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Rangeland degradation is a serious hindrance to sustainable development in degraded areas. Mapping 
and monitoring vegetation species is an increasingly important issue across various fields of rangeland 
management. Remote sensing technology is a tool for mapping and monitoring vegetation species and 
it provides timely and relatively accurate information concerning degradation in biological rangeland 
resources. The objective of this review was to provide precise and essential information relating to the 
application of both multispectral and hyperspectral sensors as well as to their limitations with regard to 
mapping and monitoring rangeland degradation based on the abundance and distribution of vegetation 
species and algorithms used to process remotely sensed data when classifying these species. The 
abundance and distribution of the different vegetation species can be used to indicate the gradient level 
of rangeland degradation. It can be concluded, that up-to-date, spatial information and appropriate 
processing techniques are essential requirements for extracting increaser and decreaser spectral 
information that can be used for sustainable rangeland management. 
 
Key words: Remote sensing, rangeland degradation, increaser and decreaser species, indicator, vegetation 
indices. 

 
 
INTRODUCTION 
 
Rangeland is an important natural ecosystem that offers 
a habitat for wildlife, grazing areas for domestic stock, 
and goods for local communities (Kawanabe et al., 1998). 
Rangeland degradation has been identified as being one 
of the most serious global environmental issues that 
needs to be addressed (Hill et al., 1995; Kassahun et al., 
2008). Rangeland degradation can be defined as a loss 
of quantity and quality of the material produced for 
grazing for a particular livestock species in arid and semi-
arid  areas  as   a  result  of  human  activities and natural 
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factors (Oba and Kaitira, 2006; Solomon et al., 2007). 
Human causes of rangeland degradation are: 
overstocking, the expansion of cropped areas, uprooting 
of range shrubs off-road driving, increased fires, water 
scarcity and poor land use management and planning. 
Natural causes include changes in climate elements and 
soil properties (Al-Karablieh, 2010; Eswaran et al., 2001; 
Hoffman and Todd, 2000; Solomon et al., 2007). 
Rangeland degradation can usefully be considered in 
terms of types of grass communities and the production 
characteristics of different grasses, particularly, their 
grazing value (Tainton, 1999). Rangeland plant quality 
and quantity have been successfully used as indicators 
for   mapping,   monitoring   and    classifying    rangeland 
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degradation in degraded areas (Klein et al., 2007; Reed 
and Dougill, 2002). This is because, some plant species 
are well adapted to specific growth conditions and their 
quality and quantity characteristics may change 
dramatically if these conditions change (Van den Berg 
and Zeng, 2006; Van Oudtshoorn, 1992). 

Grasses are classified into three categories (that is, 
increasers, decreasers, and invader) based on their 
grazing value and the changes in their relative 
abundance in the presence or absence of grazing 
(Dyksterhuis, 1948, 1949). Decreaser species are the 
dominant species in flourishing rangelands, but they 
diminish when rangeland deteriorates through 
overutilization or underutilisation (Hardy et al., 1999). 
Increaser species, by contrast, flourish in rangelands that 
are overgrazed or underutilised, and the abundance of 
these species is therefore an indicator of the poor 
condition of rangeland (Dyksterhuis, 1949; Van 
Oudtshoorn, 1992). The assessment of rangeland 
degradation based on the abundance and distribution of 
decreaser and increaser species has been successfully 
evaluated and classified (Tainton, 1988; Trollope et al., 
2008; Van Oudtshoorn, 1992). 

Mapping the extensively degraded rangelands requires 
the use of conventional survey methods, such as local 
expert knowledge and field observation to provide 
accurate information on the spatial distribution of grass 
species. These methods provide significantly better 
results when it comes to mapping species over small 
geographic areas. However, these conventional field-
based methods require visual estimation of species 
percentage as well as intensive fieldwork, which includes 
the identification of species characteristics. Such 
undertakings are both costly and time-consuming, 
because rangelands usually cover large expanses that 
are, moreover, situated in isolated and inaccessible areas 
(Harris, 2010; Tromp and Epema, 1998). On the other 
hand, the remote sensing techniques to map the spatial 
distribution of grass species over large geographic areas 
of degraded rangeland have attracted scientific attention, 
resulting in the provision of different spatial resolution 
imageries that are not only feasible and cost-effective, 
but that also provide timely and accurate information 
(Lees and Ritman, 1991; Shoshany, 2000; Tromp and 
Epema, 1998; Ustin et al., 2009). The advancement in 
remote sensing comes up with high-resolution 
hyperspectral data that provide a significant 
enhancement of spectral measurement capabilities for 
investigating the most powerful contiguous and narrow 
wavelengths (less than 10 nm) throughout the ultraviolet, 
visible and infrared portions of the electromagnetic 
spectrum (Kumar et al., 2001; Thenkabail et al., 2004). 
These narrow spectral wavelengths allow the 
identification of characteristic spectral attributes for the 
mapping and monitoring of vegetation at species levels in 
different ecosystems (Thenkabail et al., 2004; 
Zwiggelaar,  1998).  In spite  of  the  great   capability   of  

