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In order to spray herbicides accurately on targets, this study focused on spectral classification of 
weeds and crops for potential to rapidly detect weeds in crop fields. A 350 ~ 2500 nm FieldSpec-FR 
spectroradiometer was used to measure spectral responses of the canopies of the seedling vegetables, 
cabbage ‘8398’ and cabbage ‘Zhonggan 11’, and weeds, Barnyard grass, green foxtail, goosegrass, 
crabgrass, and Chenopodium quinoa, at five- and seven-week growth stages (WGS). First, the 
characteristic wavelengths (CW) were determined using Principal Component Analysis (PCA). Then, the 
plants were classified using Bayesian discriminant analysis with the reflectance of the CWs. The results 
of spectral analysis indicated that the different growth stages of cabbages had little influence on the 
spectral identification of cabbages and weeds. The eight CWs determined were used as the input to the 
model for Bayesian discriminant analysis to classify two varieties of cabbages and five weeds with the 
correct classification rate of 84.3% for model testing. When the two varieties of cabbages were 
considered as the same category, the correct classification rate was improved to 100%. It was 
concluded that Bayesian discriminant analysis could be used to identify weeds from seedling cabbages 
using leaf hyperspectral reflectance. 
 
Key words: Weed identification, spectrum analysis, visible and near-infrared, Bayesian discriminant, seedling 
weed, seedling cabbage. 

 
 
INTRODUCTION 
 
According to the research report from the United  Nations  Food and Agriculture Organization (FAO) in August 2009,  
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weeds should be regarded as farmers' No. 1 natural 
enemy. It was reported that according to a leading 
environmental research organization, Land Care of New 
Zealand, weeds cause about $95 billion every year in the 
lost food production at global level, compared with $85 
billion for pathogens, $46 billion for insects, and $2.4 
billion for vertebrates (excluding humans). Of the $95 
billion, $70 billion are estimated to be lost in developing 
countries (FAO, 2009). In China, the crop yield losses 
annually caused by weeds sum up to about 10% of the 
gross grain output (Tang, 2010). Facing the severity of 
the crop losses caused by weeds, it is urgent to seek 
highly efficient methods for effective weed control. The 
chemical weeding method commonly adopted at present 
has provoked a lot of problems, such as excessive 
pesticide residues, growing number of pesticide-resistant 
weeds, destruction of ecological environment, and lower 
quality and safety of agricultural products (Thompson et 
al., 1991). Therefore, it is critical to have a method which 
could not only control the growth of weeds, but also 
decrease the use of herbicides, and hence prevent from 
excessive herbicide application. In order to minimize crop 
damage and environmental pollution, herbicides should 
be sprayed accurately on targets with appropriate dose. 

Rapid access to the information of spraying targets is a 
critical process in precision chemical application. Many 
approaches to weed detection and identification have 
been reported in literatures, such as photoelectric 
detection technique (Biller, 1998; Andújar et al.,, 2011), 
ultrasonic detection technique (Andújar et al., 2012), 
remote sensing detection technique (Thorp and Tian, 
2004), and image processing detection technique (Weis 
and Sökefeld, 2010; Christensen et al., 2009; Burgos-
Artizzu et al., 2009; Piron et al., 2011), X-ray weed 
detection technique (Haff and Slaughter, 2009), and 
spectral weed detection technique (Vrindts et al., 2002; 
Sui et al., 2008). The image processing technique can 
detect the target’s profile and determine the coverage 
and amount of smart spray, but mostly this technique is 
still used in the laboratory instead of being used in field 
because of its poor stability, large amount of data 
processing, relatively slow response, and the high costs. 
In comparison, spectral detection has been widely used 
in real-time detection system because of its fast 
response, availability for non-contact detection, strong 
anti-interference, high reliability, low cost, simple and 
small configuration, and low power consumption. Many 
studies have focused on spectral classification of weeds 
and crops for potential to rapidly detect weeds in crop 
fields. Spectral sensors has been designed and widely 
used in real-time detection system in crop production, 
because they offer fast response, availability for non-
contact detection, strong anti-interference, high reliability, 
low cost, simple and small configuration, and low power 
consumption (Wang et al., 2001; Rogalski, 2003). These 
sensors could be used to further study the spectral 
characteristics for  classification  of  weeds  and  crops  to  

 
 
 
 
realize fast and timely weed management in crop fields. 

