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ASTER DEM data was used to automate landform classification during soil survey in the Varamin area. 
For comparison, manual landform classification was done in the same area. Study area was located at 
South of Jajrood river watershed, Southeast of Tehran province (Iran). The main purpose of this study 
was to compare the effect of automated and manual landform classification methods in semi-detailed 
soil survey procedure. Eight geomorphometric parameters were extracted from DEM using the TAS and 
DiGem software. The Pearson correlation coefficient analysis elucidated that, the most effective of 
parameters were: analytical hill-shade, plan and profile curvature, and slope and divergence-
convergence index. In addition to these terrain attributes, principal component analyses (PCA) of 
primary geomorphometric parameters were produced to increase the quality of classification and to 
reduce modeled data. First three PCAs cover 97% of variance of the data. These PCAs and mentioned 
terrain parameters were selected for performing of K-means unsupervised landform classification 
model. Results indicated that unsupervised and manual classification can be complemented, such that 
conflation of the final maps obtained by these methods can produce a more accurate map. Also, the K-
means algorithm with correct iterations, tolerance and suitable number of classes can be used for 
automated landform classification as well. Hybrid landform classification method is useful for soil 
survey and soil mapping especially, in watersheds and natural resource fields. 
 
Key words: Hybrid landform classification, geomorphometric parameters, K-means classifier, Pearson 
correlation coefficient. 

 
 
INTRODUCTION 
 
Landforms are considered a central concept for soil 
development. It influences soil distribution, properties and 
processes that occur in soil pedon and catena. In 
different parts of the world, many studies have been 
carried out to show the relationships between landform 
elements and soil distribution. In soil survey and soil 
mapping procedures, the geomorphologic processes in 
delineating the landscape is inferred to find the controller 
process and cause of different types of soil. Besides, 
extracting soil-landscape relationships helps surveyors to 
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judge and infer their tacit knowledge into modeling steps. 
A fundamental objective in geomorphologic clustering is 
to extract and classify landform units. These units provide 
primary view about the distribution of soil units. Most of 
the environmental processes depend on topography 
(Hugget and Cheesman, 2002) and if topography 
remains uniform, then the processes affect mostly the 
earth crust.  

There are different approaches to define and describe 
the landscape divisions (geomorphic units). These terms 
used in different approaches are more or less the same 
(Wilson and Gallant, 2000). Landform units are formed 
due to different geomorphic, hydrologic and pedologic 
processes in each landscape. Thus, based on the 
approach  of   Zink (1988),   large   areas   are  divided to 
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geomorphologic  units  such as landscape, landform  and 
geomorphic surfaces. Each of them may be composed of 
one or several types of soil unit. Contiguous 
environmental processes make delineation and mapping 
of geomorphic or soil units difficult. Similarity in 
geomorphic units indicates uniformity in soil forming 
processes, therefore, we will be able to delineate uniform 
soil mapping unit. This induces that mapping topography 
will help us to delineate the soil units also (Etzelmüller 
and Sulebak, 2000). Different techniques from automatic 
(supervised and unsupervised algorithm) to hybrid (semi-
automated) classification methods were used in landform 
classification for modeling of soil characteristics and 
spatial distribution of types of soils. In this context, 
improvements in Geographic Information Systems (GIS) 
and terrain analysis techniques allow developing soil 
survey models based on different new concepts such as 
geomorphometry. DEMs are used for analysis of 
topography, landscapes and landforms and extracting 
terrain attributes (Bishop and Shroder, 2000; Tucker et 
al., 2001). Many geomorphometric parameters are 
derived from DEMs. 

