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This paper compares results of the application of two different approaches- parametric model (PM) and 
artificial neural network (ANN) for assessing economical productivity (EP), total costs of production 
(TCP) and benefit to cost ratio (BC) of potato crop. In this comparison, ANN model and Cobb-Douglas 
function as PM has been used. The ANN 8-6-12-1 topology with R2=0.89 resulted in the best-suited 
model for estimating EP. Similarly, optimal topologies for TCP and BC were 8-13-15-1 (R2=0.97) and 8-
15-13-1 (R2=0.94). The ANN approach allowed to reduce the average estimation error from -184% for PM 
to less than 7% with a +30% to -95% variability range.  
 
Key words: Economical productivity, benefit to cost ratio, total cost of production, Cobb-Douglas function, 
estimation error. 

 
 
INTRODUCTION 
 
The estimation of present and forecast of future 
production costs and economical indices are key factors 
in determining the overall performance of a production 
process and achieving ways to its development: the 
earlier this information is known, the better the trade-off 
between costs and product performances will be 
managed. For this reason, different techniques and 
approaches have been developed to cope with the 
problem of the estimation of costs in highly uncertain 
contexts.  

The analysis was conducted through a real case study 
provided by potato production process operating in the 
agricultural sector. The main mission of the farms is the 
supply, production and sale of their potato. In the global 
economy, the price of a product determines the effect 
and share of that product in target markets. Power of 
competition in different markets depends on price per unit 
of product. The capability to do cost estimation of the 
production can be useful to pursue the claimed strategic 
objective of the farm.  

In particular, this study focuses on the estimation of the 
costs of potato production ($ kg-1) in Hamadan province 
of Iran. This province is the first producer of potato in Iran 

and exports its potato to all nearby provinces and 
countries. In particular, this article shows the results of a 
study aimed at comparing the application of two of these 
techniques: the parametric approach (perhaps the most 
diffused in practice) and a predictive model based on the 
artificial neural networks (ANN) theory, which has known 
great diffusion in the last two decades in very different 
application contexts.  

The objective of the research was to compare the 
results achieved with the application of a traditional cost 
estimation technique (PM) with those obtained through 
the design and implementation of an ANN.  
 
 
Overview of cost estimation techniques 
 
From a methodological point of view, cost estimation may 
be based on qualitative or quantitative approaches as 
schematized in Figure 1 (Foussier, 2006a). Qualitative 
approaches rely on expert judgment or heuristic rules and 
will not be dealt with in this work (as they only state 
whether an alternative is better or worse than the other 
without specifying absolute values).  
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Figure 1. Classification of cost-estimating methods. 
 

 
 
Quantitative methods instead may be further classified 
into statistical models, analogous models or generative-
analytical models (Asiedu et al., 2000). Parametric cost 
models belong to the family of statistical methods, in that 
statistical criteria are utilized to identify the causal links 
and correlate costs and product characteristics, in order 
to obtain a parametric function with one or more variables 
(Foussier, 2006b). Tegene and Kuchler (1994) used a set 
of diagnostic tools to evaluate the forecasting 
performance of five farmland value models. The models 
were two variations of the present-value model, an 
ARIMA, a vector autoregression and an error-correcting 
model. By the Henriksson-Merton test, it was found that 
the error-correcting model generates superior forecasts 
at both forecasting horizons. Statistical methods can rely 
on formulas or alternative approaches to link product 
characteristics to costs. For example, regression analysis 
(Dean, 2005), but ANNs have also been employed to 
extend the field of statistical methods, thanks to their 
ability to classify, summarize and extrapolate collections 
of data (Bode, 2000). ANN models accept as input 
shape-describing and semantic product characteristics 
and give as output the product cost. Seo et al. (2002) 
also utilized ANN and statistical correlation methods in 
life cycle costing for use in conceptual design stages, 
while the same approach was adopted by Cavalieri et al. 
(2004) for the estimation of the manufacturing cost of 
mechanical components (disk brakes). Zhang and Fuh 
(1998) utilized ANN to estimate packaging costs based 
on product dimensions. This approach has known the 
first applications in the manufacturing sector for planning, 
emulation and management of production processes and 
plants. For example, Cavalieri and Taisch (1996) and 
Cavalieri et al. (1995, 1997) have developed ANNs for 
the design of hybrid intelligent systems and of process 
plants, while Zhang et al. (1996) illustrated the use of an 
ANN based model for the estimation of the packaging 
cost, based on the geometrical characteristics of the 
packaged product (the so-called ‘‘feature based cost’’).  