Koger et al. (2003) analyzed the hyperspectral 
reflectance of soybean, Ipomoea lacunosa, and soil at 
the two- and four-leaf stages of weed growth using 
wavelet analysis. For comparison, the raw spectral bands 
and principal components were used as discriminating 
features. For the two-leaf to four-leaf weed growth stage, 
the two features resulted in classification accuracies of 83 
and 81%, respectively. Jurado-Exposito et al. (2003) 
distinguished sunflowers, wheat, and seven other 
seedling broadleaf weeds using near-infrared 
spectroscopy. It was found that the near infrared 
spectroscopy within 750 ~ 950 nm was able to identify 
these plants. Slaughter et al. (2004) distinguished 
Solanum weeds and tomato using the spectral 
reflectance in visible and near-infrared wavebands, 
narrow-band hyperspectral modeling, and discriminant 
analysis. It was found that the spectral absorbance data 
of weeds and tomatoes at the wavelength rang of 2120 to 
2320 nm offered the best classification accuracy (100%), 
and narrow-band hyperspectral models of the data in the 
visible range also achieved good classification results 
(95%), while the broad-band models based on color 
information only provided 75% correct classification rate. 

Thenkabail et al. (2004) studied how to select the 
optimum wavebands for classifying plants (shrubs and 
weeds) and crops (corn) in the range of 400 to 2500 nm 
waveband. It was found that 90% correct classification 
rate could be obtained by modeling using 13 to 22 
wavebands selected from the original 168 wavebands 
using PCA and stepwise discriminant analysis, which 
accuracy was increased by 9 to 43% compared with 
modeling using ETM (Landsat Enhanced Thematic 
Mapper), plus brandband data. Piron et al. (2008) 
classified seven different weeds in carrot fields under 
artificial lighting conditions using a visible and near-
infrared multispectral sensor, and found that overall 
correct classification rate was 72% when three optimal 
wavebands, 450, 550, and 700 nm were selected using 
the exhaust algorithm and used to establish the weed 
identification models. Mao et al. (2005) measured the 
spectral reflectance of wheat, shepherd's purse, and 
small quinoa in the wavelength range of 700 to 1100 nm 
using a Fourier transform infrared (FTIR) spectrometer, 
and extracted 7 characteristics wavelengths, 686, 708, 
722, 795, 929, 956, and 1122 nm using stepwise 
discriminant analysis and achieved 97% correct 
identification rate through establishing the model of 
identifying wheat and weeds. Vrindts et al. (2002) 
measured the canopy reflectance of maize, sugarbeet, 
and seven weed species at 400 to 2000 nm. The spectral 
characteristics were also analyzed. Six wavelengths 
(555, 675, 815, 1265, 1455, and 1665 nm) at 
characteristic points in the spectrum were selected to 
derive the RVI. The STEPDISC and DISCRIM 
procedures in SAS were applied in the discrimination of 
crops    (maize    and    sugarbeet)    from    weeds.    The 



 
 
 
 
classification result showed that crop and weeds could be 
recognized at an accuracy of higher than 97%. More than 
90% of sugar beet and weeds could be identified 
correctly using a line spectrograph (480 to 820 nm) in 
classifying the plants. With the application of the spectral 
technique, Sui et al. (2008) developed the Weed Seeker 
sensor module to detect the presence of weeds by 
measuring the reflectance of weeds and bare ground. 
The module serves as a useful tool for locating weeds. 

Karimi et al. (2006) used SVMs and NNs for weed and 
nitrogen deficiency detection in corn with non-imaging 
hyperspectral reflectance data as input. In an extensive 
approach, they uniquely identified and classified four 
weed management practices and three different nitrogen 
rates. The classification accuracy using SVMs was higher 
than with NN in this research project 69.2 versus 58.3%, 
respectively. Lopez-Granados et al. (2008) used the 
hyperspectral reflectance spectrum from 400 to 900 nm 
for the classification of late season grass weeds and 
wheat plants in a field study. Their approach using linear 
and nonparametric functional discriminant analysis and 
NNs has shown that, in general, a preliminary 
computation of most relevant PCs improves the 
classification accuracy. They concluded from their study 
that analysis in real time of high spectrally resolved 
images will be adequate to map grass weed patches in 
wheat. For practical implementation, Moshou et al. (2002) 
developed a weed species spectral detector based on 
neural networks with local linear mappings. A self-
organized map (SOM) neural network achieved fast 
convergence and good generalization. The proposed 
method classified crops and different species of weed 
with high accuracy. Chen et al. (2009) measured the 
spectral reflectance of leaves of rice, cotton, Barnyard 
grass and Cephalanoplos indoors in the range of 350 to 
2500 nm wavelength using a spectroradiometer and 
determined the characteristic wavelengths (CWs) using 
the stepwise discriminant method, and then classified 
these plants using the Discrim processing, a function of 
discriminant analysis in SAS statistical software (SAS 
Institute Inc., Carrey, North Carolina, the United States). 