These parameters are used for automated landform 
classification and are more correlated with current digital 
soil mapping than conventional soil surveying. These 
morphometric attributes are divided to primary terrain 
attributes (for example, slope, aspect, elevation, plan 
curvature, profile curvature, total curvature, tangential 
curvature, surface curvature index, and shaded relief etc) 
and compound terrain attributes (for example, 
topographic wetness index, sediment transport capacity, 
and composite relief model etc) (Gallant and Wilson, 
2000). Both of them can be used to predict surface and 
sub-surface processes through automated landform 
classification. Digital soil mapping can be performed in 
different scales: from large (1:5,000) to small scales 
(1:500,000) depending on vertical and horizontal 
resolution of produced DEMs (Gallant and Wilson, 2000). 
Recently, studies on these topics has increased due to 
availability of high-resolution DEMs produced by different 
satellite data and software packages of terrain analysis 
systems (McMillan et al., 2003; McBratney et al., 2003; 
Smith et al., 2006). Many studies have shown that 
changes in goemorphometric parameters can cause 
intrinsic differences in elucidating the spatial distributions 
of the landform and soil units (Gallant and Wilson, 2000). 

Ventura and Irvin (2000) classified landform by 
applying the iso-clustering unsupervised classification 
method using six geomorphometric parameters. Their 
study showed that automated segmentation landform can 
separate units more detail than the conventional method. 
Moreno et al. (2005) also classified landscape 
automatically using GIS into landform elements based on 
geomorphometry. The results indicated that it is less time 
consuming with a rewarding conclusion compared to 
manual methods.  

Mousavi et  al.  (2007)  assessed  in  their  studies   the 
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extracted geomorphometric parameters from ASTER 
DEM   with   PCI   GEOMATICA  software  in  Damavand 
region (Iran). They derived five parameters which are 
useful in identifying and describing process and 
geomorphologic units: height, slop, aspect, vertical 
curvature and tangential curvature. These researchers 
concluded that ASTER DEM data, according to their 
technical specification and features, are appropriate for 
interpretation and production of geomorphic data in 
macro and meso scales, and only provide the possibility 
of topography in medium scales (1:100000 and 1:50000). 
Barka et al. (2011) used landform classification in 
predictive soil mapping at the forest area in Slovakia. 
Their evaluation indicated that terrain classification is one 
of the methods which can be used suitably in delineation 
of pedological and forestry units. Hengl and Rossiter 
(2003) used maximum likelihood classifier for landform 
classification to enhance the process and replace aerial 
photo interpretation in semi-detailed soil surveys. They 
used nine geomorphometric parameters extracted from 
DEM with a 10 m cell size to model landform 
classification. The result indicated that their methodology 
can be applied to update current maps and to enhance or 
replace aerial photo interpretation for new surveys. 

Umali et al. (2010) used a simple method to predict 
spatial pattern of soil organic carbon (SOC) using a 
substitute variable, soil color and digital terrain analysis in 
East of Adelaide, South Australia. They derived seven 
geomorphometric parameters from the DEMs (specific 
catchment area, profile curvature, wetness index, slope, 
plan curvature, sediment transport capacity index and 
tangential curvature). Also, they identified one hundred 
random points across the study area and value 
component of soil color was obtained. Spearman rank 
correlation analysis showed that elevation, specific 
catchment area, profile curvature and wetness index 
affects value component of soil color. They also found 
that the application of logicalness algorithms to DEMs 
derived from contour line maps produced better 
correlation coefficients as compared to unsmooth DEMs. 

With this background, it is assumed that quantitative 
geomorphology can be used for delineating landform 
units within a soil surveying procedure. Thus, the 
objectives of this study are: 1) to what extent the 
geomorphometric parameters and automated landform 
classification method can be used to replace 
physiographic classification method traditionally used for 
Iranian soil survey and soil mapping? 2) to what extent 
can satellite data from Google Earth replace aerial photo 
interpretations in soil survey and geomorphological 
studies?  
 
 

MATERIALS AND METHODS 
 

Condition of study area  
 

The study area is located on the Southern slopes of Alborz range, 
40 km South-east of Tehran (Figure 1). It is part of the major alluvial
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Figure 1. Location of the study area in Southeast of Tehran province, Iran. 

