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The quadratic assignment problem is a well known difficult discrete combinatorial optimization 
problem. The problem seeks to locate n facilities among n fixed locations in the most economical way. 
We propose a technique to reduce the number of new constraints and variables in a linearised 
quadratic assignment problem. It is computationally cheaper to solve a mathematical model with half 
the number of new constraints and variables than the original full model. The quadratic assignment 
problem is common in agricultural resource or facility location, economics, production, military 
operations or operations research in general. 
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INTRODUCTION 
 
The quadratic assignment problem (QAP) was introduced 
by Koopmans and Beckmann in 1957 as the problem of 
allocating a set of facilities to a set of locations, with the 
cost being a function of the distance and flow between 
the facilities and the costs associated with a facility being 
placed at a certain location. The objective is to assign 
each facility to a location in such a way that the total cost 
is minimized. Although, extensive research has been 
done for over 50 years; this remains one of the hardest 
optimization problems the world has ever had (Çela, 
1998). We are not aware of any effective exact algorithm 
that can solve this NP complete model consistently in 
reasonable computational time.  

The QAP model is common in agricultural resource or 
facility location, economics, production, military 
operations or operations research in general. An effective 
heuristic algorithm that can consistently and accurately 
approximate the quadratic algorithm is also believed not 
to exist. Even finding an approximate solution within 
some constant factor from the optimal solution is also 
very difficult (Adams and Johnson, 1994).  

Various heuristics have been developed by Hahn and 
Grant (2008), Ramakrishnan et al. (2002) and Drezner 
(2008). For more developments in solving QAP, one can 
consult Nagarajan and Sviridenko (2009), Rego et al. 

(2010), Xia (2010), Yang et al. (2008) and many others 
that can be found in literature. 

In addition to application in facility location, the QAP 
has application in computer manufacturing, scheduling, 
process communications, turbine balancing, backboard 
wiring and many others.  

It is easier to solve a mathematical model with less 
number of constraints and variables than one with all the 
constraints and variables.  

In this paper, we propose a technique to reduce the 
number of new constraints and variables in a linearised 
quadratic assignment problem. The reduced linearised 
quadratic assignment problem is easier to solve than the 
original problem. 
 
 
QUADRATIC ASSIGNMENT PROBLEM 
FORMULATION 
 
There are several mathematical formulations of QAP 
introduced in the past five decades by various 
researchers. In this paper we explore and linearise the 
original quadratic integer formulation introduced by 
Koopmans and Beckmann (1957). Suppose new 
buildings are to be placed on a piece of land  and  n  sites  
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have been identified as sites for the buildings, it is 
assumed that each building has a special function. 
 
 
Koopmans- Beckmann formulation 
 

Let: ija be the walking distance between sites i and j; 

klb be the number of people per week who circulate 
between buildings k and l. Then the Koopmans- 
Beckmann formulation of the QAP is given as: 
 

Minimize:
1 1 1 1 1 1

n n n n n n

ij kl ik jl ik ik
i j k l i k

Z a b x x c x
= = = = = =

= +∑∑∑∑ ∑∑  

 
Such that: 
 

1

1, 1
n

ij
i

x j n
=

= ≤ ≤∑               (1) 

 

1

1, 1
n

ij
j

x i n
=

= ≤ ≤∑  

 

 {0,1}, 1 , 1ijx i n j n∈ ≤ ≤ ≤ ≤  
 

In this formulation there are 
2n  variables and 2n 

constraints. 
 
 
Linearising the quadratic assignment problem 
 
The available techniques can linearise the Koopmans-
Beckmann model to the form: 
 

Minimize: z  
1 1 1 1

n n n n

ij kl ijkl
i j k l

a b y
= = = =

=∑∑∑∑  

 
Such that: 
 

2

1 1 1 1

n n n n

ijkl
i j k l

y n
= = = =

=∑∑∑∑                         (2) 

    
2 , , , ,ik jl ijklx x y i j k l+ ≥ ∀  

  
1ijkl ik jly x x≥ + −  

 
Solving this linearised QAP model is very difficult due to 
hardware restrictions as n becomes large. This linearised 

model has 
4 2( )n n+  variables and 

4( )O n  constraints. 