A number of papers compared the performance of ANN 
and parametric regression models, in a generic context 
(Zhang et al., 1998; Bode, 2000), in  assembly  industries  

 
 
 
 
(Shtub and Zimmermann, 1993) or for mechanical 
components (Cavalieri et al., 2004) and specific 
processing operations (Verlinden et al., 2007). These 
works confirm that ANN may show better performance 
than regression models as already pointed out by Hill et 
al. (1994). The relative performance of ANNs over 
traditional statistical methods is reported in Zhang et al. 
(1998). These authors provided (1) a synthesis of 
published research in this area, (2) insights on ANN 
modeling issues, and (3) the future research directions. 
Church and Curram (1996) made a comparison between 
econometric and ANN models for forecasting consumers' 
expenditure. They found that the ANN models, describe 
the decline in the growth of consumption since the late 
1980s, as well as but no better than, the econometric 
specifications included in the exercise, and are shown to 
be robust when faced with a small number of data points. 

Analogous methods instead identify a similar product, 
and reuse the cost information to estimate the future cost 
by analogy, adjusting the cost for the differences between 
the products. Analogous models thus infer a similarity in 
the cost structure from a functional or geometrical 
similarity among product features. The strength of the 
similarity is proportional to the correspondence of the 
relevant characteristics (Shields and Young, 1991), for 
example, measured as the distance between the points 
of a multidimensional features space.  

Generative-analytical methods are the most accurate, 
in that they try to depict the actual product creation 
process. A detailed analysis of the production process 
and decomposition into the single manufacturing 
operations is carried out and specific models analytically 
estimate the cost of each processing phase, attributing a 
monetary value to the resources consumption, on the 
basis of the technical parameters characterizing the 
operation. A bottom-up approach is then utilized to 
properly aggregate the costs incurred during the process 
of fabrication, through summation of each cost item. A 
detailed model uses estimates of labor time and rates, 
material quantities and prices, to estimate the direct costs 
of a product or activity and an allocation rate is used to 
allow for indirect/overhead costs (Shields and Young, 
1991). Therefore, a detailed costing estimate results from 
a generative process plan which also allows specific cost 
drivers to be identified, while alternatives to adjust 
products cost can be derived and trade-offs can be 
examined.  
 
 
MATERIALS AND METHODS 

 
Problem definition and data collection 

 
Forecasts of agricultural production and prices are intended to be 
useful for farmers, governments, and agribusiness industries. 
Because of the special position of food production in a nation's 
security, governments have become both principal suppliers and 
main users of agricultural forecasts. They need internal forecasts to 
execute  policies,  that  provide technical and market support for the  



 
 
 
 

 
 
Figure 2. The structure of multilayer feedforward neural network. 

 
 
 
agricultural sector (Geoffrey, 1994). In the case of potato crop 
production, the first phase would consist of a clear definition of the 
production objectives and constraints. This aspect appears quite 
important for a farmer, which has many inherent unanticipated 
problems. Objectives, strategies and activities to be implemented 
must be accepted by government, associated with agricultural 
sector and especially potato producers in this province. Due to high 
price of a crop in one year, in the following years many farmers are 
tempted to cultivate that crop. This phenomenon has been noticed 
over and over for several crops in Iran, particularly in the production 
of potato in the province of Hamadan. Estimation of average cost of 
production and pricing based on this information can reduce 
tensions in potato market. Government with this information can 
forecast the future price of potatoes, adjust its market situation and 
buy potatoes in excess to market requirements.  

