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The GxE interaction only became widely discussed from evolutionary studies and evaluations of the 
causes of behavioral changes of species cultivated in environments. In the last 60 years, several 
methodologies for the study of adaptability and stability of genotypes in multiple environments trials 
were developed in order to assist the breeder's choice regarding which genotypes are more stable and 
which are the most suitable for the crops in the most diverse environments. The methods that use 
linear regression analysis were the first to be used in a general way by breeders, followed by 
multivariate analysis methods and mixed models. The need to identify the genetic and environmental 
causes that are behind the GxE interaction led to the development of new models that include the use 
of covariates and which can also include both multivariate methods and mixed modeling. However, 
further studies are needed to identify the causes of GxE interaction as well as for the more accurate 
measurement of its effects on phenotypic expression of varieties in competition trials carried out in 
genetic breeding programs. 
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INTRODUCTION 
 
For genetic breeding programs, there is the inherent 
difficulty in identifying varieties with superior performance 
in various environments because, even when isolating 
from the space factor, that is, when such genotypes are 
planted in similar sites (usually resulting from a subclass 
of places obtained via stratification), they have 
accentuated interaction with different crops both within 
the  same  year  and  with  different  years (Eberhart  and 

Russell, 1966). 
The ability that certain genotypes have to grow well in a 

wide range of environmental conditions is, therefore, of 
major importance for Agronomy, especially in places 
where such conditions are extremely variable and, until 
mid-1950’s, the effects of the interaction genotypes x 
environments were estimated only via general mean, 
according to the mean performance of varieties in various
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locations and years (Finlay and Wilkinson, 1963). 

Sprague and Federer (1951) were pioneers by showing 
how the variance components can be used to separate 
the effects of genotypes, environments, and the 
interaction between them, equaling the mean square 
obtained by analysis of variance (ANOVA) to their 
respective mathematical expectations. Then, Plaisted 
and Peterson (1959) proposed a new methodology for 
evaluating the influence of this interaction, which consists 
of applying a combined analysis of variance, that is, an 
analysis considering all varieties at all locations in a given 
year, also known as "two-factor" analysis. 

The variation observed between varieties is dynamic in 
some cases (Finlay and Wilkinson, 1963), and the 
breeders find themselves faced with the choice between 
selecting varieties adapted to a particular range of 
environments (or specific sites), or obtaining varieties 
with broad adaptability and which, therefore, have a good 
performance in a range of larger environments. Varieties 
having site adaptability can be very useful, especially 
when it comes to environments with unusual conditions, 
of difficult cultivation, or even extreme conditions. 

Several authors, such as Salmon (1951), Horner and 
Frey (1957), and Sandison and Bartlett (1958), discussed 
the theme using techniques that consider the interaction 
genotypes x sites, or genotypes x years (or crop) as an 
adaptability measure. Such techniques are of low 
precision when it comes to many environments or 
genotypes to be evaluated.  

Meanwhile, and in a non-integrated way, experiments 
evaluating the nature of phenotypic stability gave 
experimental support for the understanding of the 
interaction genotypes x environments (Lewis, 1954; 
Dobzhansky and Levene, 1955; Williams, 1960). Gripping 
and Langridge (1963), for instance, conducted a study on 
the influence of heterosis on phenotypic plasticity in 
Arabidopsis thaliana and concluded that the hybrids of 
this species showed greater stability than homozygous 
individuals. 

From the 1960’s, several methodologies for the 
evaluation of adaptability and stability of genotypes in 
multi-environments trials have been developed, most of 
them still used nowadays in breeding programs for plant 
species cultivated worldwide. Among these, the most 
widely used have been based on simple linear regression 
(Yates and Cochran, 1938; Finlay and Wilkinson, 1963; 
Eberhart and Russell, 1966), multivariate analysis 
(Mandel, 1971; Kempton, 1984; Gauch, 1988; Zobel et 
al., 1988; Crossa, 1990; Yan et al., 2000), and mixed 
models (Piepho, 1997; Resende and Thompson, 2004). 

Given this, the study proposes to discuss the technical 
and practical aspects of the main methodologies 
available in literature and used to evaluate the 
adaptability and stability of genotypes, as well as to trace 
an overview on methods that have been proposed more 
recently and the challenges for the evaluation of 
genotypes in trials of multiple environments by genetic 
breeding programs at the present time. 
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METHODOLOGIES BASED ON ANOVA 
COMPONENTS 
 
In addition to the method of Plaisted and Peterson 
(1959), until the beginning of the 1960s, some 
methodologies to evaluate the phenotypic stability of 
genotypes were based only on ANOVA components, 
among which outstands the Wricke methodology (1962), 
popularly known as “Ecovalence”. Such parameter is 
estimated by the decomposition of the sum of squares of 
the GxE interaction (quite similar to the model of Plaisted 
and Peterson, which in turn proposes the decomposition 
of variance of the GxE interaction) in parts related to 
genotypes in an isolated manner, which is given by the 
expression: 
 

 
 
In which: Yij is the mean of genotype i in the environment 
j;  and  correspond to the mean of genotype i and to 

the mean of environment j, respectively; and  is the 

general mean. 
The parameter  measures, as a stability factor, the 

contribution of each genotype for the GxE interaction 
component, in which the genotypes that contribute less to 
the interaction are considered the most stable. 
 