 
 
 
 
The quadratic binary problem as the general case 
 
In this paper we classify the Koopmans-Beckmann model 
as a special case of a quadratic binary problem. Let a 
quadratic binary problem be represented by: 
 

Minimize: 0 1

1 1

n n n

ij i j k k
i j k

Z c xx c x
= =

= +∑∑ ∑  

 

Such that: a11 x1+ a12 x2+ .. .+ a1n xn≤ b1                  (3) 

     a21 x1+ a22 x2+ .. .+ a2n xn≤ b2  
                                         … 

               am1 x1+ am2 x2+ . ..+ amn xn≤ bm  
 
Where, 
 

0, ,ij i ija b c  and 
1
kc  are constants, 1 , 1 ,i m j n≤ ≤ ≤ ≤  

, , {0,1}, 1 , 1 , 1 .i j kx x x i n j n k n∈ ≤ ≤ ≤ ≤ ≤ ≤  
 

The variables i jx x  where i j=  
 

If i j= , then 
2 2.i jx x=  

 
For binary integer variables: 
 

( 1) 0i ix x − =  
 

2 0i ix x− =  
 

2
i ix x=                    (4) 

Thus, 
2
ix  can be replaced by ix  in the objective function. 

Similarly, 
2
jx  can also be replaced by jx  in the objective 

function. Note that this substitution on its own does not 
change the number of variables in the problem. 
 

The variables i jx x  where i j≠  
 

If i j≠ , then in the worst case there are 
( 1)

2
n n−

 

combinations of such variables in the objective function. 
 
Proof 
 
Suppose there are: 
 

Two variables: 1(x  and 2 )x , then in the worst case we 

can   have   1 2x x    as  the  only  possible  combination  of  



 
 
 
 
variables. 
 

Three variables: 1 2( ,x x  and 3)x , then in the worst case 

we can have 1 2 1 3,x x x x  and 2 3x x  as the possible 
combinations of variables. These three variables give 3 
possible combinations. 
 

n variables: 1 2 1( , ,..., nx x x −  and )nx , then in the worst 
case we can have 

1 2 1 3 1 2 3 2 4 2 1, ,..., , , ,..., ,...,n n n nx x x x x x x x x x x x x x−  as the 
possible combinations. The n variables give 

1

1

( 1)
( 1) ( 2) ... 1

2

n n n
n n t

− −− + − + + = =∑  possible 

combinations. 
 
 
LINEARIZING THE QUADRATIC BINARY PROBLEM 
 

The variable combinations i jx x  where i j≠  must be 
removed in order to make the objective function linear. 
This is done by using the following substitution: 
 
 
Variable substitution 
 
Let  
 

,i j rx x δ=                                               (5) 
      

Where rδ  is also a binary variable and 
( 1)1, 2,..., .n n

nr −=  
 
Such that: 
 

2i j r rx x δ δ+ = +  

1r rδ δ+ ≤                (6) 

, {0,1}r rδ δ ∈  and 
( 1)1, 2,..., .n n

nr −=  

 
 
Proof 
 
We have to show that the solution space 

( ) {0,1)i jx xΩ =  is also the solution space for ( ),rδΩ  

every point in ( )i jx xΩ  has a corresponding point in 

( )rδΩ  and that i j rx x δ=  for all corresponding points. 
 

