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Information about data arrangement methodologies and optimal sample size in estimating the Pearson 
correlation coefficient (r) among maize traits are still limited. Furthermore, some data arrangement 
methodologies currently used may be increasing multicollinearity in multiple regression analysis. This 
study aimed to investigate the statistical behavior of the r and the multicollinearity of correlation 
matrices among maize traits in different data arrangement scenarios and different sample sizes. Data 
from 45 treatments [15 simple maize hybrids (Zea mays L.) conducted in three locations] were used. 
Eleven traits were accessed and three datasets (scenarios) were formed: (1) Coming from all the 
sampled observations (plants), n = 900; (2) Coming from the average of five plants per plot, n = 180; and 
(3) Coming from the average of treatments, n = 45. A thousand estimates of r were held in each scenario 
to 60 sample sizes by bootstrap simulations with replacement. Confidence intervals (CI) were 
estimated. One hundred eighty correlation matrices were estimated and the condition number (CN) 
calculated. Data coming from average values of plots and average values of treatments overestimates 
the r up to 24 and 34%, resulting in an increase of 24 and 131% in the matrices’ CN. Trait pairs with high 
r require a smaller number of plants, being the CI inversely proportional to the magnitude of the r. Two 
hundred and ten plants are sufficient to estimate the r in the CI of 95% < 0.30. 
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INTRODUCTION 
 
One of the most used statistical methods to measure the 
degree of association (linear) between two random traits 
is the Pearson product-moment  correlation  coefficient (r) 

(Pearson, 1920) and has been used in ecological studies 
to estimate the direction and degree of association 
among   traits    (Annicchiarico   et   al.,   1999;   Yao  and 
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Mehlenbacher, 2000; Yang and Su, 2016). 

As this measure only reveals the linear association 
between two traits, techniques such as path analysis 
(Wright, 1923) and canonical correlation (Hotelling, 1936) 
were developed in order to explain the interrelationships 
among traits or group of traits, being worldwide used in 
plant breeding. These techniques depend on the linear 
correlation matrix among traits and, due its estimates be 
based on principles of multiple regression, the low 
dependence among the traits considered as explanatory 
is required. When this assumption is not met, it is said 
that the matrix presents multicollinearity (Blalock, 1963). 

Although there are techniques to adjust the 
multicollinearity (Hoerl and Kennard, 1970b) these 
techniques are essentially correctives, applied only after 
the linear correlation matrix be estimated. Since the 
estimates of correlation coefficients basically involve the 
behavior analyses of the variances, that is, deviations 
from the average, it is possible that some methods of 
data arrangement currently used may be masking the 
actual averages and variances of a trait (X) on a dataset 
of (n) observations. For example, in a bibliographic 
survey, we found that the correlation matrices of some 
agronomic studies using path analysis were estimated 
with average values of several plants sampled in each 
experimental unit (Khameneh et al., 2012; Toebe and 
Cargnelutti 2013; Adesoji et al., 2015; Kumar and Babu, 
2015; Nataraj et al., 2015). 

In field experiments, it is very common to access 
values of traits in several plants of each experimental 
unit. The utilization of average value of these plants in 
order to estimate the r and perform inferences to the 
population under study, however, may be questionable. 
In a theoretical explanation focused on plant breeding, 
Olivoto et al. (2016) reported that the use of average 
values in estimating the r between a traits pair (e.g. rx:y) 
may overestimate its magnitude mainly due the reduction 
of standard deviation (SD) in the dataset, when 
compared with estimates performed with values coming 
from all sampled plants. In addition, the observed SD 
(e.g. for X and Y) when average values of plots or 
treatments are used, represents the SD of the average of 
the originally sampled plants, and not the actual SD 
coming from all these plants; therefore, this SD is 
masked and tends to present lower itself. This fact should 
be taken into consideration, because the inference of the 
direction and magnitude of association among traits when 
average values are used is being made for a different 
population of the original. 

There were no studies in the literature comparing 
different data arrangement methodologies on estimates 
of   Pearson’s   correlation   coefficients.  In  addition,  the  

 
 
 
 
information about the optimal sample size in order to 
estimate the r among trait pairs in the maize crop in an 
acceptable confidence interval is needed. In this context, 
the aims of the present study were to (i) reveal the 
statistical behavior of estimated Pearson’s correlation 
coefficients in different data arrangement scenarios and 
different sample sizes, (ii) reveal the impact of data 
arrangement scenarios and sample sizes on 
multicollinearity of matrices, and (iii) propose the optimal 
sample size in order to estimate r among trait pairs in the 
maize crop in an acceptable confidence interval. 
 