Once the problem and the methodology to be used had been 
defined, it is necessary to proceed to the analysis of product data, 
and to the identification of the information sources and of the 
corresponding business functions responsible for their maintenance 
and update. In this case, the main typologies of data are: 

 
1. Technological data, related to the production processes. 
2. Cost data, such as agricultural inputs costs, labor costs, etc. 
 
The sources of information were the information based on data 
which were collected by questionnaire method from potato 
producers in Hamadan province of Iran. The data collected 
belonged to the production period of 2008 to 2009. Farms were 
randomly chosen from the villages in the area of study. The size of 
sample was determined using Cochran technique (Snedecor and 
Cochran, 1989). Based on this method 89 farms were interviewed. 
 
 
ANN approach for cost estimation 

 
Interest in using artificial neural networks (ANNs) for forecasting 
has led to a tremendous surge in research activities in the past two 
decades. Recent research activities in ANNs have shown that, they 
have powerful pattern classification and pattern recognition 
capabilities (Zhang et al., 1998). ANNs are inspired to the human 
brain functionality and structure, which can be represented as a 
network of densely interconnected elements called neurons. The 
connections between neurons are called synapses and could have 
different levels of electrical conductivity, which is referred to as the 
weight of the connection. This network of neurons and synapses 
stores the knowledge in a ‘‘distributed’’ manner:  the  information  is  
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coded as an electrical impulse in the neurons and is stored by 
changing the weight (that is, the conductivity) of the connections. 

ANNs inherit the above-explained structure: they are composed 
of a large number of elaboration units (the neurons) linked via 
weighted connections (the synapses). An ANN reacts to inputs by 
performing the sum of the weighted impulse of the neurons: the 
result activates one or more specific output neurons which provides 
the answer of the net. Another similarity between ANNs and the 
brain is the learning approach. Like the human brain, an ANN 
needs to be trained, which means that it needs to store knowledge 
by means of the elaboration of a set of training data (also called 
patterns), which represent the experience ‘‘cumulated’’ by the ANN. 
This training campaign allows the network designer to ‘‘fine tune’’ 
the weight of the connections between neurons, by storing the 
specific knowledge included in the patterns.  

Moreover, one of the most important characteristic of ANNs is 
their ability to infer from their knowledge the answer to questions 
(inputs) that they have never seen before. This is referred to as the 
generalization ability of the ANNs. This feature of ANNs reduces the 
amount of data needed in the training phase. To summarize, the 
ANNs represent a powerful, non-linear and parallel computing 
approach that could be used to perform fast and complex 
computations. 
 
 
Multilayer feed forward ANN 
 
There are multitudes of ANN structures and different classification 
frameworks. For example, ANN could be classified according to the 
learning method or to the organization of the neurons (Chester, 
1993). The one that have been used in this work is called Multilayer 
Perception (MLP), in which neurons are organized in several layers: 
the first is the input layer (fed by a pattern of data), while the last is 
the output layer (which provides the answer to the presented 
pattern). Between input and output layers, there could be several 
other hidden layers (Figure 2). The number of hidden layers has an 
important role in determining the generalization ability of the MLP. 
MLP represents a tool, which is able to identify the relationships 
between different data sets, although the form of these 
relationships is not defined exactly. For this reason they are called 
‘‘universal approximation or regression tools’’ (Hornik et al., 1989). 
 
 
Parametric approach for cost estimation 

 
In order to complete the information provided by the parametric 
model (PM), a cost estimation relationship (CER) has been 
developed. In order to find a CER, relationship between the desired 
outputs and inputs was estimated using Cobb-Douglas production 
function for the potato crop, as illustrated in Equation 1 for all EP, 
TCP and BC, as: 
 
lnYi = α0 + α1 lnChi+ α2 lnCfmi + α3 lnCdfi + α4 lnCfi + α5 lnCmi + 
α6 lnCei + α7 lnCsi + α8 lnCci + ei                                                 (1) 
 
where Yi denotes the EP, TCP and BC of the i’th farmer. The Yi 
was assumed to be a function of Chi, Cfmi, Cdfi, Cfi , Cmi, Cei, Csi 
and Cci. The meaning of the single terms of the models is reported 
in Tables 1, 2 and 3. In Equation (1), α0 is a constant term, αi 
represent coefficients of inputs which are estimated from the model 

and ei is the error term such that 

0
1
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=
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i
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Performance evaluation of PM and ANN models 
 
The  performance  of  the  trained networks was measured by mean 
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Table 1. Description of parametric model (PM) and significance for economical productivity (EP) index. 
 