Solution space for i jx x  that is ( )i jx xΩ  
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0and 0i jx x= =  

1and 0i jx x= =        0i jx x =  

0and 1i jx x= =  
 

1and 1i jx x= = ⇒  1i jx x =  
 

( ) {0,1).i jx x∴Ω =  
 

Solution space for rδ  that is ( )rδΩ  
 

1and 0 2 1 1r r i j i j i jx x x x x xδ δ= = ⇒ + = ⇒ = = ⇒ =

0and  1 1,r r i jx xδ δ= = ⇒ + =  

 
          Either 1and 0 0.i j i jx x x x= = ⇒ =  

⇒  

          Or 0and 1 0.i j i jx x x x= = ⇒ =  

 

0and  0 0 0 0.r r i j i j i jx x x x x xδ δ= = ⇒ + = ⇒ = = ⇒ =
( ) {0,1).rδ∴Ω =  

 
Corresponding points 
 

Point in ( )i jx xΩ                Corresponding point in ( )rδΩ  
 

0  and  0i jx x= =           0 and  δ 0r rδ = =  

1 and  0i jx x= =           r0 and  δ 1rδ = =  

0  and  1i jx x= =            0 and  1r rδ δ= =  

1 and  1i jx x= =            r1 and  δ 0rδ = =  
 
 
NUMBER OF NEW VARIABLES AND CONSTRAINTS 
IN THE LINEARIZED MODEL 
 
Two new variables are added to every product of 

variables i jx x  where ,i j≠  that appears in the objective 
function. In the general case of quadratic binary problem 

there are 
( 1)

2
n n−

 such products as shown previously. 

Thus there are: 
 

2 ( 1) ( 1) new variables
2

n
n n n× − = −                        (7) 

 
This gives a total of  
 

2( 1) new variables +  original variables = variables.n n n n−  
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Also, two new constraints are added for every product of 

variables i jx x  where i j≠  that appears in the objective 
function. Similarly, the total number of new constraints is 
given by: 
 

( 1) extra constraintsn n −             (8) 
 

The total number of constraints ( )m  is given by: 
 

  original constraints + ( -1) original constraints m m n n=
 

 
2   = ( - ) variables                      m n m n+                                           (9)  

 
 
LINEARISED QUADRATIC BINARY PROBLEM 
 
Then linearised model becomes as follows: 
 

Minimize: 
2
( 1)

0 1

1

n n n

r r k k
r i

Z c c xδ
−

=
= +∑ ∑  

 

Such that a11 x1+ a12 x2+ .. .+ a1n xn≤ b1  
 
a21 x1+ a22 x2+ .. .+ a2n xn≤ b2  

             …                                                             (10) 
am1 x1+ am2 x2+ . ..+ amn xn≤ bm  

2 ,i j r rx x i jδ δ+ = + ∀ ≠  

1,r r i jδ δ+ ≤ ∀ ≠  

, , {0,1},1 ,1 ,1i j kx x x i n j n k n∈ ≤ ≤ ≤ ≤ ≤ ≤  

, {0,1}r rδ δ ∈  and 
( 1)1, 2,..., .n n

nr −=  
 
 
Numerical illustration 
 

1 2 3 4 1 2

1 3 1 4 2 3 2 4

2 2 2 2
3 4 1 2 3 4

Minimize Z 10 6 7 4 2

                     3 5 5 9

                  8 11 13 12 10

x x x x x x

x x x x x x x x

x x x x x x

= + + + +
+ + + +

+ + + + +

 

 
Such that  
                                                                                     (11) 

1 2 3 410 18 16 16 47x x x x+ + + ≥

1 2 3 420 14 18 23 52x x x x+ + + ≥     

1 2 3 417 21 14 19 49x x x x+ + + ≥  

 {0,1}, 1, 2,3, 4jx j∈ =  
 
 
Making the model linear 
 
The  first  stage  is  to  linearise  by  making  the following  

 
 
 
 
substitutions: 
 

2 , 1, 2,3,4j jx x j= =                                    (12) 
 

,  1, 2,3, 4,5,6 .i j rx x r i jδ= = ∀ ≠          (13) 
 
For every new variable introduced two new constraints 
are generated. 
 