 
 
 
 
remote sensing to provide detailed spectral information, 
the mapping of vegetation species using hyperspectral 
remote sensing data is challenging due to data 
dimensionality, data processing, and the fact that the 
images are too prohibitively expensive to use (Metternicht 
et al., 2010; Okin et al., 2001; Pinet et al., 2006; 
Schmidtlein and Sassin, 2004; Underwood et al., 2003). 
However, multispectral data is relatively available, at a 
low cost, and does not require complex preprocessing 
and processing techniques. Considering these 
advantages, the use of multispectral data should be 
operationalised and implemented in order to provide 
accurate and up-to-date information on mapping 
vegetation species over large areas. However, mapping 
vegetation in degraded areas at species level using 
multispectral data, such as Landsat thematic mapper 
(TM) and SPOT imagery is challenging, because of the 
low spectral resolution of sensors and spectral overlap 
between the vegetation species (Harvey and Hill, 2001). 
The development in multispectral sensors, such as 
WorldView containing key spectral bands, has brought 
about unique opportunities for those wishing to classify 
vegetation at species level (Dlamini, 2010; Omar, 2010). 
Multispectral and hyperspectral data have been used for 
several decades in mapping vegetation communities in 
degraded ecosystems (Schmidtlein and Sassin, 2004; 
Tromp and Epema, 1998; Vogel and Strohbach, 2009).    

Previous reviews concerning the application of remote 
sensing techniques in rangeland degradation have been 
done. Lass et al. (2005) investigated the use of 
hyperspectral remote sensing of invasive species 
detection. Metternicht et al. (2010) reviewed the potential 
use of remote sensing for assessing and mapping 
different indicators of land degradation. Shoshany (2000) 
reviewed the utility of spectral, temporal and spatial data 
for identifying Mediterranean vegetation land regions and 
the limitations of multispectral applicability. Pinet et al. 
(2006) reviewed the possibilities of using imaging 
spectroscopy for monitoring land degradation and 
desertification. Hill et al. (1995) discussed the potential 
use of multispectral remote sensing for mapping and 
monitoring land degradation in Mediterranean 
environments. Based on the results of the 
aforementioned studies, the human and physical factors 
causing rangeland degradation are thought to be severe 
overstocking and climate change, respectively. The 
application of multispectral and hyperspectral remote 
sensing techniques provides accurate and timely 
information for mapping and monitoring vegetation cover. 
The shortcomings of the aforementioned studies are that 
no specific review has focused on the application of 
multispectral and hyperspectral remote sensing 
techniques for mapping and classifying the increaser and 
decreaser species as indicators of different levels of 
rangelands condition.  

This study reviews the research results concerning the 
application   of   both   multispectral   and   hyperspectral  



 
 
 
 
remotely sensed data for vegetation species 
discrimination. The specific objectives of this study were: 
(1) to review discriminating and mapping vegetation 
species in degraded rangelands; (2) to highlight the 
advancement in remote sensing technologies in terms of 
spectral bands and critical band settings and their 
capabilities for classifying vegetation species within a 
complex rangeland environment; and (3) to highlight the 
major challenges still involved in remote sensing and 
suggest what further research is needed for the 
successful application of remote sensing in mapping 
vegetation species in degraded areas. 
 