This study found that monocotyledons, like rice and 
Barnyard grass, could be accurately classified using the 
five CWs, 375, 465, 585, 705, and 1035 nm, in which the 
correct identification rate reached 100%; dicotyledons, 
like cotton and Cephalanoplos, could also be accurately 
classified using the three CWs, 383, 415, and 435 nm, in 
which the correct identification rate also reached 100%. 
The spectral reflectance of cabbages and weeds were 
measured in the 350 to 2500 nm band and preprocessed 
the data with different levels to improve the operation 
efficiency. All kinds of plants were classified using the 
Soft Independent Modeling of Class Analogy (SIMCA). 
While the selected 23 feature wavelengths were set as 
the input variables, the classification rate of the modeling 
set and the predicting set were respectively 98.6 and 
100% (Zu et al., 2013a, b).  
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The objects of most of the previous studies were specific 
to crops like corn, wheat, rice, and cotton, but few to 
vegetables. The vegetables, especially dicotyledonous 
vegetables, are important economic crops in China, 
which are widely cultivated throughout the country with 
wide cultivated area and high inputs of labors. Therefore, 
weed identification in vegetable fields has considerable 
social and economic benefits and practical significance. 
Additionally, few of the previous studies were on whether 
the possible changes of spectral characteristics caused 
by the changing metabolism at the different growth 
stages of a crop would affect the consistency of spectral 
identification of crops and weeds during different growth 
stages. 

For optimal results with minimal investment, weeds 
should be handled at seedling stage in crop fields (Li et 
al., 2007). Seedling weeds are sensitive to herbicides 
because plants are small and the tissues are young. 
Therefore, the seedling stage is the time for complete 
weed control. In the further growth stage, weed plants 
become large and their tissues are strong. Consequently, 
with the thickening of the waxy coat, it will be difficult for 
herbicide agents to penetrate the weed leaves and weed 
herbicide tolerance will be increased accordingly. As the 
result, the herbicide will be hard to take effect. This study 
was conducted on seedling weeds in the field with 
seedling cabbages. 
In this study, two varieties of seedling cabbages, ‘No. 

8398’ and ‘Zhonggan No. 11’, and five breeds of weeds, 
Barnyard grass, green foxtail, goosegrass, crabgrass, 
and Chenopodium quinoa, which are commonly-seen. 
Annual gramineous plants in cabbage fields with strong 
adaptability, wide coverage, fast multiplying, and 
inestimable harm to crops, were selected as the 
representatives of plants. The spectral reflectance of the 
plant canopies were measured in the wavelength range 
of 350 to 2500 nm at two seedling growth stages of the 
35th (five-week growth stage (WGS)) and 50th days 
(seven WGS), respectively. The objectives of this study 
are (1) to determine CWs at which the spectral 
reflectances were sensitive to plant identification using 
the spectral data measured, respectively at five WGS and 
second WGS; (2) to establish the Bayesian discriminant 
model to classify two varieties of cabbages and five 
different weeds. 
 
 

MATERIALS AND METHODS 
 

Experimental  
 

Two varieties of cabbages used in the study were cabbage ‘No. 
8398’ and cabbage ‘Zhonggan No. 11’, whose seeds were provided 
by the Institute of Vegetables, the Chinese Academy of Agricultural 
Sciences (Beijing, China). Five varieties of weeds were Barnyard 
grass, green foxtail, goosegrass, crabgrass, C. quinoa, whose 
seeds were provided by the College of Agronomy and 
Biotechnology, China Agricultural University (Beijing, China). The 
two varieties of cabbages and five kinds of weeds were planted in 
pots  in   a   greenhouse   of   the   Chinese   National   Engineering 
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Research Center for Information Technology in Agriculture (Beijing, 
China) on 23 March, 2012. Each variety of plants was grown in 30 
pots; therefore, the total number of the plant samples was 210 for 
the seven varieties of plants. 
 
 
Data acquisition 
 
The instrument for measuring spectral data was the ASD full range 
FieldSpec Pro. spectroradiometer (ASD, Inc., Boulder CO., USA). 
The measuring range of the spectroradiometer is 350 to 2500 nm. 
The spectral resolution is 1.4 nm in the range of 350 to 1000 nm 
and 2 nm in the range of 1000 to 2500 nm. The field of view (FOV) 
of the measuring probe is 25°. 

The spectral data of the 210 pots of plant canopies were 
collected in the test field of National Engineering Research Center 
for Information Technology in Agricultural (Beijing, China) during 
10:30 am to 14:30 pm on 28 April and 13 May, 2012, respectively, 
corresponding to two growing stages of the plants, five WGS and 
seven WGS. 