2 ,i j r rx x i jδ δ+ = + ∀ ≠  

1,r r i jδ δ+ ≤ ∀ ≠             (14) 

, {0,1}r rδ δ ∈  and 1, 2,...,6.r =  
 
The linear model becomes: 
 

1 2 3 4 1

2 3 4 5 6

Minimize 21 19 19 14 2

                    3 5 5 9 8

z x x x x δ
δ δ δ δ δ

= + + + +
+ + + + +

 

 
Such that: 
  

1 2 3 410 18 16 16 47x x x x+ + + ≥  

1 2 3 420 14 18 23 52x x x x+ + + ≥  

1 2 3 417 21 14 19 49x x x x+ + + ≥     
         

1 2 1 12x x δ δ+ = +  

1 3 2 22x x δ δ+ = +  

1 4 3 32x x δ δ+ = +                                                 (15) 

2 3 4 42x x δ δ+ = +       new equality constraints 

2 4 5 52x x δ δ+ = +  

3 4 6 62x x δ δ+ = +  
 

1 1 1δ δ+ ≤  

2 2 1δ δ+ ≤  

3 3 1δ δ+ ≤         

4 4 1δ δ+ ≤         new equality constraints 

5 5 1δ δ+ ≤  

6 6 1δ δ+ ≤  
 

Thus there are 4(4 1) 12− =  new variables and 4(4 1) 12− =  
new constraints. 
 
 
Solution 
 
Solving the linear binary problem, the optimal  solution  is 



 
 
 
 
obtained as: 
 

2 3 4 1 2 3 4 5 6 1x x x δ δ δ δ δ δ= = = = = = = = =         (16) 
 

1 1 2 3 4 5 6 0x δ δ δ δ δ δ= = = = = = =                      (17) 
 
The solution to the original problem becomes: 
 

2 3 474, 1z x x x= = = =  and 1 0x =          (18) 
 
 
REDUCING THE NUMBER OF EXTRA CONSTRAINTS 
IN THE LINEAR MODEL 
 

Solving a linear model with ( 1)n n −  new constraints and 

( 1)n n − , new variables becomes very difficult for large 
n. It is possible to halve the number of new constraints 
and variables. The following two constraints can be 
combined into one: 
 

2i j r rx x δ δ+ = +  
 

1r rδ δ+ ≤  
 
The first constraint can be expressed as: 
 

i j r r rx x δ δ δ+ = + +                        (19) 
 

i j r r rx x δ δ δ+ − = +                       (20) 
 
Rearranging variables in the new equality constraints: 
 

1 2 1 1 1x x δ δ δ+ = + +  

1 3 2 2 2x x δ δ δ+ = + +  

1 4 3 3 3x x δ δ δ+ = + +                                                               

2 3 4 4 4x x δ δ δ+ = + +                                   (21)      

2 4 5 5 5x x δ δ δ+ = + +  

3 4 6 6 6x x δ δ δ+ = + +  
 

Transposing one of the two rδ  to the left hand side and 
leaving the other on the right: 
 

1 2 1 1 1x x δ δ δ+ − = +  

1 3 2 2 2x x δ δ δ+ − = +                                                (22a) 

1 4 3 3 3x x δ δ δ+ − = +       
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2 3 4 4 4x x δ δ δ+ − = +                                                

2 4 5 5 5x x δ δ δ+ − = +                                               (22b) 

3 4 6 6 6x x δ δ δ+ − = +  
 

Since r rδ δ+  cannot exceed one, then the new equality 
constraints and new inequality can be combined into one: 
 

1i j rx x δ+ − ≤                                                (23)
      
This reduces the number of new constraints and 

variables to 
( 1)

2 .n n−
                                        

 
The 6 new equality constraints and 6 new inequality 
constraints can be combined into only 6 inequality 
constraints as follows: 
  