 
METHODOLOGIES BASED ON REGRESSION 
METHODS 
 
Finlay and Wilkinson (1963), based on Yates and 
Cochran (1938), proposed a methodology using linear 
regression models to compare the performance of a set 
of varieties evaluated in multiple sites and years in which, 
for each variety, a regression of their mean was obtained 
regarding the overall mean of all varieties in each site per 
year. In addition, each environment was classified as 
favorable or unfavorable according to the mean of all 
varieties in that environment. 

These authors have modeled environmental factors, 
simply in terms of the productivity response of genotypes. 
Thus, the varieties that have regression coefficients equal 
or close to 1(one) are considered varieties of mean 
stability. Among these, those that are associated with a 
high productivity have broad adaptation, and those 
associated with low productivity are weakly adapted to all 
environments. Varieties with coefficient significantly 
greater than 1.0 are considered especially adapted to 
favorable environments, but have low stability, and those 
which have coefficient lesser than 1, or tending to 0, are 
considered more stable and with adaptability to 
unfavorable environments. Therefore, the optimal variety 
would be the one with a good performance in all 
environments and with high stability (that is, regression 
coefficient close to 0). 
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Biologically, the interpretation of this factor is that such 
varieties are so stable that they are unable to respond to 
any improvement in environmental conditions. According 
to Eberhart and Russell (1966), the use of the regression 
coefficient and the deviations from the straight line as 
parameters of stability aimed at helping to solve this 
problem. Being i the environmental index for the 
regression of each variety, in each environment j, defined 
by: 
 
Ij = [(∑

n
i=1Yij) / v] - [(∑j=1∑

n
i=1Yij) / vn] 

 
Where Yij is the mean of the i-th variety within the j-

th
 

environment, v is the number of varieties, and n the 
number of environments. 

Thus, the estimation of the two mentioned parameters 
is usually defined by the following model: 
 
Yij = μi + βiIj + δij, 
 
where the first parameter presented, the regression 
coefficient (βi), is the same proposed by Finlay and 
Wilkinson (1963), defined as: bi = ∑ jYijIj / ∑ jIj

2
, and the 

second parameter (δij), is estimated via the sum of 
squares of regression deviations, as follows: s

2
di=[∑

n
j δ

2
ij / 

(n - 2)] – [s
2
e / r], in which s

2
e/r is the estimate of the error 

set. This procedure thus decomposes the sum of squares 
of the GxE interaction in two parts: the variation due to 
the response of each variety regarding the environmental 
index, and the regression deviations regarding such 
index. The optimal genotype then becomes the one that 
features high productivity, associated with a regression 
coefficient as close as possible to 1, and regression 
deviations close to 0. 

Some authors claim that the approaches that only 
comprise regression techniques are useful only as 
preliminary evaluations, for they present, most of the 
time, large linearity deviations, making the selection of 
genotypes biased and applied exclusively to the set of 
the evaluated varieties, being seen as a very distant 
simplification of the reality presented in genetic breeding 
experiments (Witcombe and Whittington, 1971). 
Schlichting (1986) States that there are two important 
issues in methodologies that are used in the regression 
analysis: (1) The means and the coefficients assigned to 
genotypes tend to be positively correlated, that is, stable 
genotypes tend to have lower expression of the character 
in question, and (2) the assumption of linearity is not 
usually met. 

 
 
NONPARAMETRIC METHODOLOGIES 

 
When data do not meet the assumptions of regression 
analyses, an alternative is to use nonparametric 
analyses. In genetic breeding, more precisely in the 
context of the  evaluation  of  genotypes  in  MET’s,  there 

 
 
 
 
are some proposals for adaptability and stability 
evaluation of genotypes based on nonparametric 
statistics. Studies, such as those of Hühn (1979), Nassar 
and Hühn (1987), Kang (1988), Lin and Binns (1988), 
Fox et al. (1990), and Thennarasu (1995), are among the 
most cited regarding this aspect.  

Nassar and Hühn (1987) developed methodologies that 
have as a fundamental characteristic the interpretation of 
several measures based on the ranking of genotypes, 
although they are independent of each other. The most 
widely used, according to literature, are: S

(1)
 (mean of the 

absolute rank differences of a genotype over the n 
environments), S

(2)
 (variance among the ranks over the k 

environments), S
(3)

 (sum of the absolute deviations), and 
S

(6)
 (relative sum of squares of rank for each genotype). 