 
 
 

fan formed by Jajrood river watershed between 35˚20΄26˝ and 
35˚31΄09˝ N latitude and 51˚41΄52˝ and 51˚52΄32˝ E longitude. 
Mean elevation of region is 1250 m above sea level (1463 to 
950M). Variations of elevation were represented by Hypsometric 
map (Figure 2). Soil moisture and temperature regimes are weak 
aridic and thermic respectively. Topography of such regions is 
predominantly flat with the exception of the Northern part. General 
slope of the area runs from North to South. Soils of the region are 
generally classified (Moravej et al., 2003) in two orders of Entisols 
and Aridisols (USDA, 2010). The Varamin plain represents an inter-
mountain basin that is bounded on the North by Alburz mountain 
range and on the South by Siah kuh range. Study area consists of 
Paleozoic and Mesozoic sediments and Eocene volcanic, which are 
covered with young Tertiary and Quaternary deposits of the Jajrood 
river. The river deposits, mainly from Pleistocene Epoch, are more 
than 300 m thick in some places and, through their sandy nature, 
represent an important reservoir of good quality groundwater. At the 
apex of the alluvial fan, the Jajrood river diverges into a large 
number of branches and its sediment-carrying capacity thus 
diminishes. Coarse and very coarse sediments therefore, occur at 
the apex; while farther downstream the sediments gradually 
becomes finer, passing into loam and silt in the lower parts of the 
fan. 
 
 
AUTOMATED LANDFORM CLASSIFICATION METHOD 
 
Pre-processing of the DEM  
 
The DEM of study area was downloaded form the ASTER GDEM 

web site. There are different acceptable procedures for producing, 
editing and correcting of DEM before starting the extraction of 
goemorphometric parameters (Lindsay, 2005; Liu et al., 2006). 
Improving methods more or less depends on the way the DEM is 
extracted (satellite data or contour lines). The procedures used in 
this research to increase the quality of DEM before extraction of 
geomorphometric parameters were: re-sampling of the ASTER 
DEM to 14 m to exploit full ortho image resolution. Then, DEM data 
was searched for sink. 9010 sinks were detected that filled by 
DiGem software to improve the quality of the DEM. Flat area 
drainage enforce command was performed to the DEM by TAS 
software. Without this, flow routing algorithms are unable to identify 
down slope neighbors in these areas and flow routing ceases. This 
command adds very small elevation adjustments to flat areas (that 
is, cells where the lowest neighbors have equal elevation) from the 
'pour point' backwards, so that flow routing algorithms can work 
properly. The algorithm used in this module is taken from Jenson 
and Dominique (1988). The study area is mostly flat to gently 
sloping except in the Northern part. So, it was important to know 
what the variation in elevation is within a grid cell size distance from 
the centre cell in a window. Consequently, a circular shaped 
window with 5 × 5 size was used for mean filtering of the raster 
DEM. A circular shape window seems more suitable than a square 
because the boundary of a circle will always be of equal distance to 
the focal point (Brabyn, 1998). 
 
 
Derivation of geomorphometric parameters 

 
All the important primary and secondary terrain attributes were
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Figure 2. Hypsometric map of the study area. 

 
 
 
extracted using TAS Version 2.0.9 (Terrain Analysis Systems), a 
Software called White box GAT (Geospatial Analysis Tools) 
developed by Lindsay (2005) and DiGem software produced by 
Conrad (2002) of the Gottingen University. The extracted 
parameters which have been mapped separately are: Aspect, 
slope, curvature, Maximum Down Slope (MDS), Sediment 
Transport Capacity Index (STCI), Shaded Relief (SHR), Wetness 
Index (WI) or Topographic Index, Analytical Hill shade (AH), 
Divergence-Convergence Index (DCI), Plan Curvature (PL.C) and 
Profile Curvature (PR.C). 
 
 
Correlation among the geomorphometric parameters  
 
Some geomorphometric parameters have some correlation and 
contain similar information. When two parameters have positive 
correlation (between 0 to +1) it shows that increase in one 
parameter resulted from the increase in another one, and vice 
versa. Also, it shows that the presence of high correlated coefficient 
between two parameters means that there are some similarities in 
the data. To ordinate the geomorphometric parameters, the 

Pearson product-moment correlation coefficient (r) was computed 
between these parameters by White box GAT software. The 
primary correlation coefficients among mentioned extracted 
parameters vary from -0.09 to 0.99. So, high positive correlated 
parameters were omitted including: Curvature, MDS, and SHR. 
Pearson correlation coefficient was computed between the 
remained parameters [Aspect, Slope, Sediment Transport Capacity 
Index (STCI), Wetness Index (WI) or Topographic Index, Analytical 
Hill shade (AH), Divergence-Convergence Index (DCI), Plan 
Curvature (PL.C) and Profile Curvature (PR.C)]. For the second 
time (Table 1). As can be seen in this table, r varies from -0.291 to 
0.55. 