The white reference board was measured for spectral calibration 
each 10 to 15 min depending on weather conditions. After each 
white reference measurement, the fiber-optic probe of the 
FieldSpec spectroradiometer was placed vertically above the plant 
canopy and measured the data. In order not to affect the reflectivity 
of the plants, the operator should dress dark. The 
spectroradiometer was set in the condition that an output datum 
was obtained from the average of ten measurements. The 
measured spectral data were converted to reflectance and then to 
ASCII text format using the function in the ASD ViewSpectro Pro. 
Software provided by ASD Inc. After being imported to Microsoft 
EXCEL spreadsheet, the text files were transformed to matrixes 
which were then transferred into the Unscrambler (CAMO software 
AS, Oslo, Norway) and SAS software for further data processing. 
For data collection on 28 April, 2012, each pot of plants was 
measured for three times so that the total number of the obtained 
spectral data was 90 for each variety of plants (30 pots for each 
plant) and 630 for all the 7 varieties of plants. For the measurement 
on 13 May, 2012, each pot was measured for five times so that the 
total number of the collected spectral data was 150 for each variety 
of plant and 1050 for all the 7 varieties of plants. 

In order to reduce the random errors which are always 
accompanied with the spectral signal in the process of data 
acquisition, the spectral data were averaged for each pot of plants, 
which resulted in 30 averaged spectral data for each plant 
respectively for the measurements on 28 April and 13 May. 
 
 
Principal component clustering analysis 
 
The clustering analysis of the spectral data of cabbages and weeds 
was conducted using the Principal Component Analysis (PCA) 
method after data preprocessing. For each of the plants, 20 sample 
data were randomly selected as the training sample set, the other 
10 data as the testing sample set. In the Unscrambler software 
system, the full cross validation methods in PCA and Partial Least 
Square (PLS) were separately used to extract the principal 
components to build the plant classification models. The analysis 
process was started by extracting 20 principal components from the 
spectral reflectance data. Then, the outliers were repeatedly 
excluded by considering the spatial aggregation conditions and 
spatial position of all the sample points in scoring graphs of the 
results based on the principle of maximization of distance between 
the classes and minimization of distance within a class. The 
appropriate principal components were determined according to the 
cumulative credibility of each Principal Component (PC) and the 
classification model was re-built with clustering all the plants (Li, 
2010).  

 
 
 
 
Determination of characteristic wavelengths 
 
In order to find out the CWs needed for identification of cabbages 
and weeds, the score of each PC, accumulative confidence level, 
and loading diagrams resulting from the former PCA and the 
relationship between PC and original wavebands expressed 
through loading graph should be analyzed. According to the loading 
graph of wavelength variable responding to the optimum PCs 
obtained from the former analysis, the wavelengths greatly (positive 
and negative) correlating with PCs were selected as the 
characteristic wavelengths sensitive to the identification of various 
of plants and with higher correlation for establishing the 
identification models. The loading coefficients of the selected 
wavelengths were used to reflect the importance of the 
wavelengths to the PCs. 

 
 
Bayesian classification model 

 
Bayes' theorem (Bayes 1764) 
 

Mathematically, Bayes' theorem gives the relationship between 
the probabilities of events A and B, P(A) and P(B), and 
the conditional probabilities of A given B and B given A, P(A|B) 
and P(B|A). The form of Bayesian inference is mostly expressed as 
follows, provided that P(B) ≠ 0. 
 
P(A|B) = [P(B|A)P(A)] / P(B) 
 
Probability measures a degree of belief. Bayes' theorem then links 
the degree of belief in a proposition before and after accounting for 
evidence. For example, suppose somebody proposes that a biased 
coin is twice as likely to land heads than tails. Degree of belief in 
this might initially be 50%. The coin is then flipped a number of 
times to collect evidence. Belief may rise to 70% if the evidence 
supports the proposition. 

For proposition A and evidence B, P(A), the prior, is the initial 
degree of belief in A. P(A|B), the posterior, is the degree of belief 
having accounted for B. The quotient P(B|A)/P(B) represents the 
support B provides for A. 

The event B is fixed in the discussion, and we wish to consider 
the impact of its having been observed on our belief in various 
possible events A. In such a situation, the denominator of the last 
expression, the probability of the given evidence B is fixed; what we 
want to vary is A. Bayes theorem then shows that the posterior 
probabilities are proportional to the numerator: 

 
P(A|B) ∝ P(A)﹒P(B|A) (proportionality over A for given B). 

 
Further, if events A1, A2, …, are mutually exclusive and exhaustive, 
that is, one of them is certain to occur but no two can occur 
together, and we know their probabilities up to proportionality, then 
we can determine the proportionality constant by using the fact that 
their probabilities must add up to one. For instance, for a given 
event A, the event A itself and its complement -A are exclusive and 
exhaustive. Denoting the constant of proportionality by c we have: 

 
P(A|B) = c﹒P(A)﹒P(B|A)  and P(-A|B) = c﹒P(-A)﹒P(B|-A)  

 
Adding these two formulas, we deduce that, 
 

 1

( ) ( | )+ (- ) ( |- )
c

P A P B A P A P B A


      
 
For that the extended form, often, for some partition {Aj} of 
the event space, the event space is given or conceptualized in  

http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Event_space
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Figure 1. Curves of average spectral reflectance of seven plants. (a) Curves of average 
spectral reflectance at five WGS. (b) Curves of average spectral reflectance at seven 
WGS. 

