Full Length Research Paper

Prokaryotic expression of vitellogenin receptor gene of Actias selene Hubner

Yingying Xu, Baojian Zhu, Qiuning Liu, Guoqing Wei, Li Chen, Lei Yu and Chaoliang Liu*
College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, Peoples Republic of China.

Accepted 4 May, 2012

Abstract

Vitellogenin receptor plays a key role in the embryonic development of oviparous animals. A vitellogenin receptor (VgR) gene was cloned from Actias selene using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA end PCR. Sequence analysis revealed that this gene was 5848 bp and encoded a protein of 1812 amino acids peptide with high similarity to Bombyx mori VgR . Sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting analysis demonstrated that a 24 and 40 KD recombinant proteins corresponding to the ligand-binding domains of A. selene VgR was successfully expressed in Escherichia coli cells.

Key words: Actias selene Hubner, vitellogenin receptor (VgR), prokaryotic expression.

INTRODUCTION

In insects, vitellogenin receptor (VgR) plays an important role in ovary maturation by mediating the uptake of vitellogenin (Wileman et al., 1985; Raikhel and Dhadialla, 1992; Tufail and Takeda, 2009). Up to now, the VgRs have been identified from many insect species such as Aedes aegypti (Sappington and Kokoza,1996), Blattella germanica (Ciudad et al., 2006), Bombyx mori (Lin et al., 2005), Drosophila melanogaster (Schonbaum et al., 1995), Solenopsis invicta (Chen et al., 2004), Periplaneta Americana (Tufail and Takeda, 2005), Leucophaea maderae (Tufail and Takeda, 2007), American dog tick (Mitchell et al., 2007), Spodoptera litura (Krishnan et al., 2008) and Antheraea pernyi (Liu et al., 2011). All these VgRs belong to the low-density lipoprotein receptor (LDLR) super family (Willnow, 1999) and have common structural elements like the transmembrane domain, ligand-binding domain, the epidermal growth factor precursor domain and cytoplasmic tail (Goldstein et al., 1985; Schneider et al., 1999). However, there is a difference in their physiological roles (Schneider et al., 1999; Nykjaer and Willnow, 2002; Strickland et al., 2002; Herz and Bock, 2002).
Actias selene (Lepidoptera, Saturniidae) is an important wild silk-spinning insect located in China, Japan, India

[^0]and Southeast Asian countries. Although the vitellogenin was identified from this insect (Qian et al., 2011), the exact biological functions of VgR in A. selene remain unknown. In this study, we reported the sequence of AshVgR , the prokaryotic expression and protein purification of ligand-binding domains of $A s h-\mathrm{VgR}$.

MATERIALS AND METHODS

The experimental insect A. selene Hubner was collected from the willows in Dangtu, Anhui Province, China.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from the fat body of larvae with TRIzol ${ }^{\text {TM }}$ Reagent (Invitrogen) according to the manufacture's instructions. The RevertAid ${ }^{\text {TM }}$ H Minus First Strand cDNA Synthesis Kit was used to synthesize cDNAs for reverse transcriptase-polymerase chain reaction (RT-PCR). For rapid amplification of cDNA end (RACE-PCR), the cDNA was synthesized using SMART ${ }^{\text {TM }}$ RACE cDNA Amplification Kit (Clontech) according to the manufacturer's instructions.

Cloning and sequencing of VgR

Oligonucleotide primers (Table 1) were designed by Primer premier 5.0 software according to VgR sequences from B. mori and A. pernyi. RT-PCR was performed at $94^{\circ} \mathrm{C}$ for 5 min , followed by 30

Table 1. The primers used for PCR.

Primer No.	Primer sequence (5'--3')
F1(564-585)	TTGCCTCCCGAGTGAAATGATG
R1(2321-2341)	TCCGGGGACCTCTGATGTTGA
F2(1708-1730)	CACCCGTGCTCCCATTTCTGTCT
R2(3301-3320)	CGGTCGCGGCATTGATAGTA
F3(2955-2978)	CGGGCTCTGCGTGGCTAAGGATTC
R3(4491-4513)	AGGCGGACCAGACCACGGACTCG
F4(4454-4474)	CGTCACGGCGCATGTTCTACT
R4(5163-5182)	CTTCGTCGGAGCTGTTCTGG
LBD1ClassAF	GGCGGATCCGAATGCCTGGGCGAG
LBD1ClassAR	CGCCTCGAGGTTGGCACAGAAGGA
LBD2ClassAF	CAGAAGCTTTGAGATGCAGCGAAAGCG
LBD2ClassAR	CGCCTCGAGCGAGAAGCAGTGGATGC

cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min and a final step of $72^{\circ} \mathrm{C}$ for 10 min . The PCR products were analyzed on 1% agarose gels, then subcloned into the pMD19-T easy cloning vector (Takara) and sequenced at Invitrogen, Shanghai.