 
ASSESSING AND MONITORING RANGELAND 
DEGRADATION USING DIFFERENT TRADITIONAL 
FIELD-BASED METHODS AND APPROACHES 
 
Rangeland condition is measured to evaluate the 
rangeland productivity and plan management 
interventions (Passmore and Brown, 1991; Paudel and 
Andersen, 2010; Peden, 2005). Numerous efforts have 
been made to assess and monitor rangeland degradation 
using various methods and approaches, such as expert 
opinions, herder knowledge, focus group discussions, 
land users‟ opinions, benchmarks, basal cover, 
Shannon‟s diversity index, observations and 
measurement of soil properties, and estimates of 
productivity changes (Moyo et al., 2008; Oba and Kaitira, 
2006; Oluwole and Dube, 2008; Stringer and Reed, 
2007). Oba and Kaitira (2006) used the herder 
knowledge approach to evaluate the communal 
rangelands in Maasai grazing territory in Northern 
Tanzania. The method was based on the relative 
abundance of increaser and decreaser species. Their 
results showed that herder knowledge approach can be 
used to classify the rangeland into the following different 
levels: non-degraded, stable and degraded. Moreover, 
the herder knowledge method provides a quick way of 
understanding the current status of the rangelands. 
Unfortunately, due to the herders‟ migratory behaviour, 
the challenge was how to engage them in participatory 
research.  

In the Eastern Cape of South Africa, Oluwole and Dube 
(2008) assessed the utility of the benchmark method, the 
basal cover technique, and soil analysis to evaluate 
rangeland condition. Their results demonstrated the 
feasibility of using the benchmark method, the basal 
cover technique, and soil analysis, as these three 
methods were able to classify the condition of the 
rangeland into non-degraded, moderately degraded, 
poorly degraded, and extremely degraded.  Stringer and 
Reed (2007) used land users‟ opinions to evaluate soils 
(erosion, fertility and productivity) in Botswana and 
Swaziland. They concluded that combining local and 
scientific knowledge can enhance rangeland degradation 
assessments at national and regional  levels.  The  expert  
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opinion method (for example, indicators, questionnaires, 
interviews and focus groups) was developed by Jones et 
al. (2003) to assess the causes, degree, extent and 
impact of rangeland degradation in Europe. The study 
produced reasonable results for rangeland degradation 
assessment using the expert opinion method. However, 
because some respondents did not reply, or the replies of 
others were incomplete, the results were difficult to use 
when comparing regions. However, most of the 
aforementioned scientists utilised these methods in the 
assessment of commercial rangeland. The usefulness of 
such methods for assessing communal rangelands is 
less well established (Reed and Dougill, 2002). 
Moreover, such methods tend to be economically 
inefficient, time consuming and labour intensive, and are 
sometimes impossible to accomplish due to the fact that 
rangelands cover a large spatial extent and are difficult to 
access (Reed and Dougill, 2002; Peterson et al., 2002). 
The remote sensing technique offers quick and repetitive 
data (including detailed information on vegetation status) 
and is accurate and potentially inexpensive, and could 
thus, successfully evaluate rangeland degradation in a 
large region (Tanser and Palmer, 1999; Wessels et al., 
2008). Although, the previous studies produced 
reasonable results with regard to mapping rangeland 
degradation based on vegetation communities using 
conventional field-based methods and remote sensing, 
more attention needs to be given to the issue of how to 
improve the accuracy of mapping increasers and 
decreasers at species level in order to identify different 
levels of rangeland degradation. 
 
 
SPECTRAL PROPERTIES OF VEGETATION SPECIES 
IN DEGRADED AREAS 
 
In degraded environments that are characterized by 
sparse vegetation species and the spectral effects by soil 
background, a careful consideration should be given to 
the spectral properties (Hill et al., 1995). Sunlight is the 
main source of energy for several biological activities 
taking place inside the plant cells (Ustin et al., 2009). 
When light interacts with the vegetation surface, it can be 
reflected, absorbed, and/or transmitted due to different 
materials on the earth‟s surface. An understanding of the 
spectral behaviour of increaser and decreaser species is 
essential for the interpretation of a remotely sensed 
image. In general, many efforts have been made to better 
understand the relationship between light solar radiation 
and plant leaves. The spectral response of vegetation 
depends upon the properties of both the incoming 
radiation (for example, angle of incidence, conditions of 
radiation and wavelength) and the vegetation (chlorophyll 
a and b, α-carotene, b-carotene, xanthophylls, protein, 
oil, water, starches, lignin, cellulose, sugar and nitrogen) 
(Asner, 1998; El-Nahry and Hammad, 2009). The 
spectral reflectance of vegetation species in degraded
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Figure 1. Mean spectral canopy curves for increaser species (Aristida diffusa) and 
decreaser species (Monocymbium ceresiiforme) in Drakensberg Montane rangelands with 
the dominant factors controlling reflectance being displayed. 