Such measures can be mathematically described as 
follows: 
 

  
 

 
 

 
 

 
 

In which: rij is the rank of ith genotype in the jth 
environment (for q environments), and  is the mean rank 

across all environments for the ith genotype. 
Kang (1988) and Fox et al. (1990) proposed other 

nonparametric methods, which, in turn, calculate only one 
statistic and classify the most stable genotypes. Kang 
nonparametric stability (Rank-sum) uses both “trait single 
value” and stability variance (Shukla, 1972), and the 
genotype with the lowest ranksum is commonly the most 
favorable one (both the highest yielding genotype and the 
genotype with the lowest stability variance are ranked 1). 
Fox et al. is based, in many cases, in the “TOP third” 
statistical ranking, where a stratified ranking of the 
genotypes at each environment separately is done. The 
proportion of sites at which the genotype occurred in the 
top third are expressed in TOP ranking. 

Thennarasu (1995) proposed four statistics (NP
(1)

, 
NP

(2)
, NP

(3)
, and NP

(4)
) for stability measures. These 

measures are based on ranks of adjusted means of the 
genotypes in each environment, and stable genotypes as 
those whose position in relation to the others remained 
unaltered in the set of environments. Thennarasu 
measures are defined as: 
 

 



 
 
 
 

 
 

 
 

 
 
In which: rij is the rank of adjusted values (xij* = xij – xi.), 

and M'di are the mean and median ranks for adjusted 

values, and and Mdi are the same parameters computed 

from the phenotypic unadjusted values. 
The methodology proposed by Lin and Binn (1988) 

somewhat differs from the cited ones, since it is not 
explicitly based on values obtained from the ranking of 
genotypes, considering that this methodology is based on 
absolute values obtained for the rated character and not 
on the numbering of the ranking of genotypes. Lin and 
Binns proposed obtaining the stability statistics Pi, which 
is given by the expression: 
 

Pi X M nij j
j

n

= -
=

å ( ) /2

1

2

 
 
In which: Pi = superiority index of i-th cultivar; Xij = 
productivity of i-th cultivar planted in the j-th site; Mj = 
maximum response obtained among all the cultivars in 
the j-th site; n = number of sites. This expression can be 
developed into: 
 

Pi n X M X X M M ni ij i j
j

n

= - + - - +
é

ë

ê
ê

ù

û

ú
ú=
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In which: Xi is the mean of the character obtained in n 

environments; and M  the mean of the maximum 
responses of genotypes in all environments. 

Such methodologies, despite being considered as 
alternatives, especially for their lack of robustness, may 
be considered preferable when applications of regression 
methods are not possible, or when there is a need for 
analyses of easier implementation and of most objective 
interpretation. This fact is clearly observed, for instance, 
in the methodologies of Kang (1988), Lin and Binns 
(1988), and Fox et al. (1990), which feature a single 
value as a stability measure. 
 
 
METHODOLOGIES BASED ON MULTIVARIATE 
METHODS 
 
With  the  advent  of  more   sophisticated   computational 
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resources and computers with greater processing 
capacity, other methodologies, such as those based on 
multivariate analysis, became more accessible and are 
preferably used to the extent that most statistical 
packages were made available. One of the bases for 
conducting adaptability and stability analyses via 
multivariate models is the principal component analysis 
(PCA), which has as its essence the application of the 
SVD (Singular Value Decomposition) method, which, in 
turn, performs the linear decomposition of variables 
contained in a data array in an iterative manner, in order 
to summarize the information contained in a smaller 
number of explanatory vectors. 

Among the most used methodologies in adaptability 
genetic studies, the following models outstands: AMMI 
(Additive Main Effect and Multiplicative Interaction) and 
GGE Biplot (Genotype plus Genotype by Environment) 
(Kempton, 1984; Zobel et al., 1988; Crossa, 1990; 
Gauch, 1992; Yan et al., 2000). In the AMMI models, 
developed by Mandel (1971) and popularized by Zobel et 
al. (1988) and Gauch (1992), the magnitude of the GxE 
interaction is estimated according to the response of 
each variable (here considered as environments) in a 
rather original approach, by the combination in a single 
model between ANOVA and the principal component 
analysis (PCA). The idea is to consider the effect of the 
GxE interaction as multiplicative component (more 
realistic in biological terms), and other effects (genotypes 
and environments) as purely additive effect components 
(Duarte and Vencovsky, 1999). Thus, the AMMI statistical 
model can be expressed as: 
 
Yij = μ + gi + aj + ∑

n
k=1 λkγikαjk + eij  

 

Where: Yij is the mean response of the genotype i in the 
environment j; μ is the general mean of the trials; gi is the 
fixed effect of genotype i; aj is the fixed effect of the 
environment j; λk is the k-th singular value (scalar) of the 
original interaction array; γik is the element corresponding 
to the i-th genotype in the k-th singular vector of the 
column of the interaction array; αjk is the element 
corresponding to the j-th environment in the k-th singular 
vector in the line of the array; and eij is the residual effect. 

