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This study aimed to demonstrate the effects of spatial resolution in modeling water erosion by the 
Revised Universal Soil Loss Equation (RUSLE). In this study, three specific objectives were defined: 
Evaluation of the effect of the geographic information source on water erosion, seasonal effects on the 
potential production of sediments, as well as public policies concerning the different scenarios. The 
topographic factor (LS) of this equation was determined using four digital terrain models, with different 
spatial resolutions (10 and 30 m). The results of this factor prove to be influenced by the resolution of 
the DEM used. The spatial modeling of water erosion was carried out by combining the various input 
variables of the RUSLE model. The analysis of the obtained erosion maps revealed that its production 
is influenced by the spatial resolution and by the seasonality, demonstrating that the DEM obtained via 
DRONE presented the lowest values of soil loss potential in any scenario. Thus, it was verified a need 
to implement practices for the management of soil cover and conservation to reduce vulnerability to 
water erosion in the watershed. 
 
Key words: Soil erosion, geographic information system (GIS), watershed, modeling, hydrology. 

 
 
INTRODUCTION 
 
Soil erosion is characterized as a natural and continuous 
phenomenon, which may occur to a greater or lesser 
extent, depending on the degree of association between 
various factors, such as relief, climatic conditions 
represented by the intensity of rain, dynamics of water 
movement in the soil (infiltration and redistribution 
processes), soil type (texture, hydraulic permeability, 
porous continuity), and land use and occupation 
(expansion  of   agricultural   frontiers,   waterproofing   of 

urban areas and demographic growth). According to 
Lepsch (2010), the combinations of these factors lead to 
ecological and economic losses. 

The accelerated erosive process causes changes in 
the surface runoff and, consequently, in the hydrological 
dynamics of the watershed, with effects on the decrease 
of water availability in periods of drought, increased peak 
flow in the rainy period with a propensity to flooding 
generation,  silting  up watercourses, besides the impacts 
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on water quality (Nunes and Roig, 2015; Botelho et al., 
2018), and also increasing public spending in an attempt 
to reverse or mitigate this environmental imbalance. 

According to Souza Júnior et al. (2017), the current 
Brazilian model of water management contributes to the 
increase of problems associated with water scarcity, 
which becomes necessary to improve the articulation 
mechanisms between water resources plans with the use 
of integrated assessment tools, and among these tools, 
the mapping of the areas most susceptible to erosion. 

These tools, therefore, allow the construction of much 
more effective risk management (Vörösmarty et al., 2010; 
Kirchhoff et al., 2013), based on the use of hydrological 
modeling, contributing to improving the efficiency of 
public spending and management activities of the 
watershed, since management practices are directly 
dependent on the estimated soil loss (Ganasri and 
Ramesh, 2016). 

The use of mathematical models for this purpose is 
essential due to the operating costs for direct measures 
in large areas, which become impractical from a financial 
point of view; methodological restrictions and, mainly, the 
time to obtain the information (Panagos et al., 2015; 
Rodrigues et al., 2017). 

According to Karydas et al. (2014) and Hrabalíková and 
Janeček (2017), among the more than 80 models 
currently in existence to estimate potential soil erosion, 
varying in time and space scales, the models of the USLE 
family are still the most used. The revised universal soil 
loss equation - RUSLE (Renard et al., 1997) aims to 
estimate water erosion from climatic, pedological, and 
topographic variables, besides the conditions of use, 
management, and soil conservation practices. 

According to Minella et al. (2010), the topographic factor 
(LS) represents the dynamics of surface runoff in the 
erosion process in the studied area. Its determination has 
limitations due to the complexity of the relief, resulting in 
erroneous estimates of erosion rates, leading to the need 
to incorporate the concepts of unit stream power (Yang, 
1972), associated with the accumulated flow (Desmet 
and Govers, 1996) and geoprocessing techniques. 

Thus, according to Zanin et al. (2017), the accuracy of 
erosion modeling is based on the ability to be able to 
explain the physical factors that determined the output 
result and on the accuracy of each physical factor of 
input. In this way, the results obtained will have a 
significant impact on the need to prevent natural 
disasters due to erosion processes. 

In this sense, spatial resolution can have significant 
effects on soil loss assessment models (Datta and 
Schack-Kirchner, 2010), and their choice must be guided 
to reduce errors in topographic attributes (Wu et al., 
2005), which allows a better analysis of the assessed 
area and, consequently, in the development and 
improvement of watershed management and conservation 
policies by management committees. 

Considering   that   there   is   a   growing   demand  for  

 
 
 
 
information on environmental impacts, whether resulting 
from agricultural, industrial activities or urbanization 
processes on water resources, this work aims to evaluate 
the effects of spatial resolution in determining the LS 
factor of RUSLE in a watershed located between the 
second and third plateau of Paraná. And, also its effect 
on the potential estimate of erosion based on the 
seasonal variation of land use and occupation, 
considering the central months of the seasons and how 
this information can impact soil management and 
conservation from a perspective development of public 
policies. 
 
 
MATERIALS AND METHODS 
 
Study area 
 
The study area is in an affluent micro watershed of the Pitangui 
River with a total area of 604.9 ha. This watershed belongs to the 
watershed of the Tibagi River, in Castro - PR (Figure 1), inserted in 
the region called Campos Gerais, with a predominance of Latossolo 
Bruno Ácrico (LBw2) according to survey and soil recognition in the 
State of Paraná. This region stands out for grown of soybeans, 
corn, and beans, and it is considered one of the most important 
milk-producing regions in the country. 