Construction of recombinant plasmids and protein expression

Total RNA from the fat body was reverse transcribed into cDNA by a First-Strand System Kit (MBI) according to the protocol. The primers (Table 1) were designed to amplify the cDNA encoding ligand-binding domains (LBD1Class $A=85 \sim 642$ and LBD2ClassA $=2788 \sim 3827$) of Ash-VgR protein and PCR products vector were ligated with PET-28a after digesting with corresponding restriction enzymes (Bam HI and Xhol for LBD1, Hind III and Xhol for LBD2). The recombinant plasmids pET-28a-Ash-LBD1 and pET-28a-AshLBD2 were confirmed by PCR and sequencing, then transformed into E. coli BL21 (DE3) for protein expression induced by 0 to 1.0 mM IPTG.

Protein purification and antibody preparation

Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography (Qiagen) was used to purify the recombinant Ash-LBD1 and AshLBD2 proteins according to the instructions. The New Zealand White rabbits were immunized with $100 \mu \mathrm{~g}$ of purified proteins thrice at 2 -week intervals and a boost injection was given for another week with purified proteins. Antiserum was collected seven days after the last immunization (Harlow and Lane, 1999)

Western blotting

The recombinant proteins from E. coli BL21 (DE3) were subjected to 12% SDS-PAGE and then transferred onto a polyvinylidene difluoride membrane by an electrophoretic transfer system (BioRad). Membranes were blocked with 5% non-fat milk powder (diluted with phosphate-buffered saline containing 0.1% Tween 20 (PBST) for 1 h at room temperature. Membranes were washed with PBST and subsequently incubated with primary antibodies (diluted 1:2000 with PBST) for 2 h at room temperature. After washing, membranes were incubated with horseradish peroxidase (HRP)conjugated sheep anti-rabbit IgG antibody for 1 h at room temperature (Zhu and Wu, 2008), and the final detection was
performed with a HRP-DAB Detection Kit (Tiangen).

RESULTS

Cloning and sequence analysis of Ash-VgR gene

A cDNA fragment of 5848 bp was obtained by RT-PCR and RACE-PCR. The sequence had been deposited in the GenBank database with accession number JQ809472. Nucleotide sequence analysis revealed that VgR cDNA contained a 138 bp 5'-untranslated sequence, a putative ORF of 5439 bp and a 271 bp 3'-untranslated region ($3^{\prime} \mathrm{UTR}$). Based on the deduced amino acid sequences, the LDL-receptor class A domains (residues 29 to 213 and residues 930 to 1278), EGF-like domains (residues 260 to 296 and residues 1316 to 1354), and LDL-receptor class B repeats (residues 344 to 854 and residues 1530 to 1574) were found using the ExPASy Proteomics tools (Figure 1). Phylogenetic analysis indicated that A. selene VgR gene was highly homologous to B. mori VgR (Figure 2).

Protein expression and western blotting

To investigate the function of $A s h-\mathrm{VgR}$, two ligandbinding domains (LBD1 and LBD2) were selected for protein expression. Two recombinant proteins with a molecular weight of about 24 and 40 kDa were detected by SDS-PAGE and their expression was not influenced by different IPTG concentrations (Figure 3a and b). The result of western blotting showed that two consensus 24 and 40 kDa protein bands were detected using anti-His antibodies (Figure 4a and b) or Ash-LBD1 and Ash-LBD2 antibodies (Figure 5a and b), while there was none in the control group. All these indicated the recombinant VgR proteins were successfully expressed in E. coli BL21 (DE3) cells.