1 2 1 1x x δ+ − ≤  

1 3 2 1x x δ+ − ≤  

1 4 3 1x x δ+ − ≤                                                  

2 3 4 1x x δ+ − ≤                                                           (24)   

2 4 5 1x x δ+ − ≤  

3 4 6 1x x δ+ − ≤  
 
The linear model given in the numerical illustration 
becomes: 
 
 

1 2 3 4 1

2 3 4 5 6

Minimize 21 19 19 14 2

                    3 5 5 9 8

z x x x x δ
δ δ δ δ δ

= + + + +
+ + + + +

 

 
Such that: 
 

1 2 3 410 18 16 16 47x x x x+ + + ≥  

1 2 3 420 14 18 23 52x x x x+ + + ≥  

1 2 3 417 21 14 19 49x x x x+ + + ≥                                  (25) 

1 2 1 1x x δ+ − ≤  

1 3 2 1x x δ+ − ≤  

1 4 3 1x x δ+ − ≤  

2 3 4 1x x δ+ − ≤  

2 4 5 1x x δ+ − ≤  

3 4 6 1x x δ+ − ≤  
 
The lineraised problem has been significantly reduced in 
size but the optimal solution is still the same: 
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2 3 474, 1z x x x= = = = and 1 0.x =           (26) 
 
The linearised QAP model with a reduced number of new 
constraints and variables is given by: 
 

Minimize: 
2
( 1)

0 1

1

n n n

r r k k
r i

Z c c xδ
−

=
= +∑ ∑  

Such that  
 
a11 x1+ a12 x2+ .. .+ a1n xn≤ b1  
a21 x1+ a22 x2+ .. .+ a2n xn≤ b2          (27) 

                         … 
am1 x1+ am2 x2+ . ..+ amn xn≤ bm  

 
1, , .i j rx x i j rδ+ − ≤ ∀ ≠  

 
 
OTHER FORMULATIONS 
 
Many combinatorial optimization problems have different 
but equivalent mathematical formulations. One such 
problem is the QAP and its formulations have different 
structural characteristics leading to different solution 
approaches. Besides the reduced linearised form 
presented in this paper, there are other formulations 
available in literature. These formulations include 
concave, trace and Kronecker product formulations. The 
concave quadratic formulation was introduced by 
Bazaraa and Sherali in 1982. A cutting plane procedure 
was derived to find the optimal solution and this exact 
method was found to be computationally inefficient. The 
trace formulation was first used by Edwards (1977). The 
formulation was later used by Finke et al. (1987) to 
introduce the eigen low bounding technique for QAPs 
that are symmetric. Solving for the exact solution of the 
trace formulated problem has been proved to be difficult. 
There is no consistent computationally efficient and 
effective general purpose solution algorithm for the trace 
formulated problem. The use of the Kronecker product is 
another way of formulating the difficult QAP. 

Lawler (1963) suggested an alternative way of formu-
lating using the Kronecker product. Though he managed 
to linearise the Kronecker product formulation, the 
feasible solution that results from his formulation cannot 
be solved efficiently by the available techniques. More on 
Kronecker product formulation in detail can be found in 
Graham (1981). 
 
 
CONCLUSIONS 
 
The linearised model proposed in this paper is simpler 
than the versions available in literature. Both the number 
of new constraints and variables in  the  linearised  model 

 
 
 
 

increase by factor of 
( 1)

2 .n n−
 This is a significant 

improvement and attempts will be made in future to lower 

this factor. Quadratic assignment problems with 30n ≥  
are huge problems and usually take days to solve or 
approximate. It is computationally cheaper to solve a 
mathematical model with half the number of new 
constraints and variables than the original full model. 
Attempts will also be made to develop a heuristic that can 
efficiently determine a bound from the proposed 
linearised QAP model. A bound is useful in the case of a 
fire disaster, locust invasion or military operations where 
very quick location and facility decisions are required and 
exact optimal solutions are not usually possible to obtain 
in the limited time. 
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