 
 
Maps database 
 
The mapping of land use and cover considered the central months 
of the seasons, to be able to assess the effects of seasonality in the 
estimation of sediment production by the watershed, as well as the 
effect of anthropogenic dynamics in it. For this, four images 
obtained from the ESA base of the Sentinel-2 satellite were 
selected, with a spatial resolution of 10 m and, subsequently, their 
supervised classification was performed, obtaining the distribution 
of use as shown in Table 1, generating maps in the scale of 1: 
25,000 (Figure 2). 

Four databases were used to generate different digital elevation 
models with their respective spatial resolutions. The first DEM was 
obtained from an SRTM image prepared by the USGS with a 
resolution of 30 m (LS1), made available by the Instituto Nacional 
de Pesquisas Espacias - INPE (National Space Research Institute) 
through the TOPODATA project. The second DEM was based on 
contour lines provided by the Laboratório de Pesquisas Aplicadas 
em Geomorfologia e Geotecnologia - LAGEO-UFPR (Laboratory for 
Applied Research in Geomorphology and Geotechnology) with a 
resolution of 10 m (LS2). The third DEM from the database was 
made available by the Instituto de Terras, Cartografia e 
Geociências do Paraná - ITCG (Institute of Lands, Cartography, 
and Geosciences of Paraná), also with 10 m resolution (LS3). And, 
the fourth DEM was produced from an unmanned aerial vehicle 
image (DRONE), where the contour lines were extracted through 
aerophotagrametry, with a resolution of 10 m (LS4). 

 
 
Potential soil loss estimation 
 
The RUSLE was structured in a GIS environment, allowing the 
generation of individual and spatial maps of each component of the 
model aiming to develop the identification map of the area’s most 
vulnerable to water erosion, varying the spatial resolution and 
consequently  the  topographic  factor  and,  the use of the soil from  
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Figure 1. Location map of the study area. 
 
 
 

Table 1. Percentage distribution of classes of use relative to central months. 
 

Data Land cover Area (ha) % Distribution Total (ha) 

January 5th, 2018 
(Summer) 

Annual cropping 260.35 43.04 

604.9 
Native forest 216.92 35.86 

Fallow agriculture 65.57 10.84 

Pasture land 61.94 10.24 

 Dirt road 0.12 0.02  

     

April 13th, 2018 

(Autumn) 

Annual cropping 93.28 15.42 

604.9 
Native forest 203.13 33.58 

Fallow agriculture 164.17 27.14 

Pasture land 144.21 23.84 

 Dirt road 0.12 0.02  

     

July 18th, 2018 

(Winter) 

Annual cropping 117.77 19.47 

604.9 
Native forest 203.13 33.58 

Fallow agriculture 102.05 16.87 

Pasture land 181.83 30.06 

 Dirt road 0.12 0.02  

     

October 30th, 2018 

(Spring) 

Annual cropping 38.47 6.36 

604.9 
Native forest 203.00 33.56 

Fallow agriculture 278.56 46.05 

Pasture land 84.75 14.01 

 Dirt road 0.12 0.02  
 
 
 

the representative images of the central months of the climatic 
seasons   (January,   April,   July,   and   October).  Then    a   linear 

combination of the factors that characterize erosion was performed, 
according to Equation 1: 
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Figure 2. Land use classification map for the central months of the climatic seasons.  

 
 
 

A R K LS C P                                                                       (1) 

 
where A represents the average annual rate of soil erosion per unit 
area (t ha

-1
 year

-1
); R is the average annual rainfall erosivity factor 

(MJ mm ha
-1

 h
-1

 year
-1

); K is the factor corresponding to soil 
erodibility (t ha MJ

-1
 mm

-1
); LS is the topographic factor represented 

by the length and slope (dimensionless); C corresponds to the soil 
cover factor (dimensionless), and P is the factor associated with 
conservationist erosion control practices (dimensionless). 
 
 

Rain erosivity 
 
Erosivity represents the potential of rain to cause erosion due to the 
detachment of solid particles due to the kinetic energy of the rain. 
For the state of Paraná, research aimed at estimating this 
parameter began in the 1980s, as shown by Netto et al. (2018), 
with emphasis on the works of Castro Filho et al. (1982), Rufino 
(1986), Rufino et al. (1993), and Waltrick et al. (2015). 

However, even in the condition highlighted earlier, the annual 
erosivity map for the watershed may not represent the necessary 
spatial distribution, and unique R values end up being used to 
characterize an entire watershed. In this sense, it was decided to 
use a multivariate statistical model, developed by Mello et al. 
(2013), in which it is proposed to estimate the average annual 
erosivity as a function of the latitude, longitude, and altitude of each 
cell in the watershed, allowing to characterize in a distributed way 
the rain erosivity. It should be noted that this model has been widely 
used, according to the studies by Oliveira et al. (2014a, b), 
Rodrigues et al. (2017), Steinmetz et al. (2018), among others. The 
model developed by Mello et al. (2013) for the southern region of 
Brazil is as follows: 

 
2 2

2 2 2 3

2610770 60.44 98839 1114.68 938.47 1.182

1.1885 0.01494

R A LO LA LO A LO

LA LO LA LO

 

 

         

                                                             
                                                                                                       (2) 
 
where R is average annual erosivity (MJ mm ha

-1
 year

-1
), A is 

altitude (m), LA corresponds to latitude, and LO refers to longitude, 
both in negative decimal degrees. 