Principal components analysis (PCAs) of eight geomorphometric 
parameters was extracted to increase the quality of classification 
and to reduce the data. The outputs of correlation matrix extracted 
by PCA and Pearson Correlation Coefficient (r) are exactly similar. 
So, principal components analysis was done for producing images 
that had maximum variance data. Subsequently, three parameters 
that had relatively high correlation with other parameters (STCI, WI, 
Aspect) were omitted and replaced by PCA1,2,3 that had the highest 
information variance (97% approximately).
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Table 1. The Pearson correlation coefficient (r) matrix. 
 

Parameter Aspect AH DCI PL.C PR.C Slope STCI WI 

Aspect 1 -0.291 0.210 0.051 0.036 0.357 0.209 0.550 

AH  1 0.037 0.029 0.008 0.261 0.177 0.219 

DCI   1 0.519 0.572 0.181 0.005 0.146 

PL.C    1 0.463 0.123 -0.069 0.113 

PR.C     1 0.035 -0.096 -0.002 

Slope      1 0.736 0.470 

STCI       1 0.384 

WI        1 
 

AH: Analytical hill shade, DCI: divergence-convergence index, PL.C: plan curvature, PR.C: profile curvature. 
 
 
 

Table 2. Geomorphic legend showing automated landform classification. 
 

Landscape Relief Lithology Landform Code 

Alluvial fan 

Low 

Coarse alluvial sediments over red marl with 
intercalations of well bedded sandstone. 

Upper alluvial fan  Af 111 

   

Middle-texture alluvial sediments over old gravel fan 
quaternary. 

Middle alluvial fan  Af 121 

    

Very low Fine alluvial sediments. Lower alluvial fan Af 211 
 

Hill land 

Low rolling hills 

Gray conglomerate with marl cement. Complex facet hillside Hi 111 
   

Light gray to light red alternation of conglomerate, 
sandstone with silt. 

Complex facet hillside Hi 121 

    

Moderate (steeply dissected) Gray conglomerate with marl cement. 

Steeply dissected hillside Hi 211 
  

Moderately steep slope hillside Hi 212 
 
 
 

Automated landform classification 
 

Selected terrain parameters (analytical hillshade, plan and profile 
curvature, slope and divergence-convergence index) and PCA1, 2, 3 
were treated as a single band images and using a K-mean 
unsupervised algorithm, the landforms were classified. This method 
finds statistically similar groups in multi spectral space during its 
analysis. The algorithm starts by randomly locating k clusters in 
spectral space. Each pixel in the input image group is then 
assigned to the nearest cluster centre and the cluster centre 
locations are moved to the average of their class values. This 
classification is then repeated until a stopping condition is reached. 
The stopping condition may either be a maximum number of 
iterations or a tolerance threshold which designates the smallest 
possible distance to move cluster centers before stopping the 
iterative process. In this approach, the determinative parameters 
were 10, 15 and 5 respectively, for the number of predictive class, 
maximum iteration and change tolerance. Post processing of this 
primary classification was done in ArcGIS software. Process was 
consisted of performance majority filtering and other cartographic 
rules. 
 
 

Manual landform classification 
 

Manual   landform  classification  was   done   using  Google   Earth 

images, Geological maps (scale: 1:100000) and field works. To 
delineate the landforms and description of each unit, we have used 
the categories presented by Zink (1988) which clearly relates 
landforms to soil units. Legend of the delineated landforms is also 
defined. The primary map was exported to ArcGIS using KLM 
extension and final map was edited.  