Term Coefficients t-ratio Sig 

Endogenous variable:     

EP    

Exogenous variables:     

Constant term (α0) 7.593 8.054* 0.000 

1. Ch -0.015 -0.123n.s 0.217 

2. Cfm -0.074 -2.277** 0.019 

3. Cdf 0.087 2.876* 0.010 

4. Cf -0.070 -1.741* 0.002 

5. Cm -0.025 -2.415** 0.047 

6. Ce 0.025 0.868n.s 0.101 

7. Cs -0.559 -14.404* 0.000 

8. Cc -0.049 -1.166n.s 0.550 

R2 0.76   

Durbin–Watson 2.219   

MAPE (%) 8.53   
 

* Significant at 1% level, **Significant at 5% level, ***Significant at 10% level. 

 
 
 
Table 2. Description of parametric model (PM) and significance 
for total cost of production (TCP) index. 
 

Term Coefficients t-ratio Sig 

Endogenous variable:     

TCP    

Exogenous variables     

Constant term (α0) -0.478 -4.202* 0.000 

1. Ch -0.006 -0.391n.s 0.697 

2. Cfm 0.007 1.896*** 0.062 

3. Cdf -0.004 -1.145n.s 0.255 

4. Cf 0.009 1.875*** 0.064 

5. Cm 0.002 1.640n.s 0.105 

6. Ce 0.001 0.382n.s 0.704 

7. Cs 0.067 14.315* 0.000 

8. Cc 0.008 1.530n.s 0.130 

R2 0.75   

Durbin–Watson 1.829   

MAPE (%) 32.10   
 

* Significant at 1% level, **Significant at 5% level, ***Significant at 
10% level. 

 
 
 
square error (MSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE) and coefficient of determination (R2) on 
another set of data (testing set), not seen by the network during 
training and cross-validation (CV), between the predicted values of 
the network and the target (or experimental) values. In validating 
the PM, autocorrelation was performed using Durbin–Watson (DW) 
test (Hatirili et al., 2005). Finally, the values of the coefficients of 
both ANN and PM models have been assigned in order to minimize 
the MAPE (defined in Equation 2) and to maximize R2: 

)100
cost Actual

cost Estimated cost Actual
(

1

1 i

ii

∑
=

−

=

n

in
MAPE

 
                                              (2) 
  
Basic information on input costs and economical indices of potato 
production were entered into Excel 2007 spreadsheets, SPSS 16.0 
and Shazam 9.0 software program. NeuroSolutions 5.07 software 
was used for the design and testing of ANN models. To develop a 
statistically sound model, the networks were trained multiple times 
(ten) and the average values were recorded for each parameter. To 
avoid ‘overfitting’, the MSE of the CV set was calculated after 
adjusting the weights and biases. The training process continued 
until the minimum MSE of the CV set was reached, early-stopping 
scheme. 

 
 
RESULTS AND DISCUSSION 

 
Parametric model (PM) 

 
In validating the PM, Durbin-Watson (DW) test revealed 
that DW values were 2.219, 1.829 and 2.162 for EP, TCP 
and BC, respectively, that is, there was no 
autocorrelation at the 5% significance level in the 
estimated models. The corresponding R2 values for EP, 
TCP and BC were 0.76, 0.75 and 0.74. The impact of 
cost inputs on desired outputs was also investigated by 
their coefficients. Regression results for these models are 
shown in Tables 1, 2 and 3. It can be seen from Table 1 
that the contribution of Cs, Cf, Cdf and Cf on EP are 
significant at 1% level; because of using Cobb-Douglas 
function in the estimation, the coefficient of variables in 
log form can be regarded as elasticities. In the case of 
TCP   (Table 2),  only Cs has significant effect on desired  
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Table 3. Description of parametric model (PM) and significant for benefit to cost ratio (BC) index. 
 