 
 
Soil erodibility 
 
Erodibility represents the soil's intrinsic vulnerability to erosion, due 
to the ease of detachment of solid particles by the impact of the 
raindrop. This factor can be estimated by different methodologies. 
According to Marques et al. (2019), one of the alternatives to 
measure the K factor is from direct measurements in experimental 
fields under natural or simulated rain, however, under these 
conditions the estimate becomes costly and time-consuming, even 
considering the standard method (Lin et al., 2019). Besides this 
methodology, erodibility can be estimated using pedotransfer 
function, which uses multiple regression models (Young and 
Mutchler, 1977; Bertoni and Lombardi Neto, 2005; Marques et al., 
2019). 

On the other hand, Marques et al. (2019) report that for countries 
like Brazil, the determination of this parameter is hampered by costs 
and, therefore, the use of predefined values for some soil classes 
are commonly used (Beskow et al., 2009). Thus, as the watershed 
has a ruling class of soils (Latossolo Bruno Ácrico), the value 
adopted was 0,018 t h MJ

-1
mm

-1
, according to Albuquerque et al. 

(2000). 
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Table 2. Classes of topographic factor LS. 
 

LS Class 

0 - 1.2 Very low 

1.2 - 1.7 Slightly low 

1.7 - 3.3 Low 

3.3 - 5.5 Moderate 

5.5 - 7.5 Moderately high 

7.5 - 20 High 

> 20 Very high 

 
 
 

Table 3. C values for coverage and land use conditions. 
 

Land use C-factor Source 

Annual cropping 0.253 Bertoni and Lombardi Neto (2008) 

Native forest 0.012 Farinasso et al. (2006) 

Fallow land  0.5 Panagos et al. (2015) 

Pasture land 0.015 Tomazoni et al. (2005) 

Dirt road 1 - 

 
 
 
Topographic factor 
 
Ahamed et al. (2000) showed that the effect of slope length and its 
gradient on the erosion process intensity could be determined with 
the aid of a GIS and in watershed scales, by combining a digital 
elevation model of the terrain (DEM) with processing algorithms to 
obtain the cell length and slope in a distributed way. 

In the particular case of RUSLE, the calculation of the LS factor 
incorporates a vital concept associated with the contribution of 
surface runoff from upstream to downstream, giving a more 
appropriate physical interpretation to the erosive process than that 
adopted in the calculation by USLE. 

The procedure presented by Moore and Burch (1986) via GIS 
and equation proposed by Zhang et al. (2013) and Abdo and 
Salloum (2017) was adopted and used to estimate the value of the 
LS factor, according to Equation 3. 
 

 
0.60.6

sin 0.01745

22.13 0.09

SFA CS
LS

  
                                   (3)

 

 
where FA is the flow accumulation expressed as the number of grid 
cells, CS is the raster spatial resolution (m), and S is the slope in 
degrees. 

The LS factor explains the effect of topography on erosion by 
RUSLE and is calculated as the product slope length sub-factor (L) 
and slope sub-factor (S). These two subfactors combined represent 
the ratio of soil loss at a given length and slope of any point from a 
slope of the unit that has a length of 22.13 m and a slope of 9%, 
where all other conditions are the same. Thus, the values 
associated with the LS are not absolute but reference to the value 
of 1. If <1.0, it represents areas less erosive than the standard 
reference condition. If > 1.0, it represents more erosive conditions 
than the aforementioned reference (Yang, 2015). 

The proposal made by Ruthes et al. (2012) was adopted to 
classify the LS factor, which adapted the classification by Fornelos 
and Neves (2007), and it is presented in Table 2. 

 
Erosion control practice factor (P) and cover management 
factor (C) 
 
Factor P represents management practices that contribute to 
erosion control. However, due to the difficulty in identifying such 
practices through satellite images, it was decided to adopt their 
value equal to 1, as seen in similar works, especially those of Vemu 
and Pinnamaneni (2011), Pradhan et al. (2012), Silva et al. (2012), 
Oliveira et al. (2014), Bera (2017), and Steinmetz et al. (2018). 

Factor C represents the conditions that can be easily changed to 
contain soil erosion, ranging from 0 to 1, where values close to 1 
indicate areas with almost null vegetation cover and, therefore, 
more susceptible to water erosion. The classes of use were 
defined, as well as their percentage of occupation (Table 3) using 
satellite images of the central months of the climatic seasons. Then 
C values were adopted according to studies published for the same 
uses in Brazil, which are shown in Table 3. 

 
 
RESULTS AND DISCUSSION 
 
About the DEMs produced by the different databases, 
variations were observed concerning the altitudes 
between the models, based on the layout of the 
topographic dividers initially obtained from the LAGEO-
UFPR base. 

The DEM generated from DRONE showed values that 
ranged from 930.49 to 997.86 m, with an image of 60,490 
pixels and a resolution of 10 m. The image obtained via 
SRTM, in turn, had an elevation ranging from 939.22 to 
1022.66 m, with approximately 6,910 pixels and a 
resolution of 30 m. Considering the LAGEO-UFPR and 
ITCG bases, both with a spatial resolution of 10 m and 
60.490 pixels, a small difference was observed, the first 
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Figure 3. Digital elevation model from the bases SRTM, LAGEO, ITCG, and from the DRONE.  