- 120 GGGTAAAAATTTAAATTTTTAAATTTAAACCCTTTTTTTTTTGTAATACATCAATCATTT -60 TAATTCATATTTACCTTCACAATCGTCGATGA AGAATCGCCCTCAACACAATAGATCAGA
1 ATGAAGGTAGTTTTGTTAGCAATAGTTCTATGCGCAACCTCGTGCGCGGGGCAGTTCGT
 signal peptide
61 GACGAAATGCAAGTCTACGAGAAGGAATGCCTGGGCGAGGATGTGTTTCCGTGCATGTCC
 121 GGGGGGATGCATACAGCAGTCCCAGTACTGCGACGGGAAGGTGGACTGCGACGATGGAACC
 181 GACGAGAACTATTGTCTTGATCACAAGCCAGACGCTCAGTTCTGTAACGAGACCCACCAG
 241 TTCATGTGTCGGGATAGCAAGAAGTGCATCCCGAACCATTGGATCTGTAATAACGACATC
$81 \begin{array}{llllllllllllllllll} & \mathrm{F} & \mathrm{M} & \mathrm{C} & \mathrm{R} & \mathrm{D} & \mathrm{S} & \mathrm{K} & \mathrm{K} & \mathrm{C} & \mathrm{I} & \mathrm{P} & \mathrm{N} & \mathrm{H} & \mathrm{W} & \mathrm{I} & \mathrm{C} & \mathrm{N} \\ \mathrm{N} & \mathrm{D} & \mathrm{I}\end{array}$ 301 GATTGCGACGACGGAAGTGATGAGCTAAATTGCACTTTGGTTCCTGTGGCTACTGGTAAA
 361 TGCAAAGGTTTTCTGTGCGGCGATGGAAAATGTATCTCCAGTCTTTGGTTATGTGATGGA $121 \mathrm{C} \quad \mathrm{K} \quad \mathrm{G} \quad \mathrm{F} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{G} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{C} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{W} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{G}$ 421 AGCTACGACTGCAAGGATAAGAGCGATGAGAATTCACCGGAAAACTGCCGTCACAGCCTC $141 \mathrm{~S} \quad \mathrm{Y} \quad \mathrm{D} \quad \mathrm{C} \quad \mathrm{K} \quad \mathrm{D} \quad \mathrm{K} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{C} \quad \mathrm{R} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{L}$ 481 CTGTCCCACTCGATGCTAAGCGGATCGGATTGCCAGGATTGGCTAGGAGGGAGGCGCCAA $161 \quad \mathrm{~L} \quad \mathrm{~S} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{M} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{C} \quad \mathrm{O} \quad \mathrm{D} \quad \mathrm{W} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{O}$ 541 TACAAATGCACGGACTCCTCGTTTTGCCTCCCGAGTGAAATGATGTGTGATGGCATGCAG
 601 GACTGCAAGGACGGCAGTGACGAGAGATCCTTCTGTGCCAACTGGCACACGATGTGCGCG $201 \mathrm{D} \quad \mathrm{C} \quad \mathrm{K} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{F} \quad \mathrm{C} \quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{W} \quad \mathrm{H} \quad \mathrm{T} \quad \mathrm{M} \quad \mathrm{C} \quad \mathrm{A}$ 661 AACCACACGTGCCTCGGTGACAAGGCCTCGTGTGTGCCGGACCGCGCCGGGCCCACGTGC
 721 GAGTGTCTCAACCACCTCAACCTGCGTCGGTACAATACCTCGACCGGGGCCTGCGACGAC
 781 ATCGACGAGTGCGCGCTGGCCCGCCCTCAGTGCTCCCACTACTGCGTCAACGCGGACGGC
 841 CATTTCACTTGTGAATGCGCCGACGGCTACTTCAAGGACGAACTTAAGTACTTGTGCTAC
 901 GCTACCGGTCCCGAACCCCTGTTGTTCTACAGTACACGAAACGAAATTAAATATCTGAAA
 961 GTGAAGTCGAAGGAAGTGGTCACACTGGCGACTGGAATAAAAAAGGCTCACGGGGTCACA
 1021 TCGAACGGAATATACGTTTACTGGGTGGAAACAGCTGAAGGTCATCAAGCCATCGTCAAA $341 \mathrm{~S} \quad \mathrm{~N} \quad \mathrm{G} \quad \mathrm{I} \quad \mathrm{Y} \quad \mathrm{V} \quad \mathrm{Y} \quad \mathrm{W}$ 1081 GCTCACATAGACGACGTAGAAAACACTCGACAGGTAATAGTCGGTCTAGGTCTAGAGGAT