 
 
 

areas is normally subdivided into three domain regions, 
namely, the visible (400 to 700 nm), the near-infrared 
(NIR; 700 to 1300 nm), and the mid-infrared (MIR; 1300 
to 2500 nm) (Figure 1) (El-Nahry and Hammad, 2009; 
Ustin et al., 2009). Vegetation types have low reflectance 
and transmittance in the visible region due to strong 
absorption by chlorophyll a and b, b-carotene, α-
carotene, and xanthophyll (El-Nahry and Hammad, 2009; 
Ustin et al., 2009). They have a high reflectance and 
transmittance in the NIR region because of their very low 
absorption of xanthophylls, chlorophyll a and b, b-
carotene, and α-carotene. Plant leaves absorb only 4% of 
the radiation and the remaining 96% is reflected and 
transmitted (Woolley, 1971). In the NIR, a plant leaf will 
typically reflect between 40 and 50%, while the rest is 
transmitted, with only about 5% being absorbed 
(Govender et al., 2009). The limited absorption in this 
region is aided by dry leaves, primarily cellulose, lignin, 
and other structural carbohydrates (Asner, 2000; 
Cochrane, 2000). Ustin et al. (2009) and Cochrane 
(2000) reported that the internal leaf structure is the 
dominant factor controlling the spectral response of 
plants in the NIR region. Also, reflectance in this region is 
affected by numerous scatterings, including refraction at 
air-water interfaces and the fraction of air spaces (Ustin 
et al., 2009). Spectral reflectance is characterised by 
being much lower in the MIR than in the NIR due to the 
strong water absorption by the leaves and the minor 
absorption features of their biochemical content (Hestir et 
al., 2008). In green leaves, reflectance and transmittance 
in the short wave infrared (SWIR) are influenced by water 
absorption (Ustin et al., 2009).   

As there has been no specific research on how 
increaser and decreaser grass species interact with light, 
detailed investigation into these aspects is needed for a 
better understanding of the spectral response of 
vegetation species in degraded areas. The results of 
such studies could help researchers to develop accurate 

models describing, for example, the discrimination of 
increaser and decreaser species, estimations of grazing 
value in the rangelands based on increaser and 
decreaser species, and increaser and decreaser species‟ 
biophysical characteristics. Scientists working in the 
environmental conservation field could use these models 
to develop methods for rangeland management. 
 
 
APPLICATION OF MULTISPECTRAL REMOTE 
SENSING IN MAPPING VEGETATION SPECIES IN 
DEGRADED AREAS 
 
Mapping and monitoring vegetation species in disturbed 
areas require that there be extensive coverage and that 
quantitative, timely, accurate and regularly collected 
information be gathered. All these factors have made the 
use of remote sensing a powerful tool (Ustin et al., 2009). 
Since the early 1900s, when the first aerial photographs 
were taken, aerial photography with low spatial resolution 
has been considered the first remote sensing technique, 
being used as a source of information for mapping 
vegetation cover (Lillesand, 1999; Mumby, 1999). It can 
be concluded that aerial photography has considerable 
advantages over satellite-based data because of its 
availability, low cost, and because the span of the record 
covers a longer time period (Wentz et al., 2006). 
However, aerial photography has not been widely used 
for mapping and monitoring vegetation cover because of 
the high costs of colour-infrared film and processing, as 
well as the coarse spatial and low spectral resolutions, 
which affect the actual mapping of vegetation (Kakembo, 
2001; Laliberte et al., 2004). Recently, multispectral 
remote sensing with different properties (spatial and 
spectral resolution) and a variety of sensors (Landsat TM, 
Landsat ETM+ and SPOT) have been used to 
discriminate vegetation cover in degraded areas (Liu et 
al.,  2004;  Sun  et  al., 2007; Wu, 2008). Wu et al. (2008) 



 
 
 
 
evaluated the potential of multispectral remote sensing by 
using Landsat images (Multispectral Scanner (MSS) and 
TM) to classify vegetation cover in the degraded land of 
MuUs sandy land in China. The maximum likelihood 
classifier was used. They concluded that Landsat has 
great potential when it comes to classifying vegetation 
cover as there was an overall accuracy of 98.4% (Kappa 
0.947) for Landsat MSS, and 99.8% (Kappa 0.995) for 
Landsat TM. 