 
 
 

Table 4. Classes for the LS factor.  

 

Classification 
LS1 LS2 LS3 LS4 

(ha) 

Very low (0 - 1.2) 234.99 455.05 413.42 556.52 

Slightly low (1.2 - 1.7) 84.33 67.74 96.53 19.35 

Low (1.7 - 3.3) 174.87 59.9 79.86 16.78 

Moderate (3.3 - 5.5) 75.15 16.56 10.16 7.28 

Moderately high (5.5 - 7.5) 19.44 4.46 2.95 2.67 

High (7.5 - 20) 29.88 1.22 1.98 1.44 

Very high (>20) 3.24 - - 0.04 

 
 
 
had altitudes between 934.52 and 1015.97 m, and the 
second had altitudes between 933.98 and 1003.73 m, as 
can be seen from the analysis of Figure 3. 

It verifies that in both maps, it is in the northeastern 
portion that the highest topographic elevations are 
concentrated and, such differences between altimetric 
values, can lead to an increase in the values of the LS 
factor and, consequently, in the production of sediments 
from the watershed (Figure 3). 

Once the DEMs were obtained, flow accumulation 
maps were generated, thus allowing the application of 
Equation 3 to obtain the LS factor. Once the LS maps 
were generated, the classification proposed by Ruthes et 
al.  (2012)   was  followed, which  was  adapted  from  the 

classification initially proposed by Fornelos and Neves 
(2007) (Table 4). 

The results presented in Table 4 demonstrate the effect 
of spatial resolution in the formation of DEM and, 
consequently, in the spatial pattern of the LS factor, with 
reflections in the erosion prediction, for example, in the 
DEM with a resolution of 30 m, there was the lowest 
percentage of area in the “very low” class. 

The occupation of the first three LS classes in more 
than 90% of the area was similar between the models 
LS2, LS3, and LS4, with similarity higher than 95% in the 
models from cartographic basis. In contrast, the LS1 
model, which showed a difference of more than 10% in 
the first three classes, also being the one with the highest  
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Figure 4. Spatial distribution of the LS factor.  

 
 
 
percentage of area in the last three classes, even if not 
concentrated in the watershed. 

About the topographic factor from the SRTM image, 
this map presented a maximum value of 38.10, with an 
average of 2.29, and among all generated maps, the one 
that presented the highest LS values. LS2 had a 
maximum value of 13.55 and an average of 0.86. LS3 
map had 16.98 and 0.93 for the maximum and average 
value, respectively. About the map obtained via DRONE, 
the maximum value obtained was 21.02, and the average 
was 0.52. Figure 4 shows the spatial distribution of the 
LS factor in the watershed for each image studied. 

This behavior can also be observed in Zhang et al. 
(2008), who when evaluating the effects of the resolution 
and the data source in the erosion modelling in two 
American forest watersheds, observed that both the 
resolution and the source of the models generated 
shapes and varied structures. This led to different lengths 
and slopes of reliefs and channels, producing different 
predictions of water erosion. 

For Yang (2015), LS values calculated from different 
sources reveal that higher DEM resolutions produce 
more detailed LS maps; and lower quality resolutions 
tend to overestimate the value of this factor. These 
differences are more noticeable for a higher range of LS 
(LS>10), as shown in Figure 5. 

About the LS4, this image obtained a better 
representation of the landscape, since a high resolution 
allows us to absorb and capture with greater precision 
the geomorphological aspects of the surface. In contrast, 
the LS2 and LS3 images showed a distribution between 
similar classes. 

As shown by Aziz et al. (2012), depending on the input 
source, estimation methods, and procedures used to 
generate the DEM, the DEM may contain errors, which 
can affect the estimate not only of the LS factor but also 
of other parameters derived from the DEM. Thus, the 
choice of which resolution to use should consider which 
images are available and which one can represent all the 
characteristics of the watershed. 

Zhao et al. (2010) show that the prediction of soil loss 
by RUSLE through high-resolution DEM is more 
appropriate since other resolutions may not represent the 
impact of deviation terraces in reducing soil loss. 

These results reinforce the importance of adapting the 
mapping objectives according to the DEM, since changes 
in cell size cause differences between the slope maps, 
which can generate results that are either more 
conservative or more alarming from environmental 
management, affecting the adoption of conservationist 
policies in a given area. 

According to Beskow et al. (2009), areas with LS 
greater than 10 are considered to be highly vulnerable to 
erosion, and therefore, erosion control mechanisms 
should be encouraged (Steinmetz et al., 2018), such as 
maintaining and improving vegetation cover and 
conservation practices of soil. 

The results regarding the behavior of the LS factor as a 
function of spatial resolution, demonstrate that there is, 
effectively, a difference in the direction of flow and, 
consequently, in the topographic effect in the formation of 
water erosion, as was observed in the work of Panagos 
et al. (2015) who assessed water erosion in Europe. 

Contrarily, only the topographic condition is not enough  
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Figure 5. Percentage distribution of LS classes from spatial resolution.  

 
 
 
to analyze the production of sediments in a watershed 
and, therefore, one must evaluate together with the other 
factors of RUSLE, mainly with the maps of land use and 
cover. 

