
African Journal of Agricultural Research Vol. 5(20), pp. 2817-2824, 18 October, 2010 
Available online at http://www.academicjournals.org/AJAR 
ISSN 1991-637X ©2010 Academic Journals 
 
 
 
Full Length Research Paper 
 

An operational approach for estimating surface vapor 
pressure with satellite-derived parameter 

 
Yaohuan Huang, Dong Jiang* and Dafang Zhuang 

 
Data Center for Resources and Environmental Sciences, State Key Lab of Resources and Environmental Information 
System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China. 

 
Accepted 27 September, 2010 

 
Surface vapor pressure (SVP) is a highly significant variable for physically based crop growth 
simulating and crop yield modeling. Regional spatially representative data of observed SVP are not 
currently available. However, an excellent correlation has been found between SVP and precipitable 
water vapor (PWV) with many previous works. Based on the correlation analysis between satellite-
derived PWV data moderate resolution imaging spectroradiometer (MODIS) atmospheric profile product 
dataset and daily mean SVP data calculated from 37 ground-based meteorology stations measurements 
in Haihe River Basin of North China, an operational scheme for estimating daily SVP with satellite-
derived PWV data was proposed in this study. The accuracy of the approach was evaluated through 
comparisons with in situ measurements. The explained variance is 0.838 with a root-mean-squared-
error (RMSE) of 2.912 hPa. The results indicated that the proposed method is an effective way to obtain 
SVP data at a regional scale.  
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INTRODUCTION  
 
Surface vapor pressure (SVP) is a partial atmospheric 
pressure that attributes to water vapor in the air as one of 
the most important climatic variables adopted in agri-
cultural system models to simulate fluxes and states of 
water and carbon (Waring et al., 1998). Therefore 
deriving information on spatial-temporal distribution of 
SVP is essential in understanding the crop growth and 
water availability. However, regional spatially represent-
tative data of observed SVP are not currently available. 
SVP data is conventionally calculated with several primary 
data including air temperature, humility and vapor density, 
which is measured in a relative sparse network of ground-
based meteorological stations. Quite a few spatial 
interpolation algorithms have been widely used to convert 
point data to a continuous raster surface, including thin 
plate splines (Hutchinson et al., 1994), Thiessen polygons 
(Thiessen, 1911), Ordinary Kriging (Brooker, 1979), 
Inverse-Distance weighting (Watson et al., 1985), 
Truncated Gaussian Filtering (Thornton et al., 1997). 
These   spatial   interpolation    techniques   may   not   be  
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suitable for the measurement stations are often too 
sparse for implementing an interpolation scheme in most 
regions (New et al., 1999). 

Precipitable water vapor (PWV) is described as the total 
amount of water vapor in the zenith direction between the 
underlying surface and the top of the atmosphere. The 
correlation between PWV and SVP has been established 
for a long term (Karalis et al., 1974). Monteith found a 
linear relationship between the logarithm of PWV and the 
square root of vapor pressure when 30 characteristic air 
masses were correlated with British Isles crossed 
(Monteith, 1961). Idso found that the correlation coeffi-
cient between the logarithm of PWV and the square root 
of vapor pressure at Phoenix, Ariz. was 0.913, which was 
derived from 190 in situ measurements during three 
summers (Idso, 1969). Reber established a liner model 
between PWV and SVP when studying the correlation of 
PWV and surface absolute humidity at the stations of San 
Nicolas Island, Point Mugu and China Lake, California in 
1970 (Reber et al., 1972). Yang derived an empirical 
expression to calculate the PWV based on the ground 
and radiosonde data at 20 stations in China from 1992 to 
1993, which indicated that the PWV was well related to 
SVP (Yang et al., 1996). Li analyzed the relationship 
between PWV and SVP in  North  China  and  established  
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Figure 1. Location of the study region: Haihe River Basin, North China. 

 
 
 
empirical formulas with a linear regression method (Li et 
al., 2009). Similar researches have been continued to the 
present, indicating that PWV is a variable strongly related 
to SVP.  