 

MATERIALS AND METHODS 
 
Site description and experimental design 
 
Field trials were conducted in 2014/2015 growing season in Santo 
Expedito do Sul (27°56' S, 51°37' W; 728 m asl), São José do Ouro 
(27°44' S, 51°32' W; 796 m asl) and Viadutos (27°33' S, 52°00' W; 
628 m asl), municipalities of Northeastern Rio Grande do Sul State, 
Brazil. During the experimental period, the air averages 
temperatures at the sites of the experiments were 24.5, 23.8 and 
25.2ºC and the natural rainfall of 823, 958 and 746 mm, 
respectively. All locations are within a 70-km radius, have a 
Haplustox soil, and were chosen due to similarities of soil and 
climatic characteristics, which provided to them low variability of 
temperature and rainfall. Thus, abiotic effects on the plants’ 
response were minimized as much as possible. 

Prior to the installation of the trials, each site was surveyed for 
potentially disruptive characteristics. To ensure uniformity inside the 
block and heterogeneity between the blocks, a randomized 
complete block design in a 15 × 3 factorial treatment design (15 
simple maize hybrids x three cropping fields) with four replications 
was used, totaling 180 plots. Each plot contained six 5-m-long 
cultivar rows, spaced by 0.45 m. Only the two central rows were 
used to prevent edge effects. In each plot, five representative plants 
(observations) were selected from which the ear was removed for 
further evaluation. To ensure that traits (of plant and ear) were 
assessed in the same individual, a sample tracking system was 
created, identifying each ear with a label containing a sequence 
number that characterized the site, the hybrid, the repetition and the 
evaluated plant. 

 
 
Accessed traits 

 
Plant height (PH) and the ear insertion height (EH) were measured 
(cm) from the ground surface to the flag leaf node and the support 
node of the highest ear at the stem, respectively. Tagged ears were 
evaluated at a laboratory. The following traits were accessed: ear 
length (EL) (cm), ear diameter (ED) (cm), number of rows per ear 
(NRE) (un), number of kernels per row (NKR) (un), cob length (CL) 
(cm), cob diameter (CD) (mm), cob diameter / ear diameter ratio 
(CD / ED) (decimal), total number of kernels per ear (TNK) (un) the 
thousand-kernel weight (TKW) (g). The ratings were performed as 
follows:  The lengths and diameters were measured with a digital 
caliper. After counting the number of rows per ear and the number 
of  kernels per row, the kernels of each ear were manually-threshed 
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and cleaned with pressurized air. Subsequently, the kernels-weight 
was measured with an analytical balance and the total number of 
kernel each ear was measured with seed counter equipment. 
Finally, the grain moisture was measured with a universal moisture 
meter. With this data, and with the humidity adjusted to 14% base 
moisture, we determined the thousand-kernel weight each ear by 
the equation: TKW = [(KME/TNK) × 1000]. Where: TKW = 
Thousand kernel weight; KME = Kernel mass per ear; TNK = the 
total number of kernels per ear. All evaluations were carried out 
carefully in an ear at a time, to maintain traceability of the sample, 
avoid any systematic errors as well as minimize the random errors. 
 
 

Statistical procedures 
 
Bootstrap simulations 
 

Three data arrangement scenarios were considered: (i) The data 
used were originated from all sampled observations (ASO), with a 
total sample size of 900; (ii) In this scenario, the data used were 
obtained from the average of the five sampled plants of each plot 
(AVP), with a total sample size of 180, and (iii) Finally, the average 
of the treatments (15 treatments × 3 locations), with a total sample 
size of 45 was considered (AVT). 

Aiming to match the sample size in each scenario, 60 sample 
sizes (plants) were simulated. The size of the initial sample was 15 
plants, and the rest were obtained with an increment of 15 plants up 
to 900 plants. For each one of 55 trait pairs [n × (n-1)]/2, where n 
=11, in each sample size of each scenario, 1000 simulations of the 
r were performed by bootstrap resampling with replacement (Efron, 
1979). Thus, for each pair of traits, 1000 estimates of the r were 
obtained. Simulations were performed by the Structural Equation 
Modeling procedure in Statistica 10.0 software. 
 