Given the spatial distribution of the LS factor, it is 
expected that maps obtained with the best resolutions, 
tend to produce more accurate DEM. Which results in 
less soil loss, as well as higher chances of success in 
monitoring areas degraded by water erosion, since most 
studies in this line in Brazil use SRTM 30 m data. 

Once the other factors of RUSLE were consolidated, it 
was applied to estimate soil loss in different scenarios, 
since the process is dynamic and can range according to 
the use and occupation of the land. Thus, the distribution 
of erosion by climatic season is shown in Figure 6, for 
each of the resolutions, which allows identifying which 
periods require watershed management activities. 

For the conditions presented, it is noted that with the 
decrease of the natural areas from autumn and with 
another small reduction in spring, areas susceptible to 
erosion processes increase, represented by the increase 
of fallow agriculture areas in autumn and spring. There 
was an increase in the area occupied with pasture 
between autumn and winter, with a reduction in the fallow 
area, which is traditionally characterized by the presence 
of exposed soil. 

About the summer, the average potential erosion was 
higher on the map produced for the LS1 condition, with 
an average production of 45.08 t ha

-1
 year

-1
 of sediments. 

In contrast, the best condition obtained was from the 
DRONE image, with an average production of 10.64 t ha

-

1
 year

-1
. For the LS2 and LS3 images, the average 

potential sediment production was 18.75 and 19.78 t ha
-1

 
year

-1
, respectively. 

About the periods, the highest estimated values in any 
scenario were in the areas close to the watershed  outlet, 

where there is intense agricultural activity, and in the 
areas identified as a dirt road. According to Minella et al. 
(2007), these areas are the main sources of sediment 
production in a hydrographic watershed, and once the 
source of erosion has been identified, the implications for 
soil and water conservation can be assessed. 

Less conservationist soil coverings can be replaced by 
coverings with less erosive potential, especially in places 
with higher LS values, as suggested by Caten et al. 
(2012). It is also possible to readjust the layout of rural 
roads, in addition to the build of rainwater catchment 
watersheds, reducing the kinetic energy of surface runoff 
and, consequently, the transport of suspended solids and 
the dragging of material to other areas of the watershed, 
as proposed by Casarin and Oliveria (2009). 

About the period corresponding to autumn, there was a 
reduction in the area destined to native forest and 
conventional agriculture. This period is characterized by 
the soil preparation for the next harvest and the insertion 
of cattle in the watershed, justifying the increase in the 
fallow and pasture areas, respectively. Table 5 presents 
a summary of the main results found in the scenarios 
evaluated for water erosion. 

The increase in the fallow area tends to increase 
sediment production. However, the observed increase 
occurred in flatter areas, decreasing the effect of the LS 
factor. In contrast, in the areas with higher LS, the 
pasture was inserted, potentially reducing the effect of 
erosion. In this period, an average value of 43.07 t ha

-1
 

year
-1

 was observed for LS1, 19.41 t ha
-1

 year
-1

 for LS2, 
21.20 t ha

-1
 year

-1
 for LS3, and 9.92 t ha

-1
 year

-1
 for LS4. 

For winter, the average sediment potential decreased in 
all scenarios, with LS1 presenting 32.45 t ha

-1
 year

-1
; LS2 

with 13.46 t ha
-1

 year
-1

; LS3 with an average value of 
13.37 t ha

-1
 year

-1
 and LS4 presented 7.24 t ha

-1
 year

-1
.  

One  of  the  reasons  that  may  explain  this  reduction 
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Figure 6. Distribution of the potential erosion in the evaluated scenarios. 

 
 
 

Table 5. Estimated soil loss values, according to seasonality. 
 

Season  LS1 LS2 LS3 LS4 

Summer 

Maximum soil loss (t ha
-1

 year
-1

) 2,411.57 612.28 1073.52 838.50 

Average soil loss (t ha
-1

 year
-1

) 45.08 18.75 19.78 10.64 

Standard deviation (t ha
-1

 year
-1

) 112.67 41.64 40.12 28.32 
      

Autumn 

Maximum soil loss (t ha
-1

 year
-1

) 1,134.10 733.58 751.23 463.29 

Average soil loss (t ha
-1

 year
-1

) 43.07 19.41 22.10 9.92 

Standard deviation (t ha
-1

 year
-1

) 88.62 46.53 45.95 22.17 
      

Winter 

Maximum soil loss (t ha
-1

 year
-1

) 2,411.57 681.08 652.24 936.81 

Average soil loss (t ha
-1

 year
-1

) 32.45 13.46 13.37 7.24 

Standard deviation (t ha
-1

 year
-1

) 112.21 38.37 32.53 26.24 
      

Spring 

Maximum soil loss (t ha
-1

 year
-1

) 1,911.74 733.58 1073.52 597.07 

Average soil loss (t ha
-1

 year
-1

) 53.77 25.31 27.66 13.04 

Standard deviation (t ha
-1

 year
-1

) 106.95 52.44 51.96 27.12 

 
 
 
concerning the previous period is the decrease of the 
fallow area (C = 0.5) and an increase of the pasture area. 

For the spring, there was an increase in the average 
values of potential water erosion, with LS1 presenting 
53.77 t ha

-1
 year

-1
; LS2 had an estimated average 

production of 25.31 t ha
-1

 year
-1

; LS3 with approximately 
27.66 t ha

-1
 year

-1
, and LS4 producing 13.04 t ha

-1
 year

-1
. 