Figure 1. Nucleotide sequence and amino acid sequence of VgR from Actias selene Hubner. Start codon (ATG) and termination codon (TAA) are boxed. Signal peptide is underlined, EGF-precursor domain is indicated by wave lines, cytopiasmic domain is indicated by broken lines, ligand-binding domain is Coarse underlined. O-Linked sugar domain is indicated by point line. Transmembrane domain is indicated by long dash point.
$361 \mathrm{~A} \quad \mathrm{H} \mathrm{I} \quad \mathrm{D} \quad \mathrm{D} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{R} \mathrm{Q} \quad \mathrm{V} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{D}$ 1141 CCAGGCGATATAGCCATTGATTTCATGGCCCGCCACATTTACTTCGGCGATGCTGAAAGG $381 \mathrm{P} \quad \mathrm{G} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{A} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{M} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{H} \quad \mathrm{I} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{D} \quad \mathrm{A} \quad \mathrm{E} \quad \mathrm{R}$ 1201 GGCCTGATCTTCGTATGCTACGATAGCGGCTTCAAATGTTTTACTTTGAAAGCTGACACC $401 \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{F} \quad \mathrm{V} \quad \mathrm{C} \quad \mathrm{Y} \quad \mathrm{D} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{F} \quad \mathrm{K} \quad \mathrm{C} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{A} \quad \mathrm{D} \boldsymbol{T}$ 1261 AAACATCCCAAGTTCATCACTCTGGACCCGGTGCACGGGAAGATGTACTGGGCCGATTGG $421 \mathrm{~K} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{K} \quad \mathrm{F} \quad \mathrm{I} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{H} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{M} \quad \mathrm{Y} \quad \mathrm{W} \quad \mathrm{A} \quad \mathrm{D} \quad \mathrm{W}$ 1321 CACAGCCGGCCGGTGATAATGAGGGCCAAGATGGACGGGTCGAGCTCTGAGGTGCTGGTA
 1381 GAGTCGATGACGTCATTCGCCAGTGGCCTGGCGCTGGACGTGCCCAACGACAGACTCTAC
 1441 TTTGTTGATAAGACCATCAAAGTTGTTCTTCTAAGCACTAAAGTAGTTTACTCGTTGTTC $\begin{array}{llllllllllllllllllll}481 & \mathrm{~F} & \mathrm{~V} & \mathrm{D} & \mathrm{K} & \mathrm{T} & \mathrm{I} & \mathrm{K} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{L} & \mathrm{S} & \mathrm{T} & \mathrm{K} & \mathrm{V} & \mathrm{V} & \mathrm{Y} & \mathrm{S} & \mathrm{L} \\ \mathrm{F}\end{array}$ 1501 AAAGAGGCCCACCACCATCCTTACGCGATATCGGTGTTCGAGAACACGGTGTACTGGAGC $501 \mathrm{~K} \quad \mathrm{E} \quad \mathrm{A} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{Y} \quad \mathrm{A} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{V} \quad \mathrm{Y} \quad \mathrm{W}$ 1561 GATTGGATATCAGACTCCATCCAGACTACAGATAAGATTCACAGCTCTTCGCAGAGACAG
 1621 GTGCTGCTCAAGATGGACACTTCGGTATTTGGTCTCCATATGTACCACCCAGCGTTGATG $541 \mathrm{~V} \quad \mathrm{~L} \quad \mathrm{~L} \quad \mathrm{~K} \quad \mathrm{M} \quad \mathrm{D} \quad \mathrm{T} \quad \mathrm{S} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{H} \quad \mathrm{M} \quad \mathrm{Y} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{L} \quad \mathrm{M}$ 1681 AAGAAGATTCCTCATCCGTGCGACGAGCACCCGTGCTCCCATTTCTGTCTGGTCACATCA
 1741 ATCGACACCTACTCGTGTGCTTGTCCAGACGAAATGGAAAACAAGAACGGCAGATGCATC
 1801 CCCAAAGATGACTATCGCCCTCTGCATCTGATAGTCGGCAGCGGTAGACTGTTCACCAAG
 1861 TTCCGGTTGGACGCCATGGGCAATCCGCACAGTCACGTCACCAACTTCTCCTTGGGACGC
 1921 GTGCAAGCTATGACCTATGACTCTGTTCGAGATAGGCTGTATGTGTACGACGGTCGAGAG $\begin{array}{lllllllllllllllllllll}641 & \mathrm{~V} & \mathrm{Q} & \mathrm{A} & \mathrm{M} & \mathrm{T} & \mathrm{Y} & \mathrm{D} & \mathrm{S} & \mathrm{V} & \mathrm{R} & \mathrm{D} & \mathrm{R} & \mathrm{L} & \mathrm{Y} & \mathrm{V} & \mathrm{Y} & \mathrm{D} & \mathrm{G} & \mathrm{R} & \mathrm{E}\end{array}$ 1981 CACTCGATCAGCTATACGAACATGAGCGATTTCACTCACGGCAAAGTGTTCGCCCTGATC
 2041 AAGTTCGGACCCGAGAACGTTGTGGATATGGACTACGATTACGTCTCGGACTCTCTGTAC
 2101 ATGCTGGACTCTGGCAGCGGCTACATTGAGGTGTTGTCCTTGCGTACGCTACATCGCGCC $701 \mathrm{M} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{Y} \quad \mathrm{I} \quad \mathrm{E} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{H} \quad \mathrm{R} \mathrm{A}$ 2161 GTCGTCTACCGCTTCACCGACCGGGAGACTCCCGTCAGCTTCTGCGTGCTGCCGCATTAC $721 \mathrm{~V} \quad \mathrm{~V} \quad \mathrm{Y} \quad \mathrm{R} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{S} \quad \mathrm{F} \quad \mathrm{C} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{H} \quad \mathrm{Y}$ 2221 GGGAAAATGTTGGTAGCGGTGATGCAGACGGATAACGACAACCGGATTTATGTGGACAGC $\begin{array}{llllllllllllllllllllll}741 & \mathrm{G} & \mathrm{K} & \mathrm{M} & \mathrm{L} & \mathrm{V} & \mathrm{A} & \mathrm{V} & \mathrm{M} & \mathrm{Q} & \mathrm{T} & \mathrm{D} & \mathrm{N} & \mathrm{D} & \mathrm{N} & \mathrm{R} & \mathrm{I} & \mathrm{Y} & \mathrm{V} & \mathrm{D} & \mathrm{S}\end{array}$ 2281 ATCGGCTTGGATGGAGACGGGAGGCGGCACATCGTCACCGTCAACATCAGAGGTCCCCGG
 2341 ATAATCCTGAGGTTCTTGCACGGCATGGACAATGTGTACCTGGCGGACGAGGGAAACGGC
$\begin{array}{llllllllllllllllllll}781 & \mathrm{I} & \mathrm{I} & \mathrm{L} & \mathrm{R} & \mathrm{F} & \mathrm{L} & \mathrm{H} & \mathrm{G} & \mathrm{M} & \mathrm{D} & \mathrm{N} & \mathrm{V} & \mathrm{Y} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{E} & \mathrm{G} & \mathrm{N}\end{array} \mathrm{G}$ 2401 ATCATAGATTACCTGCACCCTGAAGGTACCGGTAGGGAGAACTTCCGGGAGCTATCGACT