 
 
 
terms of P(Aj) and P(B|Aj). It is then useful to compute P(B) using 
the law of total probability: 
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Bayesian modeling 

 
Using the eight CWs determined from the data at five WGS as the 
input variables, the discrimination model was built based on the 
Bayesian criterion and used to discriminate the cabbages and the 
weeds. In the process, 7 different plants were separately labeled 
using categorical variables as Y-8398 (cabbage 8398), ZG 
(cabbage Zhonggan 11), BC (Barnyard grass), GW (Setaria viridis), 

MT (crabgrass), NJ (Eleusine indica), and XL (C. quinoa). For each 
plant, two-thirds  of  the  samples  were  randomly  selected  as  the 
training group (140 samples) so that all the samples for the 7 plants 
were divided into two groups for training and testing, respectively. 
Then, using the data of categorical variables and 8 CWs, the 
discrimination model was built. In order to verify the reliability and 
robustness of the model, the other one-third of the samples (70 
samples) were used as the testing group and the input of the model 
to classify the cabbage and weed samples. 
 
 

RESULTS AND DISCUSSION 
 
Data observation 
 
Further, the 30 averaged data were averaged for each 
variety of the plants. Figure 1 shows the averaged 
spectral reflectance curves for each of the plants. It can 
be seen that the curves are all the same as the typical 
healthy plant spectral reflectance curves. In the vicinity of  

http://en.wikipedia.org/wiki/Law_of_total_probability
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Figure 2. The clustering graphs of PCs obtained after preprocessing. (a) The clustering 
graph of the plants and weeds at five WGS. (b) The clustering graph of the plants and 
weeds at seven WGS.  

 
 
 
450 and 650 nm, the light of blue and red bands is 
absorbed by chlorophylls for photosynthesis, leading to 
two distinct absorption valleys. At 550 nm, the light of 
green light is partly absorbed by chlorophylls and partly 
reflected, forming a reflection peak. A steep slope at 700 
to 800 nm demonstrates a sharp increase of reflectivity to 
form a high reflection platform. In the range of 800 to 
1300 nm, the porous parenchyma tissue (spongy tissue) 
of plant leaves have always a very strong reflection to 
near-infrared light, creating a peak area of reflectance on 
spectral curves with the reflectance up to 40%. At about 
1450 and 1950 nm, an apparent absorption valley is 
formed due to the cell sap, cell membranes, and 
absorbed vapor of the plant leaves. 

Particularly, it is shown in Figure 3 that for the spectral 
reflectance curves at the first WGS, the spectral 
reflectivity of green foxtail in the range of 700 to 1800 nm 
is obviously higher than other plants, while the spectral 
reflectivity of crabgrass comes to the next. In the range of 
750 to 1100 nm, the reflectance of Barnyard grass is 
lower than other plants, while  the  spectral  reflectivity  of 

cabbages is modest and the spectral curves of two 
cabbages are almost superimpose. For the spectral 
curves at the seven WGS, the spectral reflectance curve 
of goosegrass is obviously distinct from other plants. It is 
seen that the curves of cabbages are relatively stable 
while the curves of weeds fluctuate dramatically, which 
could be a characteristic used to differentiate cabbages 
from weeds. In overall, there are some differences 
between the spectral curves of cabbages and weeds, but 
the spatial distributions of some samples overlap, which 
make it difficult to exactly distinguish the variety of each 
sample. In order to accurately classify cabbages and 
weeds, quantitative discriminant models should be 
established. 
 
 
Clustering based on PCA 
 
In the case of optimum preprocessing, the score plot of 
PC 1 and PC 2 of the training set is shown in Figure 2, in 
which the horizontal axis presents the score value  of  the  
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Figure 3. Loading graph corresponding to the PC1 in modeling the data at five WGS. 

 
 
 
first PC and the vertical axis is the score value of the 
second PC. It can be seen from Figure 2a that the data 
samples of cabbages mainly concentrate in the second 
and third quadrant, goosegrass samples mainly in the 
upper area of the second quadrant, crabgrass and green 
foxtail samples in upper area of the first quadrant, 
Barnyard grass and C. quinoa principally around the 
horizontal axis in the fourth quadrant. It can be found 
from Figure 2b that cabbage samples closely distributing 
in the first quadrant show a good degree of aggregation 
which indicates that the two varieties of cabbages can be 
regarded as the same category. As well in a good degree 
of aggregation, all the Barnyard grass samples closely 
gather in the fourth quadrant and all the green foxtail in 
third quadrant. Although crabgrass samples distribute in 
both the second and third quadrant, the aggregating 
degree is still high. The samples of C.quinoa and 
goosegrass loosely gather in the second quadrant. 
Therefore, it illustrates that PC1 and PC2 have better 
contribution to clustering cabbages and weeds. The 
synthetic method of PCA and clustering analysis can not 
only to a large extent reduce the data dimension but also 
greatly express the features of original data without losing 
the effective information. 
 