 
Descriptive analysis of correlation coefficients 
 
In each sample size of each scenario, the 1000 simulated r were 
subjected to descriptive analysis, where it was determined the 
maximum, (97.5%), average, (2.5%) and minimum values. Later, 
the amplitude of the 95% confidence interval was calculated by the 
difference between the percentile 97.5 and 2.5%. For comparison, 
three trait pairs that came closest to the following r magnitudes 
were chosen: r ≈ |0|, r ≈ |0.5| and r ≈ |1.0|. The statistics mentioned 
of these three trait pairs has formed scatter diagrams where the x-
axis corresponds to the number of plants and the y-axis 
corresponding to the descriptive statistics.  
 
 
t-test to compare the correlation coefficient among the 
scenarios 
 

In order to determine whether the inferences could be made with 
the average of 60 sample sizes, initially the r average of each traits 
pair at the different sample sizes were compared by t-test at 5% 
probability error (Steel et al., 1997) in the following scenario 
combinations: ASO × AVT, ASO × AVP and AVP × AVT. Inferences 
were made using the average of sample sizes for each pair of traits 
if the 60 samples presented the same result on the test. 

A test comparing the 3300 values of r (55 trait pairs × 60 sample 
size) was also performed. Histograms were developed for each 
scenario combination (ASO × AVT, ASO × AVP and AVP × AVT) in 
order to show the behavior of the estimated r distribution. These 
procedures were performed using t.test and hist functions in R 
software (R core Team, 2016). Descriptive statistics such as 
asymmetry, average, mode, 25

th
 and 75

th 
percentiles, maximum, 

and minimum applied in each scenario are also presented in 
boxplot    graphics.   These    procedures    were   performed   using 
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summary and boxplot functions in R software. 
 
 

Diagnosis of multicollinearity in the scenarios 
 
Data of 11 traits obtained by the average of 1000 bootstrap 
simulations in each sample size of each scenario were used in 
order to estimate correlation matrices. A total of 180 matrices (60 
sample size x three scenarios) were estimated. In each matrix, 
multicollinearity diagnosis was performed by the condition number 
(CN) of the matrix. The CN was obtained by the ratio between the 
largest and the smallest eigenvalue of the matrix. The degree of 
multicollinearity was considered weak, moderate and severe when 
CN ≤ 100, between 100 and 1000 and ≥ 1000, respectively 
(Mansfield and Helms, 1982). A graph containing the number of 
plants (x-axis) and the CN of each scenario (y-axis) was developed. 
This analysis was performed using the Multicollinearity Diagnostic 
procedure in Genes software (Cruz, 2013). 
 
 

RESULTS 
 

Statistical properties of the correlation coefficient 
 

The estimated r presented the largest amplitude when 
the lowest number of plants was used. For the pair EH x 
PH, the magnitude of r oscillates between -0.02 and 0.98 
(Figure 1a), 0.42 to 0.99 (Figure 1b) and 0.71 to 0.99 
(Figure 1c) in ASO, AVP, and AVT scenarios, 
respectively. This range was reduced as the number of 
plants increased; however, it appeared higher in the ASO 
scenario. The average r between the 60 different 
numbers of plants evaluated was increased by 
approximately 11% (r = 0.92) and 15% (r = 0.96), in AVP 
and AVT scenarios, respectively (Figure 1b and c). 

For trait pairs with r ≈ | 0.5 | as NKR × ED, the 
amplitude of r was larger, irrespectively of the scenario 
and the number of assessed plants. With 15 plants, r 
ranged between -0.33 and 0.89 in the ASO scenario 
(Figure 1d), between -0.62 and 0.91 in the AVP scenario 
(Figure 1e) and between 0.03 and 0.90 in the AVT 
scenario (Figure 1f). The average r was increased by 
approximately 16% (r = 0.58) and 24% (r = 0.62), in AVP 
and AVT scenarios, respectively. Trait pairs with r ≈ | 0 | 
as DSDE x CE presented the highest amplitudes, with 
similar r distribution in the studied scenarios (Figure 1g to 
i).  