In   the  winter,  most  of  the  areas  were  occupied  with 

fallow, with a decrease in pasture areas and native 
forests. 

Traditionally, both autumn and winter period is 
characterized by the low amount of rainfall events in 
Brazil, and therefore less sediment transport when 
compared to periods of convective rain (spring/summer). 
This behavior can explain the low values of avarege soil 
loss found in those periods associated to changes in land 
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use and land management that may increase soil erosion, 
but without significant precipitation, soil losses tend to be 
less.  

The importance of plant cover in controlling water 
erosion is widely accepted. In the short term, vegetation 
influences erosion mainly by intercepting rainfall and 
protecting the soil surface against the impact of rainfall 
drops, and by intercepting runoff. In the long term, 
vegetation influences the fluxes of water and sediments 
by increasing the soil-aggregate stability and cohesion as 
well as by improving water infiltration (Zuazo and 
Pleguezuelo, 2008). 

According to Beutler et al. (2003), in the 
spring/summer period, on average, soil losses are twice 
as high as in the autumn/winter period. Although the 
values found in this study are not of this magnitude, the 
estimated losses follow this pattern of behavior in the 
analyzed periods. 

In the case of modeling soil erosion, a higher resolution 
provides better and more accurate results and will reduce 
uncertainty, while lower resolution provides generalized 
results (Mondal et al., 2017). 

The analysis of temporal changes occurred serves as a 
subsidy for the implementation of more efficient erosion 
control practices, especially about soil management. 
Mainly because most studies of the potential for water 
erosion using RUSLE in Brazil, do not consider 
seasonality and, many times, have overestimated values. 

It is observed that natural resources are under 
increasing pressure due to climate change, population 
growth, and competing demands for the use of the 
resource. Which demands not only more effective 
governance but also a significant improvement in 
accessibility, especially in the use of information about 
these possible impacts at the watershed scale, as shown 
by Vörösmarty et al. (2010), Pahl-Wostl (2007), Kirchhoff 
et al. (2013), among others. 

According to Rodrigues et al. (2017), this type of 
analysis presents itself as an effective tool to estimate the 
vulnerability to erosion, since it allows the identification of 
the most susceptible areas and subsidizes ecological 
services aimed at sustainability, a key aspect in the 
development and formalization of public policies for 
watershed management 

Therefore, the use of high-resolution images is an 
alternative that goes in the direction of this process of 
development and improvement of environmental policies. 
Which allows access to more accurate information and, 
consequently, in reducing costs, be it in the dimensioning 
of rural roads, in construction of terracing systems or, in 
the reforestation of the most critical areas for water 
erosion within the watershed. 
 
 

Conclusion 
 
Soil loss was estimated to the entire study area, ranging 
from  0   to   more   than   2000  t ha

-1
   year

-1
.   The  most  

 
 
 
 
susceptible areas were found in areas with the highest 
LS values and those classified as dirty roads, therefore 
reinforcing the need for conservation practices to 
promote sustainable agricultural practices on more steep 
terrain. The results found in this study stand out as one of 
the pioneer studies of this nature for Paraná state, thus 
playing an essential role in the soil and water resources 
management of the region. Future studies should focus 
on direct field measurements of soil loss in this 
watershed to validate the results estimated according to 
the RUSLE. 
 
 
CONFLICT OF INTERESTS 
 

The authors have not declared any conflict of interests. 
 
 
REFERENCES 
 
Abdo H, Salloum J (2017). Spatial assessment of soil erosion in 

Alqerdaha basin (Syria). Modeling Earth Systems and Environment 
3(26):7. 

Ahamed TRN, Rao KG, Murthy JSR (2000). Fuzzy class membership 
approach to soil erosion modelling. Agricultural Systems 63(2):97-
110. 

Albuquerque JA, Cassol EA, Reinerdt DJ (2000) Relação entre a 
erodibilidade em entressulcos e estabilidade dos agregados. Revista 
Brasileira de Ciência do Solo 24:141-151. 

Aziz AS, Steward BL, Kaleita A, Karkee M (2012). Assessing the effects 
of DEM uncertainty on erosion rate estimation in na agricultural field. 
Transactions of the ASABE 55(3):785-798. 

Bera A (2017). Assessment of soil loss by universal soil loss equation 
(USLE) model using GIS techniques: A case study of Gumti River 
Basin, Tripura, India. Modeling Earth Systems and Environment 
3(1):29. 

Bertoni J, Lombardi Neto F (2005). Conservação do Solo, 5th ed.; 
Ícone: São Paulo, Brasil, 355p. (In Portuguese) 

Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009). 
Soil erosion prediction in the Grande River Basin, Brazil using 
distributed modeling. Catena 79(1):49-59. 

Beutler JF, Bertol I, Veiga M, Wildner LP (2003). Perdas de solo e água 
num latossolo vermelho aluminoférrico submetido a diferentes 
sistemas de preparo e cultivo sob chuva natural. Revista Brasileira 
de Ciência do Solo 27(3):509-517. 

Botelho THA, Jacomo SA, Almeida RTS, Griebeler NP (2018). Use of 
USLE/GIS technology for identifying criteria for monitoring soil 
erosion losses in agricultural areas. Engenharia Agrícola 38(1):13-21. 