The AMMI methodology uses SVD multivariate 
technique to reduce the information contained in a data 
array n x m (genotypes and environments, respectively) 
in vectors that accumulate, in a systematic manner (in 
order of importance), the greater part of variation 
contained in the data and, consequently, in GxE 
interaction. Since its disclosure, this methodology has 
been widely used for studies on adaptability in several 
important cultivated species such as wheat (Kempton, 
1984; Crossa et al., 1999; Paderewski et al., 2011), Corn 
(Hirotsu, 1983; Ndhlela et al., 2014), soybeans (Gauch, 
1988; Zobel et al., 1988; Yokomizo et al., 2013), sugar 
cane (Silveira et al., 2013), and rice (Samonte et al., 
2005). 

Another method based on the same  principle  that  has 
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been increasingly used in recent years is the GGE Biplot, 
proposed by Yan et al. (2000), which, in general terms, is 
similar to the AMMI model, with the key difference that, in 
the multiplicative component for the decomposition via 
SVD, only the effect on the environment is excluded, 
consequently considering the effects of genotypes and of 
the interaction together. Therefore, models that consider 
the effect of the interaction as multiplicative, besides 
capitalizing the GxE interaction more efficiently (Zobel et 
al., 1988), have advantages, such as quantification of 
each genotype and environment to the sum of squares of 
the interaction, and provide an easy interpretation of 
results by Biplot graphs (Gabriel, 1971; Kempton, 1984). 

Both the AMMI methodology and GGE Biplot have the 
additional advantages of generating information on the 
genotypes with broad adaptability (combination of 
phenotypic mean and stability information on the same 
graph), and aiding in the delineation of agronomic areas 
via identification of mega-environments (defined as the 
group of environments with similar GxE interaction 
standard, and consequently with little change in the 
ranking of the genotypes evaluated), which may indicate 
the most representative environments of each site and 
genotypes with specific adaptation to each region. 

 
 
METHODOLOGIES BASED ON MIXED MODELS 
 
The usual hypothesis test of the variance analysis 
assumes independence of the main effects of the model; 
when such assumption is met, the effects can be tested 
using the mean square of the residue. Thus, within the 
context of the trials in multiple environments, any 
differences found between the effects of genotypes 
should, theoretically, be the same for any environment 
tested. However, if there is an interaction between the 
components of the model (in the specific case, between 
the effects of genotypes and environments), the 
hypothesis test is reformulated, leading then to decision 
making regarding the nature of such effects, that is, the a 
priori definition about which effects must be considered 
as fixed and which as random. 

According to Freeman (1973), if the same set of 
genotypes is tested in several environments, the 
hypothesis test for the significance of the effects of 
genotypes must be performed in relation to the mean 
square of the interaction rather than the residue, as 
previously mentioned. When, for instance, such 
environments are considered as a random sample of all 
possible environments, it is assumed the use of a mixed 
model, or even of a completely random one, which 
means that, for instance, deviations from the normal 
range should be fully taken into consideration in order to 
assume the validity of the inferences made from the 
model. 

By assuming the effects of genotypes as random, the 
BLUP’s   (Best   Linear   Unbiased   Predictors)   can    be 

 
 
 
 
obtained, which is not possible by the methods of 
adaptability and stability aforementioned. The BLUP's of 
the effects of genotypes and of GxE interaction eliminate 
their noises through the deliberation of such effects by a 
regressor factor, which is usually referred to as 
"repeatability" (which, in practical terms, is usually the 
character’s heritability), leading, therefore, to the 
Shrinkage estimates of such effects and to the prediction 
of genetic values (Searle et al., 1992; Piepho, 1997; 
Resende, 2007). 

Overall, regarding studies on plant genetics, the studies 
using mixed models were very scarce until the beginning 
of the last decade; however, their use in the evaluation of 
the most diverse cultures is increasing, in view of the 
advantages that this approach offers regarding difficulties 
(loss of experimental plots, heterogeneity of 
environmental variances, etc.) routinely found in 
agronomic experiments, especially in studies requiring 
many trials, such as the GxE interaction (Bastos et al., 
2007; Carbonel et al., 2007; Mathews et al., 2007; 
Verardi et al., 2009; Borges et al., 2010; Mendes et al., 
2012; Silva et al., 2012; Farias Neto et al., 2013; Gouvêa 
et al., 2013; Rodrigues et al., 2013; Gomez et al., 2014; 
Torricelli et al., 2014). 