For the pair PH × EH, 270 plants were enough to 
estimate the r in the ASO scenario in the CI 95% ≤ 0.10 
(Figure 2a). For AVP and AVT scenarios, however, the 
number of plants needed was only 45 (Figure 2b) and 30 
(Figure 2c), respectively. Trait pairs with r ≈ | 0.5 | (NKR x 
ED), needed 660, 465 and 285 plants, in ASO, AVP, and 
AVT scenarios, respectively. For CD/ED x EL combination, 
CI 95% ≤ 0.10 was not reached even with 900 plants. 
 
 

Comparison of correlation pairs between the 
scenarios 
 

The t-test revealed no differences among the sample 
sizes in  all  scenario  combinations. Thus, the inferences  
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Figure 1. Descriptive analysis of 1000 bootstrap estimates of Pearson’s correlation coefficient. Symbols represent the 
maximum values, percentile 97.5%, average, percentile 2.5% and minimum, obtained for the pair of traits plant height x ear 
height estimated in ASO (a) in AVP (b) and AVT (c) scenarios; number of kernels row x ear diameter estimated in ASO (d), 
AVP (e) and AVT (f) scenarios and cob diameter/ear diameter ratio x ear length, estimated in ASO (g), AVP (h) and AVT (i) 
scenarios. 

 
 
 

 
 

Figure 2. Amplitude of the correlation coefficient for the confidence interval of 95%. (a) ASO scenario. (b) AVP scenario and (c) AVT 
scenario. Lines in grey scale represent the pair cob diameter / ear diameter ratio x ear length (CD/ED x EL), number of kernels rows x 
ear diameter (NKR x ED) and plant height x ear height (PH x EH). 
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for each pair of traits were performed with the average of 
60 sample sizes. Among the 165 comparisons (55 trait 
pairs in three scenario combinations), 164 differed. Only 
one did not differ. In approximately 82% of the cases, 
average values (AVT and AVT scenarios) overestimated 
the magnitude of the r (Table 1). 

Comparing the estimated r in ASO × AVT scenarios, of 
55 tested pairs, ten (18%) had a higher average when all 
sampled observations were used (Table 1). Comparing 
ASO × AVP scenarios, only seven combinations (13%) 
had a higher average r in correlation analysis estimated 
with all observations. Comparing the averages (AVP × 
AVT), 12 combinations (22%) were higher when the 
average of the plots was used (Table 1).  

A t-test comparing the average r of 55 trait pairs in ASO 
x AVT scenario combination confirmed the difference 
between these (t-value = -12.89, P < 0.001). The average 
r with low magnitudes is due to the use of all pairs of 
correlation, where there are positive and negative values. 
The estimates in the ASO scenario showed a distribution 
similar to normal. That is related to the low asymmetry 
value (0.009), smaller r amplitude (-0.273 to 0.912), and 
the median value (0.268) that is similar to the average 
value (0.282), although the tests reject the hypothesis of 
normality (Kolmogorov-Smirnov = 0.048, P < 0.01) 
(Figure 3). The estimates carried out in the AVT scenario, 
however, shows a negative asymmetrical distribution of r 
values (-0.843), with a greater r amplitude (-0.552 to 
0.956) and the median value (0.484), higher than the 
average (0.379). The distribution of r values in this 
scenario do not follow the normal distribution 
(Kolmogorov-Smirnov = 0.137, P = < 0.01) (Figure 3). 

The comparison of ASO × AVP scenarios shows a 
behavior similar to that discussed previously, though with 
a slightly smaller difference (t-value = -9.60, P < 0.0001). 
For the AVP scenario, r also presented negative 
asymmetry (-0.566). The amplitude was also lower (-
0.427 to 0.926), with a median value (0.399) higher than 
the average (0.350) (Figure 4). The distribution in this 
scenario was not normal (Kolmogorov-Smirnov = 0.136, 
P < 0.01). 

The t-test comparing the average r between the AVP × 
AVT scenarios combinations, revealed difference (t-value 
= -3.73, P < 0.001). With the measures of central 
tendency and amplitudes of these scenarios discussed 
above, both showed a non-normal distribution of r, with a 
clear tendency of most of the observed values being 
higher than r average (Figure 5). 

The r was increased by approximately 24 and 34% in 
the AVP and AVT scenarios, respectively. In addition, the 
r amplitude and standard deviation were higher in these 
scenarios (Figure 6). 
 