Term Coefficients t-ratio Sig 

Endogenous variable:     

BC     

Exogenous variables     

Constant term (α0) 3.311 6.157* 0.000 

1. Ch 0.021 0.304n.s 0.762 

2. Cfm -0.053 -2.848* 0.006 

3. Cdf 0.061 3.539* 0.001 

4. Cf -0.037 -1.607n.s 0.112 

5. Cm -0.013 -2.147** 0.035 

6. Ce 0.026 1.585n.s 0.117 

7. Cs -0.301 -13.618* 0.000 

8. Cc -0.026 -1.098n.s 0.275 

R2 0.74   

Durbin–Watson 2.162   

MAPE (%) 16.21   
 

* Significant at 1% level, **Significant at 5% level, ***Significant at 10% level. 

 
 
 
output at the 1% level, while Cfm and Cf are significant at 
10% level. The elasticities of Cfm, Cdf and Cs for BC 
(Table 3) were estimated as -0.053, 0.061 and -0.301, 
respectively (all significant at the 1% level). Hatirli et al. 
(2006) estimated an econometric model for greenhouse 
tomato production in Antalya province of Turkey. They 
concluded that among the energy inputs, human energy 
was the most important input that influences yield. Singh 
et al. (2004) concluded that in zone 2 of Punjab, the 
impact of human and electrical energies were significant 
to the productivity of wheat crop at 1% level.  

In this case, each term represents a component of the 
cost related to the execution of the different production 
operations (planting, crop management and cultivation, 
harvesting, etc.). Some of these variables turned out to 
be quite independent from the morphological 
characteristics of the crop, and they have been assigned 
mean values.  
 
 
ANN model 
 
In the discussed case, ANN represents a valid tool for the 
identification of the transfer function of the analyzed 
processes, through an implicit link between the input 
values (various component of potato production cost) and 
the output values (EP, TCP and BC). With regard to the 
specific ANN architecture used, given the peculiar 
purposes of the application, the multilayer perception 
(MLP) has been preferred, since it usually leads to the 
most satisfactory results (as reported in Hornik et al., 
1989). The proper structure has been selected after 
having tested more than 30 ANN configurations with 
different numbers of hidden layers  (varied  between  one 

and two), different numbers of neurons for each of the 
hidden layers, and different inter-unit connection 
mechanisms. A summary of main results for EP, TCP 
and BC are illustrated in Table 4. For each output, the 
best ANN is highlighted in the Table.  

The learning algorithm adopted is a typical one for this 
type of ANN: the back propagation algorithm with 
momentum and a flat spot elimination term. The set of 
patterns has been divided into three subsets: 60% has 
been used as a training set (in order to adjust the weight 
of the connections and store the knowledge), 15% has 
been used as a cross validation set and the remaining 
25% has been used as a testing set to evaluate the 
responses of the net to unseen patterns (in order to 
evaluate the degree of generalization). The results of this 
testing phase are reported by the MAPE, as performance 
indicator. It is quite evident that the two-layer 
configuration shows better performances than the one 
layer one. This result is a further confirmation of some 
theoretical assumptions reported in literature (Chester, 
1993), where the superiority of a two-layer solution is put 
in relationship with its shorter training times (given the 
same number of connections) and the better rate of 
output prediction. 
 
 
Comparison of the results of the two approaches 
 
The PM and ANN models have been tested and validated 
by comparing the results provided by these models with 
the actual costs of 23 of all relevant components (cost of 
each input, divided for test set) produced by the farms. 
Overall comparison of estimating errors is shown in Table 
5.  According  to  the  results  obtained  from  Table 5, the  
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Table 4. Alternative configurations of ANN for the economical productivity (EP), total production costs (TCP) and 
benefit to cost ratio (BC) of potato crop (optimal networks are highlighted). 
 