Figure 1. Contd.
 2461 TCAATATCCAGTATGGCCGTCACCGAAAACTATATATTCTGGACAGATAGAAGAACCCCG
$821 \mathrm{~S} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{S} \quad \mathrm{M} \quad \mathrm{A} \quad \mathrm{V} \quad \mathrm{T} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{Y} \quad \mathrm{I} \quad \mathrm{F} \quad \mathrm{W} \quad \mathrm{T} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{T} \quad \mathrm{P}$ 2521 AAGCTATACTGGGCTAATATACACGAAACCTCTCATAAAATCAGAAGGATCGAACTTAGG $841 \mathrm{~K} \quad \mathrm{~L} \quad \mathrm{Y} \quad \mathrm{W} \quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{I} \quad \mathrm{H} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{S} \quad \mathrm{H} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{I} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{R}$ 2581 GCATTCTCAAACTCCTCTCAGCTCCTGCTGCAGACCACGTACCCCCCACCGTCTCCTCAC $\begin{array}{lllllllllllllllllll}861 & \mathrm{~A} & \mathrm{~F} & \mathrm{~S} & \mathrm{~N} & \mathrm{~S} & \mathrm{~S} & \mathrm{Q} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{Q} & \mathrm{T} & \mathrm{T} & \mathrm{Y} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{S} \\ \mathrm{P} & \mathrm{P} & \mathrm{H}\end{array}$ 2641 GACCCGCTCACCCAGCATCCGTGCCACAGAGACAACCCGTGCTCCCAGGTCTGCGTCCCG $\begin{array}{llllllllllllllllll}881 & \mathrm{D} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{Q} & \mathrm{H} & \mathrm{P} & \mathrm{C} & \mathrm{H} & \mathrm{R} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{C} & \mathrm{S} & \mathrm{Q} & \mathrm{V} \\ \mathrm{C} & \mathrm{C} & \mathrm{V} & \mathrm{P}\end{array}$ 2701 ACCTATTCCCCCACCAACCCCTACAGCTATAAATGCCTATGCTCTCCGGGTCTCGTGTTC
 2761 AGTAACGGGAGATGCACGGAGGTGGCCAGATGCAGCGAAAGCGAAATTTATTGTCACAAA
$921 \mathrm{~S} \quad \mathrm{~N} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{C} \quad \mathrm{T} \quad \mathrm{E} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{R}$ 2821 AGCAATATATGCGTGGAGAAATTCAAGAGGTGCTGTGGAGTCGTGGATTGCTCGAGGGGG
 2881 GAGGACGAAGAAGGATGTACACATATTACAAAGAAGCCAGAAAGCCAGTGCGACCCCAAT $\begin{array}{lllllllllllllllllll}961 & \mathrm{E} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{G} & \mathrm{C} & \mathrm{T} & \mathrm{H} & \mathrm{I} & \mathrm{T} & \mathrm{K} & \mathrm{K} & \mathrm{P} & \mathrm{E} & \mathrm{S} & \mathrm{Q} & \mathrm{C} & \mathrm{D}\end{array} \mathrm{P} \quad \mathrm{N}$ 2941 GAGATACTCTGCTACGGGCTCTGCGTGGCTAAGGATTCCCCTTCCCCTTGTTCGCCTGGG
 3001 AAACATTCAGCTGTTGCAGACCTGACGACCCTTCCCCCTCTGAAATGCGACTGGAACCAG
 3061 TTCACGTGCAAGGAGAGCCCGGTCTGCATCTCGCGGTCGCTGCTCTGTGACGGAGCCAAG
 3121 GACTGTCCGGACGGCAGCGACGAGGGCCCCGACAACTGTGACACCTTGGCTTGCTTTGAC
 3181 ACGGAGTTCATGTGCGCGTCCGGTTCGTGTATCTTGAAAACGTGGAAGTGCGACGGAGAC $1061 \mathrm{~T} \quad \mathrm{E} \quad \mathrm{F} \quad \mathrm{M} \quad \mathrm{C} \quad \mathrm{A} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{C} \quad \mathrm{I} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{T} \quad \mathrm{W} \quad \mathrm{K} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{D}$ 3241 CAGGACTGCAACGACGCTTCCGATGAAATCGACTGTGAGAGCGTATCATGCAAGCCCGGG
 3301 TACTATCAATGCCGCGACCGGGAGTGTATAGAGCTGAAGAAGCGCTGCGACGGACACCAG
 3361 GACTGCTTTGATTACTCCGACGAGGAAGAGTGTGATGAGCCAGTGGCCGTGGAGGAGCCG 1121 D 3421 AAAATACATCGTTGTGCCGAATGGGAGTACAGTTGCGAGCGTAACAGAAGTATCTGTTTA
 3481 CCGATTACGGCAAGGTGCAACATGAAAACCGACTGCCCTGGTGGAACGGATGAGATAGGC
 3541 TGCGACTACCGGTGCACTCCTCACGGCATGTTCGGTTGCAAGCAGCAGATCCGGTGCTTG $\begin{array}{llllllllllllllllll}1181 & \mathrm{C} & \mathrm{D} & \mathrm{Y} & \mathrm{R} & \mathrm{C} & \mathrm{T} & \mathrm{P} & \mathrm{H} & \mathrm{G} & \mathrm{M} & \mathrm{F} & \mathrm{G} & \mathrm{C} & \mathrm{K} & \mathrm{O} & \mathrm{O} & \mathrm{I} \\ \mathrm{R} & \mathrm{R} & \mathrm{C} & \mathrm{L}\end{array}$ 3601 GCCATGAACCGGGTTTGCGACGGAAACAAGGAGTGCGACGATGGATCTGATGAGACGCCC
 3661 GACGCTTGCGCTCTCGTCAACAGAACCTCCCACCTGTACCCGGTGATGCTGTATCCGGCA
 3721 GCAGAGTGCCGCGACGGATTCCTCTGCGGCAACGGTCAATGCATCGAGTGGGCGGAAGTG

Figure 1. Contd.