Casarin RD, Oliveira EL (2009). Controle de erosão em estradas rurais 
não pavimentadas, utilizando sistema de terraceamento com 
gradiente associado a bacias de captação. Irriga 14(4):548-563. (In 
Portuguese) 

Castro Filho C, Cataneo A, Biscaia RCM (1982). Utilização da 
metodologia de Wilkinson, para cálculo do potencial erosivo das 
chuvas em cinco localidades no Paraná. Revista Brasileira de 
Ciência do Solo 6:236-239. (In Portuguese) 

Caten AT, Minella JPG, Madruga PRA (2012). Desintensificação do uso 
da terra e sua relação com a erosão do solo. Revista Brasileira de 
Engenharia Agrícola e Ambiental 16(9):1006-1014. (In Portuguese) 

Datta OS, Schack-Kirchner H (2010). Erosion relevant topographical 
parameters derived from different DEMs – A comparative study from 
the Indian Lesser Himalayas. Remote Sensing 2:1941-1961. 

Desmet PJ, Govers G (1996). A GIS procedure for automatically 
calculating the USLE LS factor on topographically complex landscape 
units. Journal of Soil and Water Conservation 51:427-433. 

Farinasso M, Carvalho Júnior OA, Guimarães RF, Gomes RAT, Ramos 
VM (2006). Avaliação qualitativa do potencial de erosão laminar em 
grandes  áreas por meio da EUPS utilizando novas metodologias em 



 
 
 
 

sig para os cálculos dos seus fatores na região do Alto Parnaíba-Pi-
MA. Revista Brasileira de Geomorfologia 7(2):73-85.  

Fornelos LF, Neves SMAS (2007). Uso de modelos digitais de elevação 
(MDE) gerados a partir de imagens de radar interferométrico (SRTM) 
na estimativa de perdas de solo. Revista Brasileira de Cartografia 
59(1):25-33. 

Ganasri BP, Ramesh H (2016). Assessment of soil erosion by RUSLE 
model using remote sensing and GIS – A case study of Nethravathi 
Basin. Geoscience Frontiers 7(6):953-961. 

Hrabalíková M, Janeček M (2017). Comparison of different approaches 
to LS factor calculations based on a measured soil loss under 
simulated rainfall. Soil and Water Resources 12(2):69-77. 

Karydas CG, Panagos P, Gitas IZ (2014). A classification of water 
erosion models according to their geospatial characteristics. 
International Journal of Digital Earth 7:229-250. 

Kirchhoff CJ, Lemos MC, Engle NL (2013). What influences climate 
information use in water management? The role of boundary 
organizations and governance regimes in Brazil and the US. 
Environmental Science and Policy 26:6-18. 

Lepsch IF (2010). Formação e conservação dos solos. 2ed. São Paulo: 
Oficina de Texto. (In Portuguese) 

Lin BS, Chen CK, Thomas K, Hsu CK, Ho HC (2019). Improvement of 
the K-factor of USLE and soil erosion estimation in Shihmen reservoir 
watershed. Sustainability 11:355-370. 

Marques V, Ceddia M, Antunes MAH, Carvalho D, Anache JAA, 
Rodrigues DBB, Oliveira PTS (2019). USLE-K factor method 
selection for a tropical catchment. Sustainability 11:1840-1857. 

Mello CR, Viola MR, Beskow S, Norton LD (2013). Multivariate models 
for annual rainfall erosivity in Brazil. Geoderma 202-203:88-102. 

Minella JPG, Merten GH, Reichert JM, Santos DR (2007). Identificação 
e implicações para a conservação do solo das fontes de sedimentos 
em bacias hidrográficas. Revista Brasileira de Ciência do Solo 
31:1637-1646. (In Portuguese) 

Minella JPG, Merten GH, Ruhoff AL (2010). Utilização de métodos de 
representação espacial para cálculo do fator topográfico na equação 
universal de perda de solo revisada em bacias hidrográficas. Revista 
Brasileira de Ciência do Solo 34:1455-1462. 

Mondal A, Khare D, Kundu S, Mukherjee S, Mukhopadhyay A, Mondal 
S (2017). Uncertainty of soil erosion modelling using open source 
high resolution and aggregated DEMs. Geoscience Frontiers 
8(3):425-436. 

Moore ID, Burch GJ (1986). Modeling erosion and deposition: 
topographic effects. Transactions of the American Society of 
Agricultural Engineers 29(6):1624-1640. 

Netto CF, Virgens Filho JS, Neves GL (2018). Análise da erosividade 
da chuva no estado do Paraná e cenários futuros impactados por 
mudanças climáticas globais. Revista Brasileira de Climatologia 
22(14):404-422. 

Nunes JF, Roig HL (2015). Análise e mapeamento do uso e ocupação 
do solo da bacia do Alto do Descoberto, DF/GO, por meio de 
classificação automática baseada em regras e lógica nebulosa. 
Revista Árvore 39(1):25-36. 

Oliveira VA, Mello CR, Durães MF, Silva AM (2014a). Soil erosion 
vulnerability in the Verde river basin, southern Minas Gerais. Ciência 
e Agrotecnologia 38(3):262-269.  

Oliveira VA., Durães MF, Mello CR (2014b). Assessment of the current 
soil erosion in Piranga river basin, Minas Gerais state. Water 
Resources and Irrigation Management 3(2):57-64.  