The basic model for the application of the methodology 
of mixed models was initially presented by Henderson 
(1973), and Resende (2007) defines it in a matricial way 
for the analysis of trials in the multi-environments, such 
as: Y = Xb + Zg + Tga + e. Where, according to this 
model, the relationship of the arrays in terms of means 
and variances is given by: 
 

 
 
Where: y is the phenotypic data vector, b is the vector of 
effects of the combination repetition-site (previously 
determined as fixed), g is the vector of genotypic effects 
(random), ga is the vector of the dual interaction GxE 
(consequently random), and e is the vector of residues 
(naturally random). X, Z, and T are the incidence arrays 
of these effects, respectively. Thus, the prediction of 
genetic values via BLUP regarding a particular character, 
considering the effects of genotypes and GxE interaction 
as random, can be described by: 
 
wij = y. j + (σgl

2
 + Nσg

2
 / σgl

2
 + Nσg

2
 + σ

2
)yi.  − y..  + (σgl

2
 / σgl

2
 

+ σ
2
)yij − yi.  − y.j + y... 

 
A simple statistic, based on the mixed modeling, is the 
one proposed by Resende (2007), which is a Harmonic 
Mean of the Relative Performance of Genotypic Values 
(HMRPGV): 
 

  



 
 
 
 
Where: n is the number of environments evaluated and 
Vgij is the genotypic value corresponding to genotype i in 
the environment j. 

For the estimation of variance components, the REML 
(Maximum Residual Likelihood) method has been used, 
developed by Patterson and Thompson (1971), in which 
the values are estimated by the maximization of the 
likelihood function of residues instead of the observed 
data. Therefore, in trials that use the mixed models 
approach, especially in the case of unbalanced 
experiments, REML/BLUP analysis has been the most 
indicated (Resende and Thompson, 2004; Schaeffer, 
2004). 

 
 
METHODOLOGIES USING COVARIATES 
 
Eberhart and Russell (1966) highlight that although the 
genetic variability is notorious in terms of adaptability, it is 
difficult to explore it to its fullest, both because of the 
difficulty in evaluating (or even conceptualizing) 
adaptability, and the evident problem in quantifying the 
complexity of factors that influence natural environments. 

The same authors state that the use of the general 
mean of the varieties in each environment shows that 
planting seasons (which cause differences mainly caused 
by unforeseen factors such as rainfall) are much more 
influential in the response of the varieties than the 
differences inherent in environments such as soil type. In 
addition, the breeders are inclined to disregard the 
importance of the results obtained in unfavorable 
environments, therefore leading to a successive loss of 
varieties which can justify huge adaptability. 

Therefore, the use of an environmental index linked to 
means of varieties in each environment, such as those 
used by Finlay and Wilkinson (1963), Eberhart and 
Russell (1966), and Perkins and Jinks (1968), as the only 
factor of environmental information is not optimal, and the 
mathematical relationship between other environmental 
factors, such as rainfall, temperature, soil type, and the 
variable response, might be able to generate indexes 
less biased and more independent of the effect of variety 
within the analysis. Hardwick and Wood (1972) go further 
and claim that the fact that the deviations from the 
regression are not independent of the environmental 
mean also invalidates the use of the second parameter 
proposed by Eberhart and Russell (1966). 

Freeman (1973) States that, in the face of great 
difficulty in efficiently capitalizing the GxE interactions to 
find which environments can maximize genotypes of 
interest, the use of other variables can be useful to find 
the factors that are behind the real difference between 
the genotypes. Freeman and Perkins (1971) reiterate that 
the use of a regression index would need to be based on 
measures independent of the environment, whether of 
physical or biological quality. Fripp and Caten (1971), 
therefore, through this type  of  approach,  compared  the 
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use of physical and biological variables and found that 
when the number of genotypes evaluated is large, this 
approach provides a value similar to that which uses the 
environmental mean. 

However, Perkins (1972) found differences in genotype 
groups by the use of multiple regression based on 
climatic factors. Shukla (1972) and Wood (1976) used 
similar approaches, in which a correlation between a 
linear combination of genotypes and a linear combination 
of environmental factors were performed. According to 
Wood (1976), such an approach, when compared to 
others, provided a more logical explanation for the 
genotypic variation in different environments. 

Overall, information about environmental measures are 
hardly available, but considering that the performance of 
a genotype can considerably vary from one environment 
to another, it is extremely important that the 
environmental cause of such change of behavior is 
measured in order to determine whether such differences 
can be due to factors inherent to climate or soil, or even 
due to management strategies. However, it has been 
noted that even when the experimental sites representing 
each region are fully selected, the management factors, 
soil characteristics, and climatic factors are usually not 
taken into consideration (Schlichting and Levin, 1986). 