1241 A E C R D G F L C C G N G O C C I
3781 TGCGACCGCACCCCCAACTGCTTCGACGGATCGGACGAGAGCATCCACTGCTTCTCGGCG 1261 C \quad D \quad R \quad T \quad P \quad N \quad C \quad F \quad D \quad G \quad S \quad D 3841 TGCGACAACAACACGTGCGCCCACGCGTGCCAGGCCACGCCGCTGGGGCCGCGCTGCCTG
 3901 TGTCCGGCCGGGTACAGCGCCGCGCCGGACCGCCGGACGTGCGCCGACGTGGACGAGTGC
 3961 CGCGCGGGACTGTGCTCGCAGGCCTGCGTCAACACCCCCGGCTCCTTCCTCTGCTCGTGC $1321 \mathrm{R} \quad \mathrm{A} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{S}$ Q A C V $\mathrm{N} \quad \mathrm{T} \quad \mathrm{P} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{F} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{S}$ C 4021 CATCACGGGTACGCGCTTAGGTCCGACAGACGGTCGTGCAAGGCCGTCACCGGGAACATG $1341 \mathrm{H} \quad \mathrm{H} \quad \mathrm{G} \quad \mathrm{Y} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{C} \quad \mathrm{K} \quad \mathrm{A} \quad \mathrm{V}$ T G N M 4081 TCCATACTGTACGTGTCTGGCAACACCGTGCGGTCCGTCTCGGCTGACGGCTACGGCGCT $\begin{array}{llllllllllllllllllll}1361 & \mathrm{~S} & \mathrm{I} & \mathrm{L} & \mathrm{Y} & \mathrm{V} & \mathrm{S} & \mathrm{G} & \mathrm{N} & \mathrm{T} & \mathrm{V} & \mathrm{R} & \mathrm{S} & \mathrm{V} & \mathrm{S} & \mathrm{A} & \mathrm{D} & \mathrm{G} & \mathrm{Y} & \mathrm{G}\end{array} \mathrm{A}$
 $\begin{array}{lllllllllllllllllll}1381 & \text { I } & \text { E } & \mathrm{Y} & \mathrm{S} & \mathrm{D} & \mathrm{P} & \mathrm{D} & \mathrm{L} & \mathrm{G} & \mathrm{D} & \mathrm{I} & \mathrm{T} & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{F} & \mathrm{N} & \mathrm{V} \\ \mathrm{R} & \mathrm{T}\end{array}$ 4201 AAGCGTTTGTATGTGACGTCTACGGAGTCGGGGAAGCTGATAGAATTGAACGTGACGCAT
 4261 GACGTGGTCGCCGTGACGAACGTCGGACGGCCGACCAGGGTGGCAGTGGACTGGGTGACG
 4321 GGCAACGTGTACtTCGCGGACAGCACGCCGGGTGCTAGCTGCGTGAGGGTCTGTGACGTC $\begin{array}{lllllllllllllllllll}1441 & G & \text { N } & \text { V } & \text { Y } & \text { F } & \text { A } & \text { D } & \text { S } & \text { T } & \text { P } & \text { G } & \text { A } & \text { S } & \text { C } & \text { V } & \text { R } & \text { V } & \text { C }\end{array}$ D 4381 ACCAGGAGGAGATGCGCCAGGCTGCAGAAGATACCGTCTGACGCAACGGTCAAGGCATTG $\begin{array}{lllllllllllllllllll}1461 & \mathrm{~T} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{C} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{Q} & \mathrm{K} & \mathrm{I} & \mathrm{P} & \mathrm{S} & \mathrm{D} & \mathrm{A} & \mathrm{T} & \mathrm{V} & \mathrm{K}\end{array} \mathrm{A} \quad \mathrm{L}$
 $\left.\begin{array}{lllllllllllllllllll}1481 & I & V & E & P & A & S & R & R & M & F & Y & C & V & Q & R & G & H & E\end{array}\right) \quad$ V 4501 GTCTGGTCCGCCTCGCTCTCAGGCCGGAGCGCCCTGGACCTCCTCCACGTGACCCAGTGC $\begin{array}{llllllllllllllllll}1501 & \mathrm{~V} & \mathrm{~W} & \mathrm{~S} & \mathrm{~A} & \mathrm{~S} & \mathrm{~L} & \mathrm{~S} & \mathrm{G} & \mathrm{R} & \mathrm{S} & \mathrm{A} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{H} & \mathrm{V}\end{array} \mathrm{T}$ 4561 TCGGGTtTAGCTGCCGATtCGTTCACGAGGAGGCTGTATGTGGCAGAGACTGCGCCCCCC 1521 S G L A $\mathrm{A} \quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{T} \quad$ R__R__ 4621 CACATCATGGTCGTCGACTTCGATGGCAAGAATCCCAAGAAGATCCTGACGGAACGTCCA
 4681 CAGCTGCAAGCGCCCCACGCCTTGGCGCTCTTCGAAGACCACATATACTATTTGGTGGGC 1561 _Q__L_ ${ }^{2}$ 4741 GACTCGTACCGCCTCGGGCGCTGCCTGCTCCACGGCCCTAAGAACTGCGAGACCTACATC $\begin{array}{lllllllllllllllllll}1581 & D & \text { S } & \text { Y } & \text { R } & \text { L } & \text { G } & \text { R } & \text { C } & \text { L } & \text { L } & \text { H } & \text { G } & \text { P } & \text { K } & \text { N } & \text { C } & \text { E } & \text { T }\end{array}$ 4801 TACAGGGTGTTCGAAGCGAACACCTTCGTCATCAGACACGAGAGCATCCAGCGCGACGAC $1601 \mathrm{Y} \quad \mathrm{R} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{E} \quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{V}$ 4861 CTGGTCAACGAGTGCGCCGGCCACGACTGCTCCAATGTGTGCGTGCTCGAGAAGGCTCCG $\begin{array}{lllllllllllllllllll}1621 & \mathrm{~L} & \mathrm{~V} & \mathrm{~N} & \mathrm{E} & \mathrm{C} & \text { A } & \text { G } & \text { H } & \text { D } & \text { C } & \text { S } & \mathrm{N} & \mathrm{V} & \mathrm{C} & \mathrm{V} & \mathrm{L} & \mathrm{E} & \mathrm{K} \\ \mathrm{A} & \mathrm{P}\end{array}$ 4921 GTGTGTGTCTGCGACGACGGGCACGTCCGTGACGACGGGAACTGTGACCCCAGCAGCAAA 1641 V C V C D D G \quad H V R D D G \quad N 4981 AACGAGCTCCCCCTGTTCAACGGCTGGACGTACCAGGACTATCAGCGCGGTCACCGCGCC
 5041 AGCATCACCGTCGTCATCGCGGTCCTCGTGCTGTtCCTCGTGTACATAGCACTGTtTGTA