Network output 
Number of neurons 

MSE MAE MAPE R2 
NH1 NH2 

EP 

4 - 0.0656 0.2158 8.38 0.77 

3 9 0.0942 0.2329 7.92 0.84 

4 4 0.0544 0.1999 7.13 0.84 

5 6 0.0939 0.2155 6.30 0.89 

6 4 0.0689 0.2361 9.54 0.69 

6 13 0.1334 0.2989 8.47 0.81 

6 12 0.1027 0.2450 5.82 0.89 

10 6 0.0560 0.1967 7.59 0.82 

 

TCP 

4 - 0.0007 0.0216 9.88 0.95 

4 4 0.0010 0.0246 10.61 0.96 

8 3 0.0013 0.0268 9.18 0.96 

10 5 0.0016 0.0308 20.30 0.87 

13 15 0.0009 0.0224 9.08 0.97 

16 7 0.0013 0.0264 17.23 0.86 

17 19 0.0011 0.0248 14.75 0.90 

20 10 0.0012 0.0254 18.35 0.85 

 

BC 

4 4 0.0188 0.1168 11.73 0.90 

7 7 0.0396 0.1462 9.15 0.92 

10 10 0.0275 0.1279 11.93 0.89 

15 9 0.0370 0.1505 13.91 0.88 

15 10 0.0228 0.1276 14.30 0.82 

15 13 0.0309 0.1338 10.17 0.94 

16 23 0.0244 0.1250 14.08 0.86 

18 20 0.0224 0.1208 13.91 0.87 
 
 
 

Table 5. Overall comparison of estimating errors of parametric model (PM) and ANN model for the economical productivity (EP), total production 
costs (TCP) and benefit to cost ratio (BC) indices. 
 

Output Method of estimation 
Training data set Test data set Entire data set 

MAPE (%) Range (%) MAPE (%) Range (%) MAPE (%) Range (%) 

EP 
PM 8.53 +23.39/-23.11 7.92 +16.42/-25.22 8.33 +23.39/-25.22 

ANN model 5.89 +17.37/-17.89 7.30 +11.38/-20.07 6.30 +17.37/-20.07 

        

TCP 
PM 32.10 +51.31/-184.36 23.12 +39.84/-79.28 28.98 +51.31/-184.36 

ANN model 7.94 +23.53/-59.70 13.55 +30.59/-32.63 9.51 +30.59/-59.70 

        

BC 
PM 16.21 +43.18/-80.51 24.65 +34.01/-95.86 18.64 +43.18/-95.86 

ANN model 6.90 +26.37/-31.70 20.53 +30.09/-95.68 10.17 +30.09/-95.68 

 
 
 
superiority of ANN models over the Cobb-Douglas model 
as parametric approach is evident: the average MAPE of 
EP fell from 8.28 to about 7.66%. In the case of the other 
desired outputs, similar trends can be seen: the average 
MAPE of TCP and BC fell from 24.22 and 25.78% to 
14.34  and  21.82%,  respectively. This  outcome  can  be 

easily seen in Figure 3, which shows the average MAPE 
of the EP, TCP and BC. The maximum value of MAPE is 
about -95.87% for the PM in the case of BC. In the case 
of PM, the average estimation error was computed as 
8.53, 32.10 and 16.21% for EP, TCP and BC, 
respectively,  with  a  maximum  variability   range   about  
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Figure 3. MAPE Comparison of economical productivity (EP), total cost of production 
(TCP) and benefit to cost ration (BC) for parametric and ANN models. 