With the development of the remote sensing technique, 
PWV has become a common subject in detection (Prince 
et al., 1998; Green et al., 2002; Kern et al., 2008). Various 
algorithms have been proposed to retrieve the PWV from 
satellite data with a variety of electromagnetic spectrums 
or instruments including global positional system (GPS), 
infrared, near infrared and microwave (Barton et al., 1999; 
Bevis et al., 1994; Chylek et al., 2003; Duan et al., 1996; 
Ottle et al., 1999a, b; Westwater et al., 2001). PWV data 
retrieved from remote sensing data are better spatial and 
temporal data sources than conventional in-situ observa-
tions. First, satellite observations can provide global 
coverage of PWV potentially in various time intervals. 
Second, fewer calculations are required in a simple 
transfer function such as from a regression than in an 
interpolation scheme (Hashimoto et al., 2008; Hong et al., 
2008). For example, daily atmospheric profile product 
datasets are presented routinely from NASA EOS data 
Gateway (EDG) based on the moderate resolution 
imaging spectroradiometer (MODIS) observations. 

The objective of this study is to invest the correlation 
between satellite-derived PWV data and SVP data 
calculated from in-situ stations in Haihe River Basin of 
North China. Then, a straightforward scheme was esta-
blished for obtaining SVP data operationally. The results 
of the method were evaluated with data of 37 ground-
based meteorological stations in the study region, Haihe 
River Basin.  
 
 
Study region 
 
As the study area, Haihe River Basin in North China is 
located from 34°09�N to 43°11�N ,111°21�E to 120°43�E , 
as illustrated in Figure 1. The Haihe River basin covers 
Beijing, Tianjin, the most part of Hebei, a part of 
Shandong, Henan, Shanxi and Inner Mongolia with an 
area of 318,000 km2, of which mountains and plateaus 
cover 189,000 km2, accounting for 60%, while plains 
cover 129,000 km2, accounting for 40%. The region is 
dominated by semi-humid continental monsoon climate 
with its multi-year average annual precipitation of 535 mm. 
The locations of 37 meteorological stations in this area 
are also shown in Figure 1. 



             
 

 

 
 
 
 

Table 1. Positions and widths of five MODIS near-IR 
channels used in water vapor retrievals. 
 

MODIS 
Channel 

Position 
(�m) With (�m) Resolution 

(m) 
2 0.865 0.040 250 
5 1.240 0.020 250 

17 0.905 0.030 1000 
18 0.936 0.010 1000 
19 0.940 0.050 1000 

 
 
 
MATERIALS AND METHODS  
 
Data acquisition 
 
Satellite-derived PWV data 
 
Satellite-derived PWV data were downloaded from the MODIS 
atmospheric profile product dataset from NASA EDG 
(http://modis.gsfc.nasa.gov/index.php). The PWV data is daily 
produced at 5 × 5 km pixel resolution. The MODIS atmospheric 
water-vapor (precipitable water vapor) product is an estimation of 
the total tropospheric column water vapor obtained from integrated 
MODIS infrared retrievals of atmospheric moisture profiles in clear 
scenes (http://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html). 
Five near-IR channels of MODIS instrument are described as useful 
for retrieving PWV. The details of them are shown in the Table 1. 

The channels at 0.865 and 1.24 �m are non-absorption channels 
present on MODIS for remote sensing of vegetation and clouds 
(atmospheric window channels). The channels at 0.936, 0.940, and 
0.905 �m are water vapor absorption channels with decreasing 
absorption coefficients. The strong absorption channel at 0.935 �m 
is most useful for dry conditions, while the weak absorption channel 
at 0.905 �m is most useful for very humid conditions, or low solar 
elevation. The algorithms are adopted to retrieve PWV on a 2-
channel ratio of an absorption channel with a window channel and a 
3-channel ratio of an absorption channel with a combination of two 
window channels. Gao has elaborated on the details of the 
algorithms (Gao and Kaufman, 1998, 2003). Seeman compared the 
MODIS-derived PWV and radiosonde based PWV data, and 
concluded that MODIS PWV data was described with mean 
accuracy within 4.12 mm (Seemann et al., 2003). 
PWV values were calibrated with Equation (1): 
 

PWV scale DN offset= × +                                               (1) 
 

Where PWV is precipitable water vapor (cm), DN is the value in 

the original PWV layers, scale and offset are respectively valued 
as 0.001 and 0. After calibration, all data were re-projected and 
composed for the whole study region. The pixels of intersection 
region were processed with the method of maximum value 
composite.  
 