Savanna rangeland degradation in Namibia was 
classified by Vogel and Strohbach (2009), who used 
Landsat TM and ETM+ data. The decision tree classifier 
was also used. Their results show that savanna 
degradation can be classified into the following six 
classes: vegetation densification, vegetation decrease, 
complete vegetation loss, long-term vegetation patterns, 
the recovery of vegetation on formerly bare soils, and no 
change with an overall accuracy of 73.4% with respect to 
the class pairs‟ accuracies‟ which ranged from 80 to 
100% for producers‟ and users‟ accuracies. 

The results of the aforementioned studies produced 
reasonable results for discriminating between vegetation 
communities on a regional scale when using multispectral 
data. However, Landsat and SPOT data have proven 
insufficient for classifying vegetation at species level 
because of the low spectral resolution of sensors and the 
spectral overlap between the vegetation species. Also, 
most multispectral remote sensing data do not have the 
red-edge region that is insensitive to atmospheric 
interference and soil background (Vogel and Strohbach, 
2009; Wu, 2008). Therefore, the developments in 
multispectral data (WorldView) and hyperspectral data 
can be useful for discriminating rangeland degradation 
based on the spatial distribution of vegetation species (at 
species level) because of the detailed spectral 
information that they can provide. More work is needed to 
improve the classification accuracy of mapping the spatial 
distribution of increaser and decreaser species. 
 
 
LIMITATIONS WHEN APPLYING HYPERSPECTRAL 
REMOTE SENSING TO VEGETATION SPECIES 
CLASSIFICATION IN DEGRADED AREAS 
 
In the field of remote sensing, hyperspectral remote 
sensing, also known as „imaging spectrometry‟, „imaging 
spectroscopy‟, „ultraspectral imaging‟, „hyperspectral 
spectroscopy‟ and „narrow-band imaging‟, is a relatively 
new technology that is currently being used in vegetation 
studies (Clark, 1999; Mutanga, 2004). Hyperspectral 
remote sensing has hundreds of narrow, continuous 
spectral bands between 400 and 2500 nm throughout the 
visible (0.4 to 0.7 nm), near-infrared (0.7 to 1 nm) and 
shortwave-infrared (1 to 2.5 nm) portions of the 
electromagnetic spectrum (Govender et al., 2009). These 
narrow bands of hyperspectral remote sensing allow for 
in-depth   mapping   and   discrimination    of    vegetation  
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species, something that would not be possible with other 
multispectral sensors (Okin et al., 2001; Pinet et al., 
2006; Wang et al., 2010). Spectral absorptions and 
reflectance changes in the 400 - 2500 nm range of the 
reflected electromagnetic radiation provide analytical 
features that can be used to identify vegetation species 
(Pinet et al., 2006). 

Okin et al. (2001) assessed the utility of AVIRIS 
satellite imagery for accurately discriminating among 
vegetation types in the Mojave Desert, USA. Multiple 
Endmember Spectral Mixture Analysis (MESMA) and 
Spectral Mixture Analysis (SMA) were performed to 
estimate the proportion of each ground pixel‟s area that 
fits with different cover types. They concluded that 
AVIRIS show low potential for classifying vegetation 
types with an overall accuracy of only 30% due to low 
vegetation cover. The ability of HyMap data (0.45 to 
2.5 μm) has been tested for discriminating and mapping 
two invasive species in the California Delta, USA, when 
using a logistic regression. Their results showed that the 
HyMap data distinguished perennial pepperweed from 
pseudoabsence with accuracies of 75.8 and 63.0%, 
respectively (Hestir et al., 2008). 

Discriminating and mapping vegetation degradation at 
Fowlers Gap Arid Zone Research Station in Western 
New South Wales, Australia, was also done using 
random forest by Lewis (2000). In this research, 
perennial vegetation, chenopod shrubs and trees were 
selected for classification using the hyperspectral imaging 
(CASI). An area of less than 25% was discriminated and 
mapped. He concluded that high-spectral resolution 
imagery has potential for the discrimination of vegetation 
cover in arid regions. However, some authors have 
successfully used hyperspectral remote sensing for 
mapping arid vegetation. Wang et al. (2010) assessed 
the utility of hyperspectral remote sensing for mapping 
dominant vegetation species (Leymus chinensis, Stipa 
krylovii and Artemisia frigid) in Hulunbeier, China. They 
concluded that hyperspectral remote sensing has 
considerable potential for the discrimination and mapping 
of these species with an overall accuracy of 95%. 
Spectral classification of grass quality in African 
rangeland was also done by Mutanga (2005) using the 
high-resolution GER spectra, which were resampled to 
the HyMap. In this research, Fisher‟s linear discriminant 
function was used to discriminate between groups of 
Cenchrus ciliaris grass, which were all grown under 
different nitrogen treatments. The results showed that it is 
possible to classify samples to their respective groups 
with an overall accuracy of 77.1%. 