Figure 1. Contd.
 5101 TATTATCACTTCGTCTATAAACCAAAGAGGAAGAGGTCCACGGCTTATACAGAGGTGAGG $1701 \mathrm{Y} \quad \mathrm{Y} \quad \mathrm{H} \quad \mathrm{F} \quad \mathrm{Y} \quad \mathrm{K} \quad \mathrm{P} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$ A Y T E V R 5161 TTCCAGAACAGCTCCGACGAAGCAGCGCAGTTGTCTTGCAGCCCGGCAGTCCAAATGAAT
 5221 GGAAATCAACTTATCAATGGTAACGAATTCGTGAACCCGCTCCAGTACGTGCGCAACGTG
 5281 TGGCAACAATCTATCAGAAGGAAGCCACGTCCTGTTTGTACAGCTGGCCTGTCAATAGCA
 5341 GTGCCTAACTCTCCACAGCAAGACTTCTCCGATACAGAGTCAGATCTAGACGATCGAGAA
 5401 ACAAAGAGGTTTATCCTCAAAAATAAGTTTCTCAAT TAACTTAAGTTACAGGAAATGTCG 1801 T
5461 TTAAATTTTTTTGCTGAGCAAAAAATGGATGGCATATTCCGAATTTTATATTTTAATCCT
5521 ACTATTTAAGATTTAGATTAGGTTATGATATAGCATAACTAACTTCTAGCTTGTTAAATT
5581 ATTTTATTGTTTGAATGTTATCAAAATAGTTTTTATTTGCTAAATTTTATACATAAAATG
5641 TATCGATATTGTATTGATTGAATTTTGAAAATAAAACATTGATTTATATGAGAAAAAAAA
5701 AAAAAAAAAA
Figure 1. Contd.

Figure 2. Phylogenetic analysis was performed by MEGA (version 4.0) program based on the VgRs from various insects. The phylogenetic tree was constructed using the neighbor joining algorithm method and bootstrap values (1000 repetitions) of the branches are indicated. The VgR proteins are from: Bombyx mori (HM172611), Drosophila melanogaster (U13637), Aedes aegypti (L77800), Anopheles gambiae (EAA06264), Solenopsis invicta (AY262832), Nasonia vitripennis (XM-001602904), Apis mellifera (XM-001121707), Periplaneta americana(AB077047), Blattella germanica (AM050637), Rhyparobia maderae (AB255883), Dermacentor variabilis (DQ103506.4), Haemaphysalis longicornis (AB299015).

Figure 3. Analysis of recombinant pET-LBD1 (a) and pET-LBD2 (b) proteins on 12% SDS-PAGE gels. The gels were revealed by Coomassie blue R-250 staining. M, protein marker; lane 1, pET-28a; lane 2, without induction; lanes 3 to 6 , after induction by $0.3,0.6,1.0 \mathrm{mM}$ IPTG, respectively.

Figure 4. Western blot analysis of recombinant proteins with anti His-tag antibody. A 24 kDa (a) and a 40 kDa (b) protein band were detected by western blotting. No immunoreactive band was found in the control group. M, protein marker. Lanes1-2, after induction by $0.3,0.6 \mathrm{mM}$ IPTG, respectively; Lane 3, No IPTG induction.