 
Ground-based SVP data 
 
Ground-based SVP data were calculated based on observations of 
37 meteorological stations in  Haihe  River  Basin  (Figure  1).   The  
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original daily meteorological dataset was provided by China 
meteorological data sharing service system (CMDSSS) of China 
meteorological administration (CMA). Daily mean surface tempera-
ture and daily mean relative humidity were utilized to calculate SVP. 
Firstly, the saturation vapor pressure was calculated with following 
Equation: 
 

17.38
( )
239.00.6107

T
T

se e +=
                                                             (2) 

 

Where se
is the saturation vapor pressure (kPa), and T is the 

surface temperature (�) (Abbott and Tabony, 1985). And then the 
saturation vapor pressure and relative humidity were used to 
calculate the SVP with Equation 3: 
 

 se e RH= ×
                                                                           (3) 

 

Where e  is the SVP (kPa), and RH is relative humidity (%). Daily 
mean SVP dataset were generated from January, 2005 to April, 
2009. SVP data from 2005 to 2008 were used for correlation 
analysis and model establishment, whereas the SVP data for 2009 
were adopted for results validation.  
 
 
Methods 
 
Correlation analysis between MODIS-derived PWV and in-situ 
SVP  
 
PWV dataset from MOD07_L2 products consists of three layers, 
that is the total column precipitable water vapor (PWVT), 
precipitable water vapor at low level (PWVL) and precipitable water 
vapor at high level (PWVH). The correlation analysis was carried out 
between in-situ SVP and three types of PWV data respectively to 
determine the most suitable one for SVP estimation. At each station, 
daily mean SVP and PWV data of corresponding pixels from 
January, 2005 to December, 2008 were used for regression 
analysis. The correlation coefficients varied from site to site.The 
results were listed in detail in Table 2.  

It is shown in Table 2 that PWVL has the closest relationship with 
SVP in Haihe River Basin. The correlation coefficients between 
PWVL and SVP are highest in the three PWV layers, whose 
average correlation coefficient has reached 0.911 with the 
maximum of 0.939 and minimum of 0.899. According to the analysis 
above, it can be concluded that MODIS-derived PWVL is more 
suitable to model SVP than PWVH and PWVT. Meanwhile, the 
spatial diversity of correlation between PWV and SVP is relatively 
small (Table 3). It indicates that a valuable statistical model may be 
established for SVP estimation. Then we established regression 
models using three kinds of PWV, the details of models are shown 
in Table 3. It is found that the models with variable PWVL are better 
than with PWVT and PWVH, which shows consistent result with that 
of correlation analysis.  
 
 
Time-series analysis of the relation between MODIS-derived 
PWV and in-situ SVP  
 
Karalis studied the relationship between precipitable water and 
surface  moisture   parameters  in  Athens  and  reported  that  their  
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Table 2. Correlation coefficients between daily MODIS-derived 
PWV and daily in-situ SVP from January, 2005 to December, 
2008. Maximal, minimal and average values of correlation 
coefficients at 37 meteorological stations in Haihe River Basin 
were calculated. 
 

 Maximum Minimum Average 
PWVH 0.902 0.823 0.862 
PWVL 0.939 0.899 0.911 
PWVT 0.926 0.887 0.907 

 
 
 
relationship varied with season and month (Karalis, 1974). 
Dominated by semi-humid continental monsoon climate, it was wet 
in summer with plenty of precipitation and dry in winter at Haihe 
River Basin. A time-series analysis was conducted to investigate 
the seasonal variation of relationship between MODIS-derived PWV 
and in-situ SVP. Monthly averaged SVP data of all 37 
meteorological stations and corresponding MODIS-derived PWV 
(PWVL, PWVT, PWVH) data were adopted for regression analysis. 
The monthly variation of the correlation coefficients is shown in 
Figure 2.  