 
 
Evaluation 

 
Classification algorithms can be evaluated by different methods. 
The most common methods are cross tabulation and error matrix 
analysis. The outputs of these tables are Kappa index, Chi square, 
Crammers V, Overall accuracy and etc. evaluation process was 
used to compare the frequency of cells belonging to all landform 
units within manual and automated landform classifications and for 
the purpose of accuracy assessment.  

 
 
RESULTS 
 
An automated landform classification map was produced 

at a scale of 1:50000. The result was a map with seven 
classes (Figure 3). Table 2 shows hierarchical landform
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Land classification map  

 
 

Figure 3. Automated landform classification of study area. 

 
 
 

classification based on Zink method. The results 
indicated that diverged landforms mostly vary by variation 
of only two geomorphometric parameters (slope and hill 
shade). Although, some other parameters have more 
influence than others in different parts of the study area. 
For example, Af 121, Af 211 and Af 111 units were 
mostly separated by slope and partly hill shade factor in 
alluvial fan landscape. But, all of the used terrain 
parameters simultaneously affect the separation of 
landform units in hilly landscape with different intensities. 
Although, Analytical hill shade parameter has more 
influence in some landform units located in hilly 
landscape.  

In the manual method, eight soil-landscape units (three 
in the piedmont area and five in the hilly landscape) were 
identified using the Zink method (Figure 4 and Table 3). 
Cross tabulation was used for accuracy analysis and 
evaluation of manual and unsupervised classification 
(Table 4). Comparison of these methods indicates that: 1) 
Af 211 unit in manual method is divided into three 

different landform units (Af 111, Af 121 and Af 211) in the 
automated classification; 2) Hi 211 unit in unsupervised 
landform classification was not separated in the manual 
segmentation; 3) Hi 121 and Hi 212 units were delineated 
with relatively good accuracy in manual and automated 
methods, respectively; 4) Hi 211 and Hi 212 in the 
manual method were integrated to Hi 121 and Hi 111 in 
automated method, respectively; 5) Hi 111 unit in the 
manual method is divided into two units (Hi 111 and Hi 
121) in the automated classification mainly by differences 
in analytical hill shade parameter; 6) Af 111 unit in 
automated segmentation was divided to unit (Af 111 and 
Af 121) in manual segmentation. Although, Af 111 and Af 
121 are similar in terrain parameters, but they are 
different in evolution processes and it is better that they 
are separated. Important point to consider in comparing 
the two methods is manual and unsupervised 
classification can be used complementally for areas that 
are unavailable or study was limited point of cost and 
time.
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Table 3. Geomorphic legend showing manual landform classification. 
 

Landscape Relief Lithology Landform Code 

Alluvial fan 

Low 

Coarse alluvial sediments over red marl with 
intercalations of well bedded sandstone. 

Upper alluvial fan  Af 111 

   

Very coarse-texture alluvial sediments over 
young gravel fan quaternary. 

Young alluvial fan  Af 121 

    

Very low Middle and fine alluvial sediments. Lower alluvial fan Af 211 

 

Hill land 

Low rolling hills 

Gray conglomerate with marl cement. Complex facet hillside Hi 111 

   

Light gray to light red alternation of 
conglomerate, sandstone with silt. 

Complex facet hillside Hi 121 

    

Moderate (steeply dissected) Gray conglomerate with marl cement. 
Steeply dissected hillside Hi 211 

Steeply dissected hillside Hi 212 
 
 
 

Table 4. Cross-tabulation for manual and automated landform classification. 
 

Unsupervised classification  
Manual classification 

 Total 
Af 111 Af 211 Af 121 Hi 211 Hi 121 Hi 111 Hi 212 

Af 111  345 1353 1086 0 9 40 0  3563 

Af 211  0 13144 116 0 0 0 0  11260 

Af 121  0 3702 730 0 0 0 0  5702 

Hi 211  35 0 0 0 142 85 0  333 

Hi 121  0 0 0 71 908 290 14  147 

Hi 111  0 0 291 140 54 309 84  3962 

Hi 212  1 2071 0 0 794 4 0  852 

Total  381 20270 2224 211 1907 728 98  25819 
 

Kappa index: 0.507, overall accuracy: 0.596, Crammer's V: 0.7205. 