In general, there are limitations to using hyperspectral 
remote sensing for vegetation discrimination at species 
level. These limitations are due to the following: (1) the 
effects of a large soil background as a consequence of 
relatively sparse vegetation (Escadafal and Huete, 1991); 
(2) plant adaptations to the harsh environment that make 
the spectral reflectance of the same plants different (Ray, 
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1995); (3) phenological changes as a result of changes in 
climatic conditions (in particular, rainfall leads to spectral 
variability of the same species) (Ray, 1995); (4) the 
possibility of nonlinear mixing due to multiple scattering of 
light rays, which leads to an overestimation of green 
vegetation cover (Ray and Murray, 1996); (5) variations 
in chlorophyll and carotenoid pigments, leaf structure and 
succulence (Lewis, 2000); and (6) changes in land use 
and the relative impact of vascular tissue (Asner et al., 
2000). Moreover, there are some limitations related to the 
hyperspectral data which are extremely large and of high 
dimensionality (Thenkabail et al., 2004). This problem is 
termed “curse dimensionality” which leads to the “peaking 
phenomenon” or “Hughes phenomenon” (Hsu, 2007). 
Hughes phenomenon means that the field samples are 
insufficient for the classification requirement which makes 
the estimation of statistical parameters for the classifier 
performance inaccurate and unreliable (Hsu, 2007; 
Jackson and Landgrebe, 2001). Therefore, the analysis 
of hyperspectral data is complex and needs to be 
simplified by way of selecting the optimum number of 
bands required for mapping and classifying vegetation 
species. 

Different statistical band reduction techniques for 
classification of hyperspectral data have been developed. 
These include discriminant analysis, classification trees, 
principal component analysis, support vector machines, 
artificial neural network, partial least square regressions 
and random forest (Adam and Mutanga, 2009; Bajcsy 
and Groves, 2004; Filippi and Jensen, 2006; Huang et 
al., 2002; Lawrence et al., 2006; Mutanga, 2005; 
Thenkabail et al., 2004). 

All the aforementioned studies have shown the 
potential of hyperspectral data (as opposed to 
multispectral data) to provide significant improvements in 
spectral information for discriminating vegetation at 
species level. More studies for mapping and classifying 
vegetation species particularly increaser species are 
needed to build a spectral library for rangeland in 
degraded areas. 
 
 
IMPROVING THE CLASSIFICATION ACCURACY OF 
VEGETATION SPECIES USING THE ADVANCED 
MULTISPECTRAL SENSORS 
 
As mentioned earlier, there is a limitation to traditional 
multispectral sensors (Landsat and SPOT) when it comes 
to increaser and decreaser classification at species level 
since they can only provide limited spectral information. 
Considerable efforts have been made to improve the 
multispectral data characteristics to work within the 
species classification field. These efforts include 
advances in sensor technology, the development of 
spectral vegetation indices, the improvement of 
classification techniques and the use of multi-sensor 
imageries   (Liu   et  al.,  2004;  Sun  et  al.,   2007).   The 

 
 
 
 
WorldView-2 satellite sensor is a new generation sensor 
that significantly enhances spectral measurements‟ 
capabilities over those of traditional multispectral sensors 
(Dlamini, 2010; Kumar and Roy, 2010; Omar, 2010). The 
8-bands multispectral WorldView-2 is a new satellite 
imaging that was launched in October 2009 by 
DigitalGlobe. It has a high spatial resolution of 2 m 
(multispectral) and 0.5 (panchromatic) at nadir. The 8 
multispectral bands include four conventional 
wavelengths located at visible region: blue (450 to 510 
nm), green (510 to 580 nm), red (630 to 690 nm), and 
near-infrared region (770 to 895 nm), in addition to four 
new wavelengths, which are located at the following 
places: coastal (400 to 450 nm), yellow (585 to 625 nm), 
red-edge (705 to 745 nm), and near-infrared 2 region 
(770 to 895 nm). 