 
 
 
+51.31 to -184.36% for TCP. Overall, the parametric and 
ANN models, MAPE computed over the entire data set 
was at maximum 28.98% for PM of TCP and at minimum 
6.3% for ANN model of EP. Of course, the superiority of 
the ANN could derive from a poor design of the PM 
(although this seems not to be the case here). But, apart 
from absolute superiority judgments, what emerges is 
thesuperiority of ANN models over the Cobb-Douglas 
model as parametric approach is evident: the average 
MAPE of EP fell from 8.28 to about 7.66%. In the case of 
the other desired outputs, similar trends can be seen: the 
average MAPE of TCP and BC fell from 24.22 and 
25.78% to 14.34 and 21.82%, respectively. This outcome 
can be easily seen in Figure 3, which shows the average 
MAPE of the EP, TCP and BC.  

The maximum value of MAPE is about -95.87% for the 
PM in the case of BC. In the case of PM, the average 
estimation error was computed as 8.53, 32.10 and 
16.21% for EP, TCP and BC, respectively, with a 
maximum variability range about +51.31 to -184.36% for 
TCP. Overall, the parametric and ANN models, MAPE 
computed over the entire data set was at maximum 
28.98% for PM of TCP and at minimum 6.3% for ANN 
model of EP. Of course, the superiority of the ANN could 
derive from a poor design of the PM (although this seems 
not to be the case here). But, apart from absolute 
superiority judgments, what emerges is the robustness of 
the ANN when faced with a small number of data points, 
which leads to excellent results on all of the validation 
samples. Thus contradicting those who say that this 
methodology, thanks to its many free parameters, allows 
the error on data used for its construction to go to zero, 
while the overall performance (the mean error on the 
population in general) can be far less satisfactory (Mason 
and Smith, 1997). In addition to reduction of MAPE in 
ANN model in comparison to MP, growth of R2 also 
occurred that can be easily understood from Figure 4. 

Percentage error values for the ANN models of EP, TCP 
and BC are shown in Figures 5, 6 and 7, respectively. 
Again, the superiority of ANN models to PM can be seen. 
Our results proved the work by Mason and Smith (1997), 
where the performances of regression and ANN 
approaches for cost estimation purposes were compared. 
Their results indicated that the ANN-based models are 
characterized by higher precision, especially when the 
analytical expression that links input and output variables 
is not known, or when it cannot be expressed in 
polynomial form.  

It is also interesting to extend the present analysis 
beyond the quantitative data to include also some 
qualitative considerations. The most relevant point 
concerns the inherent logic of the two approaches: while 
the use of a PM requires the specification of the 
analytical expression of the relationship that links input 
and output to start with, this is not necessary with ANN 
approach. Hence, the ANN is characterized by the 
possibility to determine autonomously the most 
appropriate form of the relationship. This can be seen 
both as strength and weakness; Indeed: 

 
1. The extant analysis of the problem is much leaner and 
faster, and in the case of very complex or innovative 
problems, the outcome is not dependent on the ability of 
the analysts, to find the key independent variables and 
the most appropriate kind of analytical expression; 
2. At the same time, the impossibility to know the kind of 
mathematical relationship can be seen as a limit of the 
ANN approach, since it is not clear how the results are 
achieved. In other terms, in the ANN approach the object 
of analysis is treated as a ‘‘black box’’; hence, it is 
impossible to give a theoretical interpretation to the 
results provided by the tool, especially in the case of 
unpredicted or (at least intuitively) unjustified values. This 
fact     has     often    led    some   skepticism   about   this  
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Figure 4. Growth of R2 of ANN model comparison to parametric model (PM). 
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Figure 5. MAPE in the estimation of economical productivity (EP) of potato 
production over the validating data set (ANN model vs. parametric model). 
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Figure 6. MAPE in the estimation of total cost of production (TCP) of potato production 
over the validating data set (ANN model vs. parametric model). 



Zangeneh et al.        3069 
 
 
 

 
 

M
A

P
E

 (
%

) 

80.00 
 
 

40.00 

 
 

0.00 
 
 

-40.00 
 
 

-80.00 
 
 

-120.00 

 
 
Figure 7. MAPE in the estimation of benefit to cost ration (BC) of potato production on 
the validating data set (ANN model vs. parametric model). 