 
Multicollinearity 
 
Multicollinearity  was  considered   severe   for   the  three  
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scenarios, regardless of the number of assessed plants 
(Figure 7). The use of averages (AVP and AVT 
scenarios) increased the CN of the correlation matrices. 
The largest changes occurred when the number of plants 
was low (n < 100). For example, with 45 and 60 plants, 
the CN increased by 118 and 75% for the AVP scenarios 
and 250 and 68% for the AVT scenario, respectively. 
Although in some cases the CN was higher for the ASO 
scenario, on mean, CN was increased by 24 and 131% in 
AVP and AVT scenarios, respectively (Figure 7). 
 
 
DISCUSSION 
 
The reduction of individual variation (standard deviation) 
observed in the scenarios AVP and AVT was the main 
factor responsible for overvaluing the r of trait pairs. This 
fact can be explaining due standard deviation be the 
divisor on correlation’s formula. If covariance XY 
(dividend of formula) is similar in both scenarios, 
however, the standard deviation of X and Y traits (divisor 
of formula) are smallest, the magnitude of correlation 
coefficients will be greater.  

The higher number of plants required for estimation of 
the r at the 95% CI ≤ 0.10 in trait pairs with less intensity 
of linear association, shows that the researcher must take 
into consideration the magnitude of the trait pairs, being 
that the confidence interval will be inversely proportional 
to the magnitude of its correlations. The magnitude of the 
CI used here (95% CI ≤ 0.10) it is not a rule, being that 
each researcher must adopt the appropriate confidence 
level for its inferences. If we consider the CI 95% CI < 
0.30, 210 plants are enough for estimating trait pairs with 
low magnitude (r < 0.10). This number of plants it is 
perfectly possible of to be evaluated. The experimental 
design (number of treatments and repetitions) will set 
then, the number of plants to be sampled in each plot. In 
experiments with large numbers of experimental units 
(e.g. factorial designs), the increase in sample size will 
provide greater confidence in the estimates provided that 
they are properly followed the sampling procedures and 
maintained traceability of these samples. 

Although for trait pairs with high linear association (EH 
x PH) AVP and AVT scenarios needed 83 and 89% fewer 
plants to estimate r, the average r in these scenarios was 
increased by 11 and 15%, respectively, compared to the 
ASO scenario (r = 0.83). In an analysis that depends on 
of the linear correlation matrix for their estimates, e.g., 
canonical correlation, path analysis and stepwise multiple 
linear regression procedures, high linear association 
magnitudes among explanatory traits make it difficult to 
analyze, threatening the statistic and the inferential 
interpretation (Graham, 2003). 

A recent study revealed that multicollinearity begins to 
seriously distort the estimates of the path coefficients 
when the explanatory traits show r > | 0.7 | (Dormann et 
al.,   2013).  While   there   have    been    observed   high  
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Table 1. t-statistics for the average correlation coefficient (r) of 55 trait pairs estimated in 60 different numbers of plants.  
 