 
Determining CWs 
 
The loading diagrams corresponding to the optimum PCs 
obtained from spectral data processing at five and seven 
WGS are respectively shown in Figures  3  and 4.  In  the 

diagram, only the first PC is shown. In the loading 
diagrams, the horizontal coordinate represents the 
wavelength and the vertical coordinate is the load factor 
(that is, the correlation between wavelength and plant 
species) of each wavelength, wherein, the larger the 
absolute value of the corresponding load factor of a 
wavelength variable is, the stronger the correlation 
between the PC and the corresponding load factor is, and 
the more sensitive to the discrimination of the plant 
species. 

It could be found from the loading diagrams that 
obvious crests and troughs present at some wavelengths 
and the rates of change of corresponding load factors 
appear as local maximum/minimum. These wavelengths 
are likely to play a decisive role in the identification of 
cabbages and weeds (Piron et al., 2011). Whereby, the 
corresponding CWs selected from the loading diagrams 
were 552, 567, 602, 607, 667, 715, 725, 1345, 1402, 
1447, 1725, 1925, 1945, 1955, 2015, and 2072 for the 
five WGS plants and 425, 567, 667, 685, 745, 755, 1095, 
1135, 1155, 1235, 1315, 1345, 1385, 1402, 1435, 1535, 
1545, 1625, 1725, 1805, 1815, 1925, and 2030 for the 
seven WGS plants. The number of the CWs selected 
from the spectral data in the five and seven WGS was 
respectively 16 and 23. 

Although the dimension of the data was already greatly 
reduced relative to the original data, the number of the 
band data is still relatively large for a practical 
instrumental design and development for agricultural use. 
Therefore, the selected CWs needed to be further 
optimized. The optimization process was to start with  the  



558         Afr. J. Agric. Res. 
 
 
 

 

 

 

 

 

 

Wavelength (nm) 

 

 
 

Figure 4. The corresponding loading diagram of PC1 in modeling the data at seven WGS. 

 
 
 

first PC by sorting of wavelengths in terms of the absolute 
value of the corresponding load factors. Then, the 
wavelengths were further selected at which the absolute 
value of load was large and obvious crests and troughs 
were present in the loading diagrams. As the result, the 
selected CWs were 567, 667, 715, 1345, 1402, 1725, 
1925, and 2015 nm for five WGS and 567, 667, 745, 
1345, 1402, 1545, 1725, and 1925 nm at seven WGS 
(Table 1). In order to evaluate the effect of the selected 
CWs, the identification models were built using these 
CWs. 

Among the each 8-CW set further determined 
respectively at two growth stages, just two of them were 
different as highlighted in bold in Table 1, which indicated 
that the change of the growth stage of cabbages and 
weeds had limited influence on the spectral features. 
 
 
Bayesian classification 
 
Based on the method mentioned in earlier, the 
discriminant functions of the classification models were 
obtained as follows in Equation 1, in which, the input 
variables (x1, x2, …, x8) are the eight CWs extracted 
from the data at the five WGS through PCA method. 
 
BC = –49.89 + 75.11x1 + 976.62x2 – 247.88x3 + 8.52x4 + 
184.98x5 + 360.82x6 + 115.39x7 – 464.08x8 
GW = –68.91 + 1116x1 + 745.44x2 – 1112x3 + 677.47x4 – 
436.09x5 + 222.38x6 + 44.97x7 – 216.67x8 
MT = –45.98 + 213.48x1 + 668.17x2 – 309.73x3 + 
300.99x4 + 149.24x5 – 24.16x6 + 114.15x7 – 285.32x8 
NJ = –41.12 + 187.37x1 + 725.07x2 – 422.14x3 + 
663.92x4– 98.88x5 – 338.86x6 + 127.71x7 – 76.97x8     (1) 
XL = –93.59 – 3026x1 + 1839x2 + 1459x3 – 329.18x4 + 
78.99x5 + 600.50x6 – 3.27x7 – 331.96x8 
Y-8398 = –83.34 – 1803x1 + 1380x2 + 1344x3 + 39.46x4 – 

148.77x5 – 358.52x6 + 87.37x7 + 218.22x8 
ZG = –88.29 – 1874x1 + 1398x2 + 1432x3 – 118.03x4 – 
87.21x5 – 211.36x6 + 54.09x7 + 172.79x8 
 