The correlation coefficients between PWVH and SVP varied from 
0.15 to 0.6, with an average of 0.41. The profile of correlation 
coefficients between PWVT and SVP varied dramatically from May 
to September. As shown in Figure 2, the black dash line reflects the 
two valley values (0.11) in June and August as rainy seasons in 
Haihe River Basin with most precipitation and highest air 
temperature of a year. As explained by Karalis that the correlation 
coefficients between PWV and SVP were generally quite low during 
the warm period of the year (Karalis, 1974). Karalis attributed this 
low value of correlation coefficients in summer months to the lack of 
effective mechanisms resulting in vertical mixing (Karalis, 1974). 
Such poor relationship infers that it is not valuable to evaluate SVP 
from PWVT or PWVH. The correlation coefficients between PWVL 
and SVP keep relatively stable in a year, ranging from 0.72 
(January) to 0.87 (October). This investigation also indicated that 
MODIS-derived PWVL is a variable closely related to SVP in Haihe 
River Basin and could be adopted for estimating spatial distribution 
of SVP in the whole region. 
 
 
Establishment of SVP estimation model 
 
The analysis of relationship between PWV and SVP in result 
section indicated that a SVP estimation model can be established 
with MOD07 PWVL in Haihe River Basin. Several kinds of models 
related to SVP and PWV were tested, such as simple multiples 
models, logarithmic models, linear models and quadratic curve 
(Monteith, 1961; Idso, 1969; Reber and Swope, 1972; Yang and 
Xue, 1996; Li et al., 2009). However, the models were different from 
each other in the coefficients of variable and accuracy of results, 
which might due to different training data and different regions 
adopted among these models. A suitable model is necessarily 
needed to evaluate SVP from MOD07 PWVL in Haihe River Basin. 
The results of liner model, quadratic polynomial model and cubic 
polynomial model were compared, as shown in Table 4. 

The regression R2 of three models are high with the liner model 
of 0.831, quadratic polynomial model of 0.871 and cubic polynomial 
model of 0.871. With comparisons on the SVP evaluated from 
PWVL and in-situ measurement SVP with  RMSE,  the  accuracy  of 

 
 
 
 
liner model is found to be worst with RMSE of 3.178 hPa. The 
quadratic and cubic models are better than the liner model with 
RMSE 2.778 and 2.777 hPa respectively. Similar results are 
obtained in the index of MRE. The MRE of liner model is maximal 
with the value of 29.4%, whereas the MRE of quadratic and cubic 
ones are 11.8 and 11% respectively. The accuracies of quadratic 
and cubic models are quite similar, while cubic one is more 
complicated in calculation. Meanwhile, with considerations on the 
MRE of 11.8% being sufficient in the region without observation 
stations, the quadratic polynomial model is selected in Table 4 as 
the daily mean SVP estimation model in Haihe River Basin. All the 
training data of PWVL versus daily mean SVP is plotted in Figure 3.  
 
 
RESULTS 
 
The data from January to April in 2009 was used to 
evaluate the model established in ‘materials and methods’. 
The daily mean SVP maps were calculated with the input 
of MOD07 PWVL of the quadratic polynomial model. It is 
shown in Figures 4a - d that the selected daily mean SVP 
maps of four days are evaluated according to the 
proposed quadratic model. The red pixels reflect regions 
with no data, where data of the original MOD07 PWVL are 
missing or with poor quality. It is shown in Figure 5 that a 
good spatial variation of daily mean SVP exists in Haihe 
River Basin.  

Four examples of SVP map have the same trends of 
spatial distribution with the SVP increasing from west to 
east. It is similar to the trends of elevation in Haihe River 
Basin (Figure 1), which coincides the conclusion of Jolly 
that there are some relationships but not close between 
elevation and SVP (Jolly et al., 2005). Meanwhile, a 
slighter increase exists in the value of four maps with the 
time, which can be caused by the monsoon climate 
condition of Haihe River Basin mentioned before. 

To study the accuracy of model more exactly, a 
comparison is conducted between the evaluation value 
and in-situ measurement value. The ground-based 
measured daily mean SVP of 37 stations is calculated 
according to the Equation 2 and 3. The contaminated 
pixels as red ones of no data in Figure 4 are abandoned. 