In Malaysia, Omar (2010) was able to identify ten of the 
country‟s tropical vegetation species using WorldView-2 
imagery. Classification techniques such as maximum 
likelihood and linear discriminant analysis were 
performed. The findings from this research showed that 
the most potentially useful information can be used to 
discriminate among tropical vegetation species with an 
overall accuracy of 90%. Better discrimination was 
achieved in the 903 nm (NIR 2), 831 nm (NIR 1), and 724 
nm (red-edge) bands. 

In Central Swaziland, the new spectral bands of 
WorldView-2 satellite were tested by Dlamini (2010), who 
was able to classify two invasive alien plants, namely 
Chromolaena odorata and Lantana camara. These 
results demonstrated that invasive alien plants can be 
classified using traditional bands (blue, green, red and 
NIR 1) with a classification accuracy of 95%; the greatest 
classification accuracies of 99% were obtained using new 
bands (Coastal blue, yellow, red-edge and NIR 2). Kumar 
and Roy (2010) used WorldView-2 data to classify the 
following six agricultural crops in Muzaffarnagar, India: 
early wheat, ratoon, berseen (fodder), late wheat, 
sugarcane, and cauliflower. The results showed that the 
WorldView-2 data was capable of classifying six 
agricultural crops with accuracies that varied from 93 to 
98%. The researchers also found the following important 
bands for identifying and mapping crops: existing bands 5 
(red) and 7 (NIR 1), and new bands 4 (yellow), 6 (red-
edge) and 8 (NIR 2). 

Research into the classification of vegetation species 
by way of WorldView-2 data has achieved promising 
results. However, more research is still needed in terms 
of the classification of increaser species in disturbed 
areas. Increaser species classification has 
inconsistencies due to different species‟ responses under 
different ecosystems, and understanding their 
ecophysiological mechanisms, therefore, remains 
unclear. Investigators need to use the capability of 
WorldView-2 satellite sensors to look at the biochemical 
and biophysical parameters that can be used to 
discriminate and monitor increaser species. 



 
 
 
 
IMPROVEMENT OF VEGETATION SPECIES’ 
CLASSIFICATION USING SPECTRAL VEGETATION 
INDICES 
 
Early remote sensing measurements of vegetation used 
data collected by different satellite sensors that measured 
wavelengths of absorbed light (red portion) and reflected 
light (near-infrared portion) by way of certain pigments in 
the plant leaves in degraded areas. These portions of the 
electromagnetic spectrum (red and near-infrared) are the 
most important in vegetation indices calculation (Ibrahim, 
2008). Spectral vegetation indices (VIs) derived from 
remotely sensed data have become one of the most 
important information sources for mapping and 
monitoring vegetation species in degraded areas (Sun et 
al., 2007). VIs are useful in the following: (1) reducing 
variations caused by atmospheric conditions, irradiance, 
sun view angles, canopy geometry, and shading; (2) 
minimising the effect of soil background on the canopy 
reflectance (Elvidge and Chen, 1995); and (3) enhancing 
the variability of spectral reflectance of vegetation (Liu et 
al., 2004). VIs are calculated based on either 
multispectral data or on hyperspectral data. The most 
widely used VIs are the normalised difference vegetation 
index (NDVI) (Rouse et al; 1974), the simple ratio (SR) 
(Gitelson and Merzlyak, 1993), and the transformed 
vegetation index (TVI) (Deering et al., 1975), all of which 
respond to the variation in the red and near-infrared 
portions. Other VIs were developed in order to minimise 
the effects of soil background, atmospheric conditions, 
canopy geometry, and sun view angles. These VIs 
include the modified chlorophyll absorption in reflectance 
index (MCARI) (Daughtry et al., 2000), the transformed 
chlorophyll absorption in reflectance index (TCARI) 
(Haboudane et al., 2002), the visible atmospherically 
resistant index (VARI) (Gitelson et al., 2002), the visible 
green index (VGI) (Gitelson et al., 2002), the plant 
senescence reflectance index (PSRI) (Merzlyak et al., 
1999), the structure-insensitive pigment index (SIPI) 
(Penuelas et al., 1995), the modified normalised 
difference (MND) (Sims and Gamon, 2002), and the soil-
adjusted vegetation index (SAVI) (Huete, 1988). Four 
vegetation indices (NDVI, SAVI, PVI and RVI) have been 
used to assess rangeland degradation in semi-arid part of 
the Qazvin province, Iran. The results show that NDVI is 
a powerful index for assessing the rangeland degradation 
as compared to other indices (Ajorlo and Abdullah, 2007). 
Rahimzadeh-Bajgiran et al. (2008) assessed the 
effectiveness of the AVHRR–NDVI for drought monitoring 
in Iran. They concluded that the AVHRR–NDVI can be 
successfully used for drought monitoring such as the 
vegetation amount and chlorophyll content of the 
vegetation in the targeted regions. However, the index 
was unable to timely detect changes in water status, and 
sensitive to soil background. 