Pahl-Wostl C (2007). Transitions towards adaptive management of 
water facing climate and global change. Water Resources 
Management 21:49-62. 

Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, 
Montanarella L, Alewell C (2015). The new assessment of soil loss by 
water erosion in Europe. Environmental Science and Policy 54:438-
447. 

Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF (2012). Soil 
erosion assessment and its correlation with landslide events using 
remote sensing data and GIS: a case study at Penang Island, 
Malaysia. Environmental Monitoring and Assessment 184(2):715-
727. 

Renard KG, Foster GR, Weesies GS, McCool DK, Yoder DC (1997). 
Predicting Soil Erosion by Water:  A  guide  to  conservation  planning  

Durães et al.               1765 
 
 
 

with the Revised Universal Soil Loss Equation (RUSLE). U.S. 
Department of Agriculture, Agriculture Handbook No. 703:404. 

Rodrigues JAM, Mello CR, Viola MR, Rodrigues MC (2017). Estimativa 
da vulnerabilidade dos solos à erosão hídrica na bacia hidrográfica 
do rio Cervo – MG. Geociências 36(3):531-542. 

Rufino RL (1986). Avaliação do potencial erosivo da chuva para o 
Estado do Paraná: segunda aproximação. Revista Brasileira de 
Ciência do Solo, 10: 279-281. (In Portuguese) 

Rufino RL, Biscaia RCM, Merten GH (1993). Determinação do potencial 
erosivo da chuva do Estado do Paraná, através de pluviometria: 
terceira aproximação. Revista Brasileira de Ciência do Solo 19:437-
444. 

Ruthes JM, Tomazoni JC, Guimarães E, Gomes TC (2012). Uso de 
Sistema de Informação Geográfica na Determinação do Fator 
Topográfico da Bacia do Rio Catorze, Sudoeste do PR. Revista 
Brasileira de Geografia Física, 05:1099-1109. 

Silva RM, Montenegro SMGL, Santos CAG (2012). Integration of GIS 
and remote sensing for estimation of soil loss and prioritization of 
critical sub-catchments: a case study of Tapacurá catchment. Natural 
Hazards 62(3):953-970. 

Souza Júnior CB, Siegmund-Schultze M, Koppel J, Sobral MC (2017). 
Sinais de um problema crônico: a governança hídrica carece 
promover os comitês de bacias, coordenar planos e gerir 
informações. Ambiente and Água 12(6):1054-1067. 

Steinmetz AA, Cassalho F, Caldeira TL, Oliveira VA, Beskow S, Timm 
LC (2018). Assessment of soil loss vulnerability in data-scarce 
watersheds in southern Brazil. Ciência e Agrotecnologia 42(6):575-
587. 

Tomazoni JC, Mantovani LE, Bittencourt AVL, Rosa Filho EF (2005). A 
sistematização dos fatores da EUPS em SIG para quantificação da 
erosão laminar na bacia do rio Anta Gorda (PR). Revista Eletrônica 
de Geografia 3(1):01-21.  

Vemu S, Pinnameneni UB (2011). Estimation of spatial patterns of soil 
erosion using remote sensing and GIS: a case study of Indravati 
cachtment. Natural Hazards 59(3):1299-1315. 

Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, 
Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM 
(2010). Global threats to human water security and river biodiversity. 
Nature 467:555-561. 

Waltrick PC, Machado MAM, Dieckow J, Oliveira D (2015).  Estimativa 
da erosividade de chuvas no Estado do Paraná pelo método da 
pluviometria: atualização com dados de 1986 à 2008. Revista 
Brasileira de Ciência do Solo 39:256-267. 

Wu S, Li J, Huang G (2005). An evaluation of grid size uncertainty in 
Empirical soil loss modeling with digital elevation models. 
Environmental Modeling and Assessment 10:33-42. 

Yang CT (1972). Unit stream power and sediment transport. Journal of 
Hydraulics Division Proceedings of the American Society of Civil 
Engineers 8:1805-1826. 

Yang X (2015). Digital mapping of RUSLE slope length and steepness 
factor across New South Wales, Australia. Soil Research 53:216-225. 

Young RA, Mutchler CK (1977) Erodibility of some Minnesota soils. 
Journal of Soil and Water Conservation 32:180-182.  

Zanin PR, Bonuma NB, Corseuil CW (2018). Hydrosedimentological 
modelling with SWAT using multi-site calibration in nested basins 
with reservoirs. Revista Brasileira de Recursos Hídricos 23(54):1-26. 

Zhang H, Yang Q, Li R, Liu Q, Moore D,  He P, Ritsema CJ, Geissen V 
(2013). Extension of a GIS procedure for calculating the RUSLE 
equation LS factor. Computers and Geosciences 52:177-188. 

Zhang JX, Chang KT, Wu JQ (2008). Effects of DEM resolution and 
source on soil erosion modelling: a case study using the WEPP 
model. International Journal of Geographical Information Science 
22(8):925-942. 

Zhao Z, Benoy G, Chow TL (2010). Impacts of accuracy and resolution 
of conventional and LiDAR based DEMs on parameters used in 
hydrologic modeling. Water Resources Management 24:1363-1380. 

Zuazo VHD, Pleguezuelo CRR (2008). Soil-erosion and runoff 
prevention by plants covers: A review. Agronomy for Sustainable 
Development 28(1):65-86. 

 