 
 
 

DISCUSSION 
 
It is logical to assume that increases of one 
geomorphometric parameter can cause a decrease or 
increase in other parameters; especially, compound 
terrain attributes that are extracted from primary terrain 
attributes. Some of these parameters correlate with each 
other and have positive or negative co-relationships. At 
the same time, some geomorphometric parameters have 
the same basic mathematical formulas which describe 
relationships between them. It is clear that, correlation 
between some geomorphometric parameters in one area 
can not be used for other areas (Debella-Gilo et al., 
2007). Thus, in each area, depending on the natural 
dominant process, one can find different relationships 
between geomorphometric parameters. 

The ASTER DEM data is a suitable source for 
derivation of geomorphometric parameters (Kamp et al., 
2003), automated landform classification and soil survey 
at a medium scale (1:50000) or order 3 to 4 and smaller 

scale soil surveys (Soil Survey Division Staff, 1993, 
Tables 2 and 1). However, in areas with less relief or flat 
topography, in addition to ASTER DEM, use of other data 
is suggested, such as remote sensing data and their 
indexes for increasing the accuracy of outputs. In this 
study, the accuracy of landform map decreases with 
reduction of relief. In order to obtain better results, field 
observations, consumption of more time and money is 
essential. The ASTER DEM data are available freely for 
many parts of the world including Iran. 

The Google Earth images have many advantages for 
landform classification as compared with traditional aerial 
photos: 1) its images are colored instead of black and 
white photos and as such, interpretation of landform data 
is easier; 2) Google earth images have more temporal 
resolution than aerial photos; 3) the images and its 
related data are available everywhere and every time; 4) 
it has capability link to ArcGIS software easily and 
produced layers that have coordinate system in Lat/Long 
and UTM format; 5) some of primary cartographic errors
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Manual landform classification 
 

 
 

Figure 4. Landform classification map using the manual method. 

 
 
 

can be corrected for these images; 6) no stereoscope is 
needed for a 3D-View; 7) it is more economical, low cost 
and saves time as compared with aerial photos. Hengl 
and Rossiter (2003) used aerial photo interpretation for 
supervised landform classification. They gave some 
limitations and ways to overcome them. 

The advantages of the automated landform 
classification (Dikau et al., 1991) as compared with the 
manual method are: 1) it can provide a more detail 
geomorphic map, soil survey and soil classification if the 
data and parameters used for the classification are 
accurate and proportional to topographic variations of the 
study area; 2) if suitable algorithm classification was 
selected, classification can result in more accurate 
output; 3) it can be used for quantitative studies of the 
relationship between geomorphometric parameters and 
surface processes; 4) it can easily be processed into 
different GIS softwares, and it is easily exportable, 
importable and interpretable. Unfortunately, the terrain 
attributes to be used as parameters for the supervised 
and unsupervised classification do not have the capability 
for standardization for everywhere. So, the validity of the 

classification is dependent on its ability in showing the 
changes in geomorphic (Debella-Gilo et al., 2007); 5) 
automated landform classification and selected terrain 
parameters can be easily tested to other areas that have 
similar topography and geomorphology (Brabyn, 1998).  

Unsupervised classification algorithms without field 
observations cannot always result in correct 
classifications. The best method is to use the manual and 
unsupervised classification together (Hybrid 
classification). Hybrid landform classification method and 
use of Google Earth data as a color composite image of 
geomorphometric parameters are very useful for soil 
survey and soil mapping, especially, for developing 
countries. Automated classification makes more detailed 
output than traditional semi detailed survey. Some of the 
Iranian soil maps are old and they need to be updated, so 
that use of such methods can be very useful and 
economical. 

For many years, delineation of physiographic units has 
been the basis for soil survey in Iran. In such 
delineations, less attention is being paid to geomorphic 
landforms and processes. Geomorphologic studies are  
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very important and it is essential that soil scientists are 
aware of geomorphic relations to soil formations and 
distributions (Alavipanah et al., 2009). Geomorphometric 
parameters can be used successfully for soil survey and 
results can be more accurate if they were used in 
association with geomorphologic studies.  
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