Trait pairs  

ASO x AVT  ASO x AVP  AVP x AVT 

Average r 
t 

 Average r 
t 

 Average r 
t 

ASO AVT  ASO AVP  AVP AVT 

EH x PH 0.834 0.955 782.08**
 

 0.834 0.955 -782.08**
 

 0.925 0.955 484.84**
 

EL x PH 0.249 0.573 944.63**
 

 0.249 0.414 -460.71**
 

 0.414 0.573 547.30**
 

EL x EH 0.215 0.546 1079.40**  0.215 0.399 -559.79**
 

 0.399 0.546 516.39**
 

ED x PH 0.478 0.750 910.05**
 

 0.478 0.641 -559.57**
 

 0.641 0.750 389.69**
 

ED x EH 0.458 0.712 805.67**  0.458 0.610 -558.02**
 

 0.610 0.712 315.06**
 

ED x EL 0.417 0.513 205.64**  0.417 0.514 -113.86**
 

 0.514 0.513 -1.62ns
 

NRE x PH 0.234 0.447 458.76**  0.234 0.360 -241.01**
 

 0.360 0.447 155.68**
 

NRE x EH 0.160 0.346 550.12**  0.160 0.282 -290.51**
 

 0.282 0.346 154.48**
 

NRE x EL 0.028 0.040 38.31**  0.028 0.082 -107.56**
 

 0.082 0.040 -93.21**
 

NRE x ED 0.498 0.621 391.20**  0.498 0.578 -248.07**
 

 0.578 0.621 224.23**
 

NKR x PH 0.234 0.568 1008.10**  0.234 0.402 -511.47**
 

 0.402 0.568 534.93**
 

NKR x EH 0.206 0.519 942.17**
 

 0.206 0.387 -482.23**
 

 0.387 0.519 379.25**
 

NKR x EL 0.646 0.618 68.570**
 

 0.646 0.659 -26.22**
 

 0.659 0.618 -103.53**
 

NKR x ED 0.319 0.334 22.55**  0.319 0.394 -83.45**
 

 0.394 0.334 -73.38**
 

NKR x NRE 0.067 0.092 58.63**  0.067 0.164 -124.62**
 

 0.164 0.092 -95.29**
 

CD x PH 0.256 0.416 253.86**  0.256 0.376 -246.66**
 

 0.376 0.416 59.46**
 

CD x EH 0.313 0.488 248.73**  0.313 0.439 -215.07**
 

 0.439 0.488 66.05**
 

CD x EL 0.308 0.359 98.98**  0.308 0.351 -76.61**
 

 0.351 0.359 14.34**
 

CD x ED 0.653 0.730 263.58**  0.653 0.729 -325.70**
 

 0.729 0.730 2.64*
 

CD x NRE 0.269 0.259 23.550**
 

 0.269 0.298 -59.45**
 

 0.298 0.259 -69.79**
 

CD x NKR 0.069 0.086 294.860**
 

 0.069 0.064 7.30**
 

 0.064 0.087 -228.23**
 

CL x PH 0.222 0.485 555.35**  0.222 0.369 -339.33**
 

 0.369 0.485 288.34**
 

CL x EH 0.170 0.449 552.07**  0.170 0.340 -388.77**
 

 0.340 0.449 225.58**
 

CL x EL 0.908 0.936 171.82**  0.908 0.923 -69.04**
 

 0.923 0.936 70.45**
 

CL x ED 0.430 0.479 79.17**  0.430 0.523 -106.13**
 

 0.523 0.479 -56.79**
 

CL x NRE 0.023 0.003 53.69**
 

 0.023 0.065 -82.83**
 

 0.065 0.003 -152.69**
 

CL x NKR 0.639 0.592 136.66**
 

 0.639 0.647 -26.52**
 

 0.647 0.592 -160.26**
 

CL x CD 0.343 0.393 74.94**  0.343 0.391 -69.94**
 

 0.391 0.393 3.76**
 

TNK x PH 0.303 0.642 998.75**  0.303 0.488 -556.69**
 

 0.488 0.642 471.33**
 

TNK x EH 0.226 0.556 1051.70**  0.226 0.419 -564.68**
 

 0.419 0.556 399.82**
 

TNK x EL 0.548 0.493 147.44**
 

 0.548 0.540 11.17**
 

 0.540 0.493 76.05**
 

TNK x ED 0.532 0.639 192.04**  0.532 0.594 -110.93**
 

 0.594 0.639 70.25**
 

TNK x NRE 0.519 0.691 350.18**  0.519 0.625 -242.68**
 

 0.625 0.691 121.83**
 

TNK x NKR 0.719 0.736 69.52**  0.719 0.777 -136.53**
 

 0.777 0.736 110.79** 

TNK x CD 0.191 0.116 180.57**
 

 0.191 0.179 31.27**
 

 0.179 0.116 144.95** 

TNK x CL 0.535 0.428 274.75**
 

 0.535 0.502 56.70**
 

 0.502 0.428 148.45** 

CD/ED x PH -0.123 0.2273 235.70**
 

 -0.123 -0.174 120.65**
 

 -0.174 0.227 111.10**
 

CD/ED x EH -0.034 0.0840 91.19**
 

 -0.034 -0.051 33.37**
 

 -0.051 0.084 65.52** 

CD/ED x EL 0.002 0.0400 84.15**
 

 0.002 -0.079 124.89**
 

 -0.079 0.040 55.65**
 

CD/ED x ED -0.121 0.0576 88.49**
 

 -0.121 -0.078 -57.34**
 

 -0.078 0.058 29.73**
 

CD/ED x NRE -0.13 0.3127 210.45**
 

 -0.130 -0.219 116.49**
 

 -0.219 0.313 86.75**
 

CD/ED x NKR -0.221 0.4987 717.16**
 

 -0.221 -0.360 355.08**
 

 -0.360 0.499 336.64** 

CD/ED x CD 0.666 0.636 80.68**
 

 0.666 0.620 120.02**
 

 0.620 0.636 62.00**
 

CD/ED x CL 0.038 0.048 20.31**  0.038 -0.029 126.76**
 

 -0.029 0.048 146.04**
 

CD/ED x TNK -0.265 0.5475 504.87**
 