Although, different vegetation indices are used in 
assessing  the  rangeland   degradation,   there   are   still  
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challenges facing the classification of vegetation species 
in degraded areas where the reflectance is strongly 
affected by the background of soil as a result of relatively 
sparse vegetation and atmospheric conditions. More 
work is needed to develop different spectral indices that 
could help reduce the effects of soil background and 
atmospheric circumstances. 
 
 
OVERALL CHALLENGES AND OPPORTUNITIES IN 
APPLYING REMOTE SENSING IN DEGRADED 
ENVIRONMENTS 
 
Rangeland degradation in arid, semi-arid and sub-humid 
areas is one of the problems that lower the land‟s 
productivity in terms of it being able to provide local 
communities with livelihoods through the grazing of 
domestic stock and planting of crops. Therefore, 
monitoring the spatial extent of rangeland degradation 
offers a means of understanding the nature and causes 
of this phenomenon. Different indicators have been used 
to map rangeland degradation by using soil properties 
and vegetation. Vegetation is an important component of 
ecosystems and it also serves as an excellent indicator of 
early signs of any physical or chemical degradation of the 
land. 

The mapping and monitoring of vegetation species 
using traditional field-based methods, which allow only a 
small area to be covered, is costly and time-consuming; it 
is also sometimes impossible to undertake field data 
collection due to the poor accessibility of the area being 
surveyed (Rocchini et al; 2010). On other hand, remote 
sensing techniques offer a practical, near-real-time, rapid, 
relatively inexpensive and accurate data for mapping 
vegetation species over large areas (Ustin et al., 2009). 
Although, considerable progress has been made with 
regard to mapping and monitoring rangeland degradation 
based on vegetation species using remote sensing data 
such as sensor development and data processing, there 
are still challenges to be met. There are limitations in 
using multispectral data (that is, Landsat and SPOT) to 
map and monitor rangeland vegetation at species level, 
especially in degraded environments (where vegetation is 
sparse and there is spectral influence by soil 
background), due to the low spectral resolution of 
sensors and spectral overlap between the vegetation 
species. In addition to this, the vegetation species in a 
degraded environment are different from those elsewhere 
due to their spatial and temporal characteristics. Spatial 
variables include species diversity, structural attributes, 
and biomass, and are influenced by environmental 
factors such as soil properties, climate change, geology, 
topography, and the past biogeographic distributions of 
the species. Temporal variables relate to seasonal 
phenology and growth stage, and are influenced primarily 
by climate (drought) and hydrology (flood). Therefore, 
spectral   discrimination   between   vegetation   types   in 
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degraded environments is a challenging task because 
commonly different vegetation types show the same 
spectral reflectance signature.  

In contrast to data from broadband satellite images, 
narrow bands of hyperspectral remote sensing (<10 nm) 
and contiguous spectral bands between 400 and 2500 
nm occur throughout the ultraviolet, visible and infrared 
portions of the spectrum (Govender et al., 2009). These 
contiguous and many narrow spectral bands allow for in-
depth mapping and monitoring of rangeland vegetation at 
species levels (Asner et al., 2000; Lewis, 2000). 
However, due to the excessive need for sufficient field 
samples, availability, and the high cost of images in 
Africa, only a few studies have investigated the potential 
of using hyperspectral data (Rocchini, 2010; Thenkabail 
et al., 2004). Yet, in spite of these shortcomings, there is 
no doubt that the improvements in sensor instruments 
and analytical methods over the past ten years, 
combined with an increased knowledge of vegetation 
biophysical and biochemical properties, has provided 
important advances in terms of mapping the spatial 
distribution of rangeland vegetation in degraded areas at 
species level. More research is needed to enhance our 
ability to discriminate between increaser species for the 
purpose of identifying rangeland degradation using the 
development of new multispectral sensors such as 
WorldView-2 data. WorldView-2 data, with its capability of 
new wavelengths (including coastal, yellow, red-edge and 
NIR 2) to resolve lacking spectral features in the 
traditional sensors (Landsat TM, Landsat ETM+ and 
SPOT), offers  great possibilities with regard to increaser 
species classification. 
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