The frequency numbers of each training sample and the 
misclassified rates of the plants for 7 different plants 
discriminated into various categories are exhibited in 
Table 2. 
In training data classification, five Cabbage ‘8398’ 

samples were misclassified as Cabbage ‘Zhonggan 
No.11’ and four ‘Zhonggan No.11’ as ‘ 8398’, which was 
because they are all cabbages with the identical internal 
structure and the similar pigment and appearance. 
Therefore, it is apparent that different varieties of 
cabbages can be considered in the same category. In 
addition, one Barnyard grass was misclassified as 
crabgrass, one crabgrass was misclassified as 
goosegrass, and two crabgrasses were misclassified as 
crabgrass, which is perhaps because they are all 
monocotyledonous weeds with similar internal structure 
and composition. Total of 13 samples in the training set 
were falsely classified and the misclassified rate is 
0.0929, which is translated to 90.7% of the overall correct 
classification rate. 

The classification results of the testing set showed that 
three Cabbage ‘8398’ were misclassified as Cabbage 
‘Zhonggan No.11’ and six Cabbage ‘Zhonggan No.11’ 
were misclassified as ‘8398’. Moreover, one crabgrass 
was misclassified as goosegrass and one crabgrass was 
misclassified as Barnyard grass. Total of 11 samples 
were misclassified, therefore the misclassified rate is 
0.1571. Then, the correct classification rate is 84.3%. 

In order to verify the similarity of the spectral 
characteristics of different varieties of cabbages, cabbage 
‘8398’ and ‘Zhonggan No.11’ were combined into one 
category. The 8 CWs which had been used earlier were 
still used as  the  input  variables.  All  varieties  of  plants 
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Table 1. The CWs selected from the loading diagrams of PC at the first and second selection. 
 

Selection Testing stage Characteristic wavelengths (CWs) / (nm) 

First selection 
Five WGS 552, 567, 602, 607, 667, 715, 725, 1345, 1402, 1447, 1725, 1925, 1945, 1955, 2015, and 2072 
Seven WGS 425, 567, 667, 685, 745, 755, 1095, 1135, 1155, 1235, 1315, 1345, 1385, 1402, 1435, 1535, 1545, 1625, 1725, 1805, 1815, 1925, and 2030 

   

Second selection 
Five WGS 567, 667, 715, 1345, 1402, 1725, 1925, 2015 
Seven WGS 567, 667, 745, 1345, 1402, 1545, 1725, 1925 

 
 
 

Table 2. Frequency numbers of samples classified into seven categories and rates of misclassification in Bayesian analysis. 
 

Sample 

Categories 

Barnyard 
grass 

Green foxtail Crabgrass Goosegrass 
Chenopodium 

quinoa 
Cabbage 

‘8398’ 
Cabbage 

‘zhonggan 11’ 
Overall 

samples 

Training samples 

Barnyard grass 19 0 1 0 0 0 0 - 

Green foxtial 0 20 0 0 0 0 0 - 

Crabgrass 0 0 19 1 0 0 0 - 

Goosegrass 0 0 2 18 0 0 0 - 

Chenopodium quinoa 0 0 0 0 20 0 0 - 

Cabbage ‘8398’ 0 0 0 0 0 15 5 - 

Cabbage ‘zhonggan 11’ 0 0 0 0 0 4 16 - 

Overall samples 19 20 22 19 20 19 21 - 

          

Testing samples 

Barnyard grass 10 0 0 0 0 0 0 - 

Green foxtial 0 10 0 0 0 0 0 - 

Crabgrass 1 0 8 1 0 0 0 - 

Goosegrass 0 0 0 10 0 0 0 - 

Chenopodium quinoa 0 0 0 0 10 0 0 - 

Cabbage ‘8398’ 0 0 0 0 0 7 3 - 

Cabbage ‘zhonggan 11’ 0 0 0 0 0 6 4 - 

Overall samples 11 10 8 11 10 13 7 - 

          

Rates of 
misclassification 

Prior probability 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 1.0000 

Rates of misclassification of the training sample set 0.0500 0.0000 0.0500 0.1000 0.0000 0.2500 0.2000 0.0929 

Rates of misclassification of the testing sample set 0.0000 0.0000 0.2000 0.0000 0.0000 0.3000 0.6000 0.1571 



560         Afr. J. Agric. Res. 
 
 
 

Table 3. Frequency numbers of samples classified into six categories and rates of misclassification in Bayesian analysis. 
 

