy is to 
keep only a few of the first components. Nevertheless, 
the components are chosen to explain the independent 
(X) rather than the dependent (Y) and there are no 
guarantees that the principal components which explain 
the independent variable can be relevant to explain the 
dependent (Y). On the other hand, PLS regression finds 
components from X that are also relevant for Y. PLS 
regression searches for a set of components that perform 

 
 
 
 
a simultaneous decomposition of X and Y with the 
constraint that these components explain much of the 
covariance between X and Y. The PLS approach is 
considered as a variance-based structural equation 
model (SEM). The alternative SEM is a covariance-based 
SEM. Although both methods use a latent variable term, 
the latent variables used by the two methods are 
different. As indicated by Fornell and Bookstein (1982), 
the latent variables in PLS are estimated as exact linear 
combinations of their indicators. This shows that “latent” 
variables in PLS are not true latent variables as defined 
in SEM, as they are not derived to explain the co-
variation of their indicators, but only to approximate them 
(Mathes, 1993; McDonald, 1996). On the other hand, the 
latent variables in covariance-based SEMs are true latent 
variables. That is they are hypothetically existing entities 
or constructs. In other words, the covariance-based SEM 
latent variables cannot be found as weighted sums of 
manifest variables; they can only be estimated by such 
weighted sums (Schneewiss, 1993). Arguably, PLS has 
the advantage over the covariance based SEM, in that 
Jöreskog and Wold (1982) and Wold (1982, 1985) 
referred to PLS technique as “soft modeling”, because it 
did not require the “hard” distributional assumptions of 
maximum likelihood (ML) which is the core technique in 
SEM, and because it uses a suboptimal estimation 
technique that is faster to run than ML-SEM, which 
therefore allows for more user interaction.  

Finally, the latent variable model approaches used in 
our study show that all climatic variables measured and 
tree age are positively correlated with stem radial 
measure for the pooled data of both clones. Moreover, all 
latent variables had significant effects on the radial 
measure. This was not the case when OLS was applied. 
The effects of the two most important variables, rainfall 
and temperature, were not significant when the OLS 
method was used (Table 1). This may be because the 
ordinary linear regression assumes that the predictors 
are uncorrelated, while in our case the climatic variables 
are correlated (Table 2). It may also be because the 
effect of weather variables changes with season. To 
overcome the problem of correlation among weather 
variables, two alternative methods (Principal component 
regression and PLS) were used. Principal component 
regression models were fitted for the GC and GU clones 
separately, resulting in a positive effect of climatic 
variables on stem radius for both clones. The weather 
data together with the age of a tree accounted for 79% of 
the variance in the stem radial growth for the combined 
data set. This is equivalent to R

2
 in OLS regression. The 

separate analysis of GC and GU clones showed that the 
weather variables and tree age explained 87 and 79.6% 
of the total variation in radial measure for the GC and GU 
clones, respectively.  

When comparing the PLS model fitted for the GC clone 
and GU clone, the effect of climatic variables is similar for 
the two clones except for the effect of temperature. 
Temperature appears to have an  opposite  effect  on  the 



 
 
 
 
radial growth of the two clones. Moreover, 87% of the 
total variation in the stem radial measure is explained by 
the weather variables and tree age by using the PLS 
method for the GC clone and 79% of the variation is 
explained for the GU clone. This indicates that the 
amount of explained variation is larger for the GC clone 
than for the GU clone. The evaluation of the relationship 
between weather variables and stem radius is considered  
after separating the data by season. The effect of 
weather variables on stem radius was found different for 
different seasons. Tree age is the most important factors 
that influences change in stem radius. The importance of 
tree age in determining stem radius should be expected 
as growth is positively related to age most of the time. 
There is no significant effect of weather variables on stem 
radius during summer and spring for both GU and GC 
clones. In autumn, there is significant effect of some 
variables (tree age, solar radiation, wind speed) for both 
GU and GC clones. In winter, the variables temperature, 
relative humidity, solar radiation, wind speed and tree 
age have significant positive relationship with stem radius 
for both clones (Table 16). 
 
 
Conclusions 
 

The study demonstrated that the relationships between 
the daily stem radius and weather variables is positive for 
both the GU and GC clones with the exception of 
temperature. This conclusion was drawn without 
considering season. The analysis by season shows that 
there is no relationship between weather variables 
(temperature, relative humidity, solar radiation, wind 
speed and rainfall) and stem radius for two seasons 
(summer and spring). In winter, there is a positive 
relationship between each of the variables (tree age, 
temperature, relative humidity, solar radiation and wind 
speed) and stem radius. In autumn, the relationship 
between stem radius and variables (solar radiation, wind 
speed and tree age) is positive for both clones. In autumn 
and winter, the effect rainfall on stem radius is significant 
for GU clone, while it is not significant for GC clone. This 
could be mainly due to genetic difference between the 
two clones. This may need further research in the area. 
The study also helps not only to see the role of climatic 
variables on the radial growth but also can be an 
example of an analysis of the effect of correlated 
predictors on the growth of plants in general. Regarding 
the statistical methods used in this study, PLS method 
appears to be best in solving the problem of 
multicollinearity. However, it is advisable to analyze the 
data using different alternative methods before we 
embark on conclusion. From this study, the lesson learnt 
is that the consideration of seasonal effect is 
indispensable, to study the effect of weather variables on 
tree growth. 

In conclusion, the climatic variables, together with tree 
age, explained a substantial amount of variation (79%)  in 
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the stem radius. Tree age is the most important factor 
that influences change in stem radius. The importance of 
weather variables depends on season. In autumn, solar 
radiation and wind speed appears to be more important 
than the other weather variables. In winter, temperature, 
relative humidity and wind speed are more important than 
other weather variables in determining stem radius. This 
study is based on data collected at the juvenile stage of 
Eucalyptus trees. The application of the same techniques 
to adult trees and comparison of the results shall be the 
subject of future work.  
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