Some studies, such as those of Beckett (1982), aimed 
to quantify the environmental factors responsible for the 
interaction. This author performed a linear regression of 
each environmental variable in relation to productivity, 
aiming to identify the predominant factor and possibly the 
most influential one on the component of the interaction. 
Nevertheless, according to Weisberg (2005), when there 
are several factors in equal magnitude influencing the 
interaction, or when these factors present a certain 
degree of correlation between them, the simple linear 
regression analysis can be inappropriate. 

From the 1980’s, the use of environmental variables 
and the prediction of their influence on the productivity of 
some species have been widely applied in the studies on 
the GxE interaction, and currently several authors have 
been inserting environmental information, whether as 
characterization factors and environmental stratification 
as covariates in the analysis models of GxE interaction 
(Haun, 1982; Denis, 1988; Van Eeuwijk et al., 1996; 
Vargas et al., 1998; Crossa et al., 1999; Van Eeuwijk et 
al., 2005; Voltas et al., 2005; Thomason and Phillips, 
2006; Vargas et al., 2006; Boer et al., 2007; Ramburan et 
al., 2011; Heslot et al., 2014). 

Van Eeuwijk et al. (1996), in a seminal study, 
summarizes some methods based on factor analysis for 
the insertion of information about environmental 
covariates for the explanation of the GxE interaction, and, 
according to the author, such models are just an 
extension of the most general case: 
 

Yij = μ + αi + βj + ρizj + eij 
 

Where: ρi is a coefficient that reflects the sensitivity of the 
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genotype i, and zj is the measure of the environmental 
variable z in the environment j. According to what was 
expressed, this strategy can be useful for the inclusion of 
a single environmental covariate such as "rainfall". 

However, the idea of factorial regression can be 
generalized for the inclusion of other covariates, as 
follows: 
 
Yij = μ + αi + βj + ρi1zj1 + ρi2zj2. . .  + ρimzjm + Eij, 
 
where ρimzjm corresponds to the effect of a variable m in 
genotype i within the environment j. The successive 
addition of many environmental variables can reduce the 
accuracy of the prediction, considering that these 
variables may be modeling only the non-addictive part of 
the GxE interaction, that is, to the extent that more 
variables are added, the same can be inflated with the 
residue. 

Thus, one can resort to the use of a reduction index of 
covariates of the model by the expression: 
δj = ∑ h = 1

H
λhzjh, then becoming that which incorporates 

the synthetic covariate λh, with an initially unknown value, 
which is the more likely linear combination (via least-
squares criterion) that can be generated from the 
available variables, therefore obtained via data set. The 
model becomes more thrifty (with reduced degrees of 
freedom) and can be written as: 
 
Yij = μ + αi + βj + ρi(∑ h = 1

H
λhzjh) + Eij 

 
Where: H is the number of environmental covariates (Van 
Eeuwijk et al., 1996; Vargas et al., 1998; Crossa et al., 
1999). 

Some studies have been using explanatory covariates 
in the most variable way possible. Voltas et al. (2005) 
used the factorial regression and GGE Biplot 
methodologies for cultivation zoning and subsequent 
selection of superior genotypes, coupled with detection of 
main environmental factors that influenced the GxE 
interaction in 21 wheat genotypes evaluated in 8 
environments. On the other hand, Yan and Tinker (2006), 
in a job evaluating 145 barley genotypes in 25 
environments, use the combination of the two 
approaches aforementioned, by the integration of both 
into a single mathematical model. However, these 
authors only used genotype covariates (21 productivity 
components characters) for the explanation of the 
interaction regarding the productivity character. 

Vargas et al. (2006) used more completed factorial 
regression models described by Van Eeuwijk et al. (1996) 
to decompose the GxE interaction effect on corn, with the 
aid of both genotype variables (QTLʹs predicted via 
molecular markers) and environmental variables, 
estimating what the authors called QTL x environment 
interaction. Ramburan et al. (2011), studying varieties of 
sugar cane, used 14 environmental covariates (mean 
temperature per day, daily  regimen  of  rain,  mean  daily 

 
 
 
 
evaporation, soil moisture, among others) combined with 
the principal component analysis (PCA) to characterize 
the relative influence of each of the variables on the 
different environments. The authors then modeled the 
GxE interaction via the AMMI model, and verified through 
correlation analysis the relationship between the main 
components of such analysis with the most significant 
environmental variables. 

According Resende (2007), using regression methods, 
as well as their combination in multivariate models, are 
disadvantageous when there are experimental evidences 
of experimental unbalance factors or heterogeneity of 
variances between sites. Considering that such strategies 
take the effect of genotypes as fixed, their use becomes 
incoherent when you want to estimate variance 
components and other genetic parameters based on 
these experiments. Thus, only when a prediction of the 
genotypic values (as opposed to the use of phenotypic 
means) is made, actual values regarding the cultivation 
and use of a variety can be obtained. 
 