Sample 

Categories 

Barnyard 
grass 

Green foxtail Crabgrass Goosegrass 
Chenopodium 

quinoa 
Cabbage 

Overall 
samples 

Training samples 

Barnyard grass 20 0 0 0 0 0  

Green foxtial 0 18 1 1 0 0  

Crabgrass 1 0 16 3 0 0  

Goosegrass 1 0 0 19 0 0  

Chenopodium quinoa 0 0 0 0 20 0  

Cabbage 0 0 0 0 0 40  

Overall samples 22 18 17 23 20 40  
         

Testing samples 

Barnyard grass 10 0 0 0 0 0  

Green foxtial 0 10 0 0 0 0  

Crabgrass 0 0 10 0 0 0  

Goosegrass 0 0 0 10 0 0  

Chenopodium quinoa 0 0 0 0 10 0  

Cabbage 0 0 0 0 0 20  

Overall samples 10 10 10 10 10 20  
         

Rates of  misc lass i f i cat ion  

prior probability 0.1429 0.1429 0.1429 0.1429 0.1429 0.2857 1.0000 

Rates of misclassification of the training sample set 0.0000 0.1000 0.2000 0.0500 0.0000 0.0000 0.0500 

Rates of misclassification of the testing sample set 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 
 
 

were labeled by categorical variables as GL 
(cabbage), BC (Barnyard grass), GW (S. viridis), 
MT (crabgrass), NJ (E. indica) and XL (C. quinoa). 
By repeating the previous process, the 
discriminant functions were obtained and shown 
as in Equation 2 and the classification results are 
shown in Table 3. 
 
BC = –50.96 + 3412x1 – 3703x2 – 1259x3 + 1986x4 

+ 301.55x5 – 400.99x6 + 341.52x7 – 79.76x8 
GW = –74.97 + 626.77x1 – 2181x2 – 1144x3 + 
1988x4 + 246x5 – 27.37x6 + 89.15x7 – 30.93x8 
MT = –53.05 + 2481x1 – 3611x2 – 906.51x3 + 
1878x4+356.56x5–300.68x6+176.24x7–27x8           (2)               
NJ = –42.19 + 3054x1 – 3533x2 – 1284x3 + 1688x4 

+ 280.05x5 – 146.62x6 + 75.17x7 – 1.76x8 
XL = –72.26 – 5909x1 + 7404x2 – 1905x3 + 
585.01x4 + 241.69x5 – 821.22x6 + 1190x7 – 
356.42x8 
GL = –73.44 + 4979x1 – 5095x2 – 744.15x3 + 
2056x4 + 59.29x5 + 981.29x6 – 1335x7 + 374.43x8 
 
From the results of the training set, for green 
foxtails, one was misclassified as crabgrass and 
one other as goosegrass; one crabgrass was 
misclassified as Barnyard grass and three were 
misclassified as goosegrass; one goosegrass was 
misclassified as Barnyard grass. Overall, the 
misclassified rate is 0.05, that is, the correct 
classification rate was 95%. 

From the results of the testing set, all the 
samples were correctly classified therefore its 
correct classification rate was 100%. Compared 
with the previous correct classification rate from 
which the two varieties of cabbages were 
considered as two separate categories, the 
current correct classification rate had been greatly 
raised. 
 
 
Conclusion 
 
Using the ASD 350 to 2500 nm FieldSpec-FR 
spectroradiometer, the canopies of the seedling 
plants,   cabbage    ‘8398,    cabbage  ‘zhonggan’,  



 
 
 
 
Barnyard grass, green foxtail, goosegrass, crabgrass, 
and small quinoa, at five- and seven-week growth stages 
were measured. The results were concluded as follows: 
 
(1) In terms of the load factors and the changing rate of 
the PCs, eight CWs which were sensitive to plant 
identification, were determined, respectively for the first 
growth stage of cabbages (five WGS) and the second 
growth stage (seven WGS). Among the 8 CWs for each 
growth stage, only two of them were different, which 
indicates that different growth stages of the cabbages 
have limited impact on the plant spectral characteristics 
for identification of cabbages and weeds. 
(2) The corresponding spectral data of the 8 CWs 
determined from the data at the five WGS were used as 
the input variables of the Bayesian discriminant model to 
classify two varieties of cabbages and five different 
weeds. The correct classification rates for the training 
and testing sets were 90.7 and 84.3%, respectively. 
When the two varieties of cabbages were combined into 
the same category, the correct classification rates of the 
training and testing sets were improved to 95 and 100%, 
respectively, which indicates that different varieties of 
cabbages have similar spectral features to limit weed 
classification. Therefore, combining different varieties of 
cabbages as the same category could be effective to 
greatly improve the correct classification rates of weeds 
compared with the condition in which two varieties of 
cabbages were treated as different categories.  
(3) The study results showed that Bayesian discriminant 
analysis could be used to identify weeds from seedling 
cabbages using leaf hyperspectral reflectance. 
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