DISCUSSION

In this study, a full-length cDNA encoding VgR gene was identified from A. selene and the predicted protein consists of 1812 amino acids with a calculated molecular mass of 203.9 kDa , which is similar to other insect VgRs (Sappington and Kokoza, 1996; Liu et al., 2011). Sequence analysis shows Ash- VgR is highly homologous to B. mori and has the conserved structures as found in
other insects (Tufail and Takeda, 2009).There are eleven cysteine-rich repeats in $A s h-\mathrm{VgR}$ like $A p-\mathrm{VgR}$ reported in our previous study (Liu et al., 2011), however, this structure is different from vertebrate VgRs (Tufail and Takeda, 2009). In addition, the prokaryotic expression and purification of $A s h-\mathrm{VgR}$ were successfully performed in this experiment, and the interaction between $A p-\mathrm{Vg}$ and $A p-\mathrm{VgR}$ will be further carried out to investigate the biological functions of Ash -VgR .

Figure 5. Western blot analysis of recombinant proteins using antigen specific antibodies. (a) Western blotting of pET-LBD1, (b) western blotting of pET-LBD2. Lane 1, without induction; lane 2 , after induction.

ACKNOWLEDGEMENTS

This work was supported by the earmarked fund for Modern Agro-industry Technology Research System (CARS-22-SYZ10), Youth Foundation of Anhui Agricultural University (2010zd10) and Natural Science Foundation of Anhui Province of China (11040606M98).

REFERENCES

Chen ME, Lewis DK, Keeley LL, Pietrantonio PV (2004). cDNA cloning and transcriptional regulation of the vitellogenin receptor from the fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Mol. Biol., 13: 195-204.
Ciudad L, Piulachs MD, Belles X (2006). Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS. J., 273: 325-335.
Goldstein JL, Brown MS, Anderson RGW, Russell DW, Schneider WJ (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell. Biol., 1: 1-39.
Harlow E, Lane D (1999). Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press.
Herz J, Bock H (2002). Lipoprotein receptors in the nervous system. Ann. Rev. Biochem., 71: 405-434.
Krishnan M, Muthumeenakshi P, Bharathiraja C, Warrier S, Subramoniam T (2008). A comparative study on vitellogenin receptor of a lepidopteran insect (Spodoptera litura) and a decapod crustacean (Scylla serrata): Phylogenetic implication and co-evolution with vitellogenins. J. Endocrinol. Reprod., 1:13-23.
Lin Y, Zhao P, Hou Y, Li J, Gong DP, Su Q, Xia QY, Xiang ZH (2005). Vitellogenin and vitellogenin receptor gene of the silkworm Bombyx mori. Acta. Zoologica. Sinica., 51: 117-125.
Liu QN, Zhu BJ, Liu CL, Wei GQ, Wang ZG (2011). Characterization of vitellogenin receptor (VgR) from the Chinese oak silkworm, Antheraea pernyi. Bulletin. Insectol., 64: 167-174.
Mitchell RD, Ross E, Osgood C, Sonenshine DE, Donohue KV, Khalil SM, Thompson DM, Roe RM (2007). Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick. Insect Biochem. Mol. Biol., 37:375388.

Nykjaer A, Willnow TE (2002). The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends. Cell. Biol. 12:273280.

Qian C, Liu CL, Zhu BJ, Meng Y, Wei GQ (2011). Identification and expression analysis of vitellogenin from silk-producing insect, Actias selene Hubner. Afr.J. Biotechnol., 10: 999-1010.
Raikhel AS, Dhadialla TS (1992). Accumulation of yolk proteins in insect oocytes. Annu.Rev. Entomol., 37: 217-251.
Sappington TW, Kokoza VA (1996). Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proc. Nat. Acad. Sci., 93:8934-8 999.

Schneider WJ, Nimpf J, Brandes C, Drexler M (1999). The low-density lipoprotein receptor family, genetics, function, and evolution. Curr. Atheroscler. Reports., 1: 115-122.
Schonbaum CP, Lee S, Mahowald AP (1995).The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily. Proc. Nat. Acad. Sci. 92:1485-1489.
Strickland DK, Gonias SL, Argraves WS (2002). Diverse roles for the LDL receptor family. Trends. Endocrinol. Metabol., 13: 66-74.
Tamura K, Dudley J, Nei M, (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599.
Tufail M, Takeda, M (2005). Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. Insect Mol. Biol., 14: 389-401
Tufail M, Takeda M (2007). Molecular cloning and developmental expression pattern of the vitellogenin receptor from the cockroach, Leucophaea maderae. Insect Mol. Biol., 37: 235-245.
Tufail M, Takeda, M (2009). Insect vitellogenin/lipophorin receptors: Molecular structures, role in oogenesis,and regulatory mechanisms. J. Insect. Physiol., 55:88-104.

Wileman T, Harding C, Stahl P (1985). Receptor-mediated endocytosis. Biochem. J., 232: 1-14.
Willnow TE (1999). The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J. Mol. Med., 77: 306-315.
Zhu BJ, Wu XZ (2008). Identification of outer membrane protein ompR from rickettsia-like organism and induction of immune response in
Crassoatrea ariakensis. Mol. Immunol., 45: 3198-3204.

[^0]: *Corresponding author. E-mail: cyschx@163.com. Tel/Fax: +86 5515786129.