 
COMBINED APPROACHES 
 
An advantageous approach can be the combination of 
multiplicative and mixed models. Piepho (1998), Resende 
and Thompson (2004), and Resende (2007), describe in 
detail the methods named as Analysis of Factors under 
Mixed Models (FAMM) and Principal Component 
Analysis under Mixed Models (PCAM). In the latter, 
rather than the data array with purely phenotypic values, 
values previously predicted are used considering random 
effects (both genotypes and environments, or both). 
Thus, for a PCA analysis under mixed models, you can 
adopt the equations relating to: 
 

Y = Xb + Z(Q⊗Ig)(Q
-1
⊗Ig)a + ē 

 
Where: Q = Vm is the matrix of eigenvectors associated 
with m covariates. 

More research is necessary before the complete use of 
environmental variables in the evaluation of adaptability 
and stability of genotypes (both in cultivated species and 
in natural populations), considering the question of how 
to properly analyze the environmental information is still 
not well established (Schlichting, 1986; Ramburan et al., 
2011). 
 
 
RESULTS AND DISCUSSION 
 
Although the development of methodologies specifically 
applied to the adaptability and stability studies on 
cultivated species only occurred in the last 50 years, 
considerable advances that have occurred in the fields of 
statistics (mainly regarding multivariate methods), 
computer   science,  as  well  as  in  the  concept  of  GxE 



 
 
 
 
interaction, enable a leap for such methodologies, which 
is quite important considering the current context, in 
which trials of evaluation of genotypes in a number of 
environments are carried out.  

The methodologies based on linear regression only 
feature important limitations. Among them outstands the 
use of the mean of all the cultivars in each environment, 
such as environmental index, which may not occur in this 
case; the independence between variables, especially 
when the number of genotypes evaluated is small, which 
is a restriction of the use of regression, especially 
considering the current scenario where there is a need 
for an increasingly amount of tests for the adaptability 
and stability evaluation (Table 1). 

The Ecovalence methodology has the advantage of 
easy interpretation, considering that it is based on the 
interpretation of a single numeric value (Wi), however, it 
does not provide information about environments. In 
addition, the use of a single value to determine 
adaptability and stability can be difficult to apply to 
different objectives, such as the simultaneously broad 
recommendation and local recommendation of 
genotypes. In such situations, it may be preferable the 
use of methodologies, such as those based on 
multivariate analysis, that have the ability to reduce the 
data in order to provide a simple interpretation of the 
results. However, the methodologies based on linear 
regression can still be applied in a situation with smaller 
number of MET’s. 

Among the advantages of methodologies based on 
multivariate methods are the possibility of application of a 
biologically more realistic concept of GxE interactions, 
the ease of interpretation of results – provided by the use 
of Biplots charts – and the information level generated by 
the analysis (Table 1). To obtain information about each 
genotype evaluated and each environment is very useful 
to the breeders, since it enables a better separation of 
the concepts of adaptability (wide and local) and stability. 
Therefore, the use of methodologies such as AMMI and 
GGE Biplot is encouraged for most cases. 

Nonparametric methods, such as those of Lin and 
Binns (1988), Hühn (1979), Nassar and Hühn (1987), 
Kang (1988), Fox (1990), and Thennarasu (1995), may 
be an alternative when the prerequisites of other 
methodologies are not understood (for instance, when 
the data do not clearly follow any probability distribution). 
However, such methodologies are less robust than the 
others because they are based on the ranking of 
genotypes only. In addition, the ambiguity caused 
sometimes by obtaining more than one ranking, such as 
the methods of Thennarasu (N1, N2, N3, and N4) and 
Nassar and Hühn (S

1
, S

2
, S

3
, and S

6
), can hinder the 

decision of plant breeders when such decision is based 
only on one of these methodologies. It is worth 
mentioning that the methods of Lin and Binns avoid this 
last factor, for it provides a single measure (Pi) for the 
interpretation of adaptability and stability (Table 1). 
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Considering that the imbalance of data and the 
consequent loss of information are more common, or at 
least more likely to occur, in the current context, in which 
the number of environments and genotypes tested is 
increasing, methodologies that need to meet 
assumptions, such as the normality of data and absence 
of residual correlation, may not be the most suitable 
ones. For these cases, we recommend the use of more 
robust methodologies that include the use of mixed 
models, since these methodologies consider phenotypic 
values for obtaining predictors of real genotypic values. In 
the current context, in which the processing power of 
computers is huge, there are no more practical limitations 
to the application of this approach. 