With comparisons on daily mean SVP from January to 
April, 2009 estimated by the proposed algorithm, the 
calculated results from ground-based measurements 
generate a MRE of 17.6% higher than that of 11.8% while 
the SVP modeling with training data. Their slope and R2 
of a y=x line analysis were 0.918 and 0.838 respectively 
(Figure 5).  

It is shown in Figure 5 that the difference is slight 
between estimated value with the model and ground-
based measurements of daily SVP in Haihe River Basin. 
With considerations on the error brought from in-situ 
measurement and advantage of temporal and spatial 
result continuity, it is concluded that the results of the 
algorithm can be accepted. 



Huang et al.       2821 
 
 
 

Table 3.Details of the regression equations of the three kinds of PWVs. 
 

 Variable Model R2(hPa) RMSE MRE (%) 
Liner PWVT SVP=0.568×PWVT+1.522 0.822 3.259 33.8 
 PWVH SVP=1.399×PWVH+4.103 0.623 4.744 55 
 PWVL SVP=2.316×PWVL-0.64 0.831 3.178 29.4 
      
Quadratic PWVT SVP= -0.0086PWVT

2+0.973×PWVT -1.316 0.868 2.808 16.1 
 PWVH SVP=-0.104×PWVH

2 +2.899×PWVH+1.557 0.701 4.225 35 
 PWVL SVP=-0.129×PWVL

2+4.024×PWVL-4.617 0.871 2.778 11.8 
 

RMSE indicates root-mean-squared-error, while MRE indicates mean relative error. 
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Figure 2. Monthly variation of the correlation coefficients between SVP and PWV (PWVL, PWVT,PWVH) in Haihe River Basin, 
2005 - 2008. 

 
 
 

Table 4. Three types of regression models for SVP estimation from MODIS-derived PWV. 
 

Model  Model description R2 RMSE (hPa) MRE (%) 

Liner LSVP 2.316 PWV 0.64= × −  0.831 3.178 29.4 

     

Quadratic 
 

2
L

L

SVP 0.129 PWV

          4.024 PWV 4.617

= − ×
+ × −

 0.871 2.778 11.8 

    

Cubic 
 

3 2
L L

L

SVP 0.002 PWV 0.17 PWV

          4.285 PWV 5.026

= × − ×
+ × −

 0.871 2.777 11.0 

 

Root-mean-squared-error, MRE: mean relative error. 
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Figure 3. Scatter plot of daily mean SVP and PWVL at 37 locations for 48 months from 2005 to 2008, 
in Haihe River Basin.  
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Figure 4. Daily mean SVP map estimated by the proposed model.(a) January 2, 2009 (b) February 3(c) March 18, 2009 (d) April 9, 2009. 
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Figure 5. Scatter diagram of daily mean SVP of estimated by PWV-SVP model versus 
that by ground-based in Haihe River Basin during January to April, 2009. 
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DISCUSSION 
 
Daily MOD07_L2 product provides PWV with a resolution 
of 5 km, which is strongly related to daily mean SVP. The 
correlation analysis was conducted between three layers 
of satellite-derived PWV and daily mean SVP calculated 
from ground-based measurement, showing that PWV had 
a more excellent relationship with SVP. The relatively 
stable correlation coefficients can be used for estimating 
daily mean SVP in Haihe River Basin routinely. According 
to the results of the correlation analysis, a quadratic 
polynomial model was selected for estimating daily mean 
SVP map in Haihe River Basin. The general robustness 
of this approach was noted as expressed in simple 
quadratic curve relationships and satellite remote sensing 
from MODIS, which minimized the dependence on data of 
ground-based observations stations for evaluating daily 
mean SVP and provided daily spatial distribution maps of 
SVP. The result of validation by testing data shows that 
the proposed model has acceptable precision with MRE 
of 17.6%. 

Several points are deemed as resulting in the error of 
the result of SVP estimation, including the error brought 
from scaling-down the satellite-derived PWV raster data 
to point data, the error of daily mean SVP of ground-
based measurement calculated by Equations 2 and 3, 
and the error of original data sources of satellite data. 
These problems are to be improved in further researches. 
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