 
 
 
methodology in several application contexts, due also to 
the difficulty that its ‘‘sponsors’’ face, when they are 
asked to prove the quality of the outcome in case of 
counter-intuitive or questionable results. Moreover, it 
could be objected that if the knowledge of the form of the 
relationship is not needed to implement an ANN 
approach, it is nevertheless necessary to pre-determine 
the structure of the network. The answers that can be 
given to this critical consideration are the following: 
 
1. The application contexts of the various supervised and 
unsupervised neural network structures that have been 
developed so far (MLP, RBF, ART, SOM, etc.) are quite 
well known, and the identification of the most appropriate 
structure is then facilitated; 
2. The software packages for the design of ANNs are 
generally provided with tools aimed at evaluating the 
‘‘learning attitude’’ of the network, and, in case of 
negative response, at implementing the appropriate 
modifications.  
 
Another point that is often cited by the users of PMs is 
the excellent (or at least satisfactory) quality/cost ratio. 
But the implementation cost of ANN models is generally 
quite similar to that of the PM (the lower costs of 
preliminary analyses being balanced by the higher costs 
of developing and testing the ANN). Instead, the higher 
robustness of the methodology, and the consequent 
higher propensity to deal with redundant or wrong 
information enable the elimination or consistent reduction 
of the activities of data analysis, which are generally very 
time consuming (and, hence, quite expensive). Strength 
of ANNs is related to their flexibility to changes made in 
the   structure   of    the    analyzed    system    once    the  

development of the model has been already completed. 
For example, if the production process of the firm is 
modified through the implementation of new 
technologies, while the PM must be completely revised 
and retested, using a ANN it will be sufficient to conduct a 
new training program with a new set of data (the structure 
of the network may not even be modified). 

On the other hand, ANNs are completely data-driven: 
an adequate set of construction data is then required, 
while a cost estimation relationship for the PM model can 
be deduced from technical considerations on the 
production process and on the kind of resources used (as 
for the typical engineering estimating approach), provided 
that it can be subsequently validated.  
 
 
Conclusions 
 
This paper aimed at illustrating the compared results of 
the application of two different approaches-respectively 
PM and ANN-for forecasting economical productivities 
(EP, TCP and BC) of potato crop produced in Hamadan 
province of Iran. The procedure used for developing the 
two estimating methods was fully described and the 
obtained performances were evaluated in comparison 
with each other. We also discussed the merits and 
limitations of the analyzed approaches. The choice of the 
predictive model is generally based on the classical cost/ 
benefit ratio: in this sense, the regression models have 
often been preferred. But the more recently developed 
ANN models seem to represent a valid and attractive 
alternative, especially when the cost estimation 
relationship form is not known, and cannot be logically 
argued  (since in this case psychological barriers deriving  
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from the impossibility to check the relationship with 
common sense can be overcome more easily).  

In the case study illustrated in this paper, with respect 
to the Cobb-Douglas production function as parametric 
model, the ANN has shown better results in all the 
validation samples, and no significant variance problems 
(that is, the dependence of the model on the data set 
used to construct it) have emerged. The ANN approach 
allowed to reduce the MAPE from over -184 for PM to 
less than 7% with a +30 to 95% variability range.  
 
 
Nomenclature 
 
ANN, Artificial neural network; BC, Benefit to cost ratio; 
Ch, Cost of human labor ($ ha

-1
); Cfm, Cost of farm 

machinery ($ ha
-1

); Cdf, Cost of diesel fuel ($ ha
-1

); Cf 

,Cost of fertilizers ($ ha
-1

); Cm, Cost of farmyard manure 
($ ha

-1
); Ce, Cost of electricity ($ ha

-1
); Cs ,Cost of seed ($ 

ha
-1

); Cc, Cost of chemicals ($ ha
-1

); CER, Cost estimation 
relationship; EP, Economical productivity ($ kg-1); GF, 
Generalization factor; MLP, Multi layer perception; 
MAPE, Mean absolute percentage error; MSE, Mean 
squared error; MAE, Mean absolute error; PM, 
Parametric model; TCP, Total cost of production ($ kg-1). 
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