The inclusion of environmental variables in the 
adaptability and stability evaluation of genotypes is 
advantageous for dividing physical environments (sites) 
in generalized environmental factors. This type of 
approach can be advantageous for the ability to deal with 
unexpected environmental factors that often decisively 
influence the performance of genotypes. When including 
environmental effects separately, the problem of temporal 
variation of environments (variation between crops and 
years in the same site) is more elegantly approached. 
However, some care must be taken into consideration: 
Do the listed variables really affect the species in any 
meaningful way? How many environmental covariates 
must be used in order to obtain the most parsimonious 
model?. However, the main limitation for the use of such 
methodologies seems to be the difficulty in obtaining 
environmental data in loco during the exact period of 
performing experiments, whether by lack of interest of the 
plant breeder, whether by technological limitations. 

The direct comparison between the several 
methodologies available is not an easy task, and is often 
inconsistent, mainly due to the fact that many are based 
on statistical principles quite distinct. A smart approach 
can be to base the choice of methodology according to 
the profile and characteristics of the data set to be 
analyzed. It is not very surprising that it is becoming 
costly to obtain a more detailed knowledge about the 
GxE interaction, considering that, in the context of 
evaluation of multi-environments trials, most of the efforts 
is usually focused on measuring the performance of the 
genotypes, while little or no attention is more accurately 
given to the evaluation of the environments. There is a 
need for better researches dedicated both to the study on 
the nature of the GxE interaction, and to the development 
of statistical genetic models able to comprise greater 
number of information related to genotypes and 
environments evaluated. 
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Table 1. Comparison between the main characteristics of the methodologies used the most for the evaluation of adaptability and stability in multi-environments trials. 
 

Methodologies Based Model  No. of parameters/measures Advantages Disadvantages/Limitations 

Wricke (1962)  ANOVA 1 (ωi) Simple interpretation; Simple calculations. 
Data need to be balanced and meet the assumptions of a 
regression analysis. 

Finlay and Wilkinson 
(1963) 

Regression 1 (β1i) Simple interpretation; Simple calculations. 

Assumes/requires that regression deviations are insignificant; 
Data need to be balanced and meet the assumptions of a linear 
regression analysis; Use of environmental index dependent on 
the mean of the evaluated genotypes. 

Eberhart and Russell 
(1966) 

Regression 2 ( β1i ; δij ) Simple interpretation; Simple calculations. 
Data need to be balanced and meet the assumptions of a linear 
regression analysis; Use of environmental index dependent on 
the mean of the evaluated genotypes. 

Nassar and Hühn 
(1987) 

Non-parametric 4 (Si
(1); Si

(2); Si
(3); Si

(6)) Simple calculations; Requires no assumptions.  
Less robust model; absence of inferences about environments; 4 
independent measures can hinder the conclusion. 

Kang (1988) Non-parametric 1 (Rank-sum) 
Simple interpretation; Simple calculations; Requires no 
assumptions. 

Less robust model; absence of inferences about environments. 

Lin and Binns (1988) Non-parametric 1 (Pi) 
Simple interpretation; Simple calculations; Requires no 
assumptions. 

Less robust model; absence of inferences about environments. 

Fox et al. (1990) Non-parametric 1 (TOP) 
Simple interpretation; Simple calculations; Requires no 
assumptions. 

Less robust model; absence of inferences about environments. 

Thennarasu (1995) Non-parametric 4 (NP(1), NP(2), NP(3), NP(4)) Simple calculations; Requires no assumptions. 
Less robust model; absence of inferences about environments; 4 
independent measures can hinder the conclusion. 

AMMI (Zobel et al., 
1988; Gauch, 1992) 

Aditive/Multiplicative --- 
Biologically realistic; Simple and Graphical interpretation; 
Inferences about environments and genotypes. 

Limited when applied to unbalanced data or with significant 
residual correlations; Graphical interpretation is disadvantageous 
when the number of genotypes and environments is very large. 

GGE Biplot (Yan et 
al., 2000) 

Multiplicative --- 
Biologically realistic; Simple and Graphical interpretation; 
Inferences about environments and genotypes. 

Limited when applied to unbalanced data or with significant 
residual correlations; Graphical interpretation is disadvantageous 
when the number of genotypes and environments is very large. 

HMRPGV (Mixed 
Models) 

Mixed 1 (HMRPGV) 

Simple interpretation; Applicable to unbalanced data; 
Tolerates residual correlation; Array of kinship can be 
inserted; Obtains BLUP predictors; Applicable to any size of 
data file. 

Difficulties inherent to the degree of complexity of the approach 
that considers mixed models. 

Covariate based 
methods 

Regression; 

Multiplicative; 

Mixed 

--- 

Works with information about types of environments and not 
with specific environments; Models better the influence of 
unforeseen factors; Offers the same advantages of 
Multiplicative and mixed Models, when allied to them. 

Data collection for the inclusion of environmental and/or 
genotypic covariates in the model is still difficult; There are no 
precise criteria about which covariates should be chosen yet. 
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