 -0.265 -0.421 301.55**
 

 0.421 0.547 190.86** 

TKW x PH 0.405 0.638 505.66**  0.405 0.539 -329.62**
 

 0.539 0.638 254.21**
 

TKW x EH 0.418 0.674 537.91**  0.418 0.553 -335.17**
 

 0.553 0.674 286.18**
 

TKW x EL 0.364 0.594 591.29**  0.364 0.452 -214.08**
 

 0.452 0.594 432.89**
 

TKW x ED 0.488 0.685 617.07**  0.488 0.623 -499.34**
 

 0.623 0.685 214.27**
 



Olivoto et al.          99 
 
 
 
Table 1. Contd 
 

TKW x NRE -0.206 0.0141 626.90**  -0.206 -0.082 -223.54**
 

 -0.082 0.014 130.71**
 

TKW x NKR 0.096 0.209 288.70**  0.096 0.140 -104.59**
 

 0.140 0.209 159.98**
 

TKW x CD 0.482 0.738 564.25**  0.482 0.644 -472.08**
 

 0.644 0.738 204.82**
 

TKW x CL 0.384 0.550 305.53**  0.384 0.471 -182.82**
 

 0.471 0.550 164.41**
 

TKW x TNK -0.102 0.130 528.63**  -0.102 0.013 -229.57**
 

 0.013 0.130 277.06**
 

TKW x CD/ED 0.163 0.314 338.57**  0.163 0.236 -197.08**
 

 0.236 0.314 172.82**
 

 

Average values represent 1000 bootstrap simulations of the original data coming from all sampled observations (ASO), coming from the average of 
each plot (AVP) and coming from the average of treatments (AVT). Coefficients in bold indicate the pairs in which r was lower with the use of 
averages. ‘*’ and ‘**’ show the significances at 0.001 and 0.01 of probability level, respectively. ‘ns’ is not significant. PH, Plant heigth; EH, ear heigth; 
EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number of kernels per row; CL, cob length; CD, cob diameter; CD/ED, cob 
diameter / ear diameter ratio; TNK, total number of kernels per ear; TKW, thousand-kernel weight. 
 
 
 

 
 

Figure 3. Distribution of average values of correlation coefficient in ASO x 
AVT scenarios combination. Columns represent the observed values. 
Black and gray lines represent the normal distribution and Kernel density 
estimation, respectively. ASO and AVT scenarios represent the correlation 
coefficients estimated by all sampled observations, and by the average 
values of treatments, respectively. In the lower plot, the average 
(rhombus), the median (vertical line), the distance between the 25th and 
75th percentiles (length of the box) and the maximum and minimum values 
(outer spread) of the estimated correlation coefficient are presented for 
each scenario. 

 
 
 
correlations in the ASO scenario (e.g. EH x PH, r = 0.83), 
the higher values for the same pair (r = 0.92) and (r = 
0.96) estimated in APV and AVT scenarios, respectively, 
demonstrated that these data arrangement methodologies 
overestimate the magnitude of the r and may result in 
larger problems in estimates of multiple regression 
parameters, leading to an erroneous interpretation of 
predictors in a statistical model. Thus, these methods 
must be carefully evaluated by the researchers when the 
goal is to use the correlation matrix in studies involving 
multiple regression, as for this, the independence or the 

less degree of dependence among explanatory traits is 
sought (Prunier et al., 2014; Montgomery et al., 2012) 

Average values (AVP and AVT scenarios), visibly 
elevated the multicollinearity of the matrices, confirming 
the earlier discussion. Although there are variations in CN 
in each studied sample size, the multicollinearity was 
increased on average by 24 and 131% when the AVP 
and AVT scenarios were considered in the estimation of 
correlation matrices. Although there are techniques for 
adjusting the multicollinearity as to delete the traits 
responsible for inflating  the  variance  of  the  coefficients  
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Figure 4. Distribution of average values of correlation coefficient in ASO x 
AVP scenarios combination. Columns represent the observed values. Black 
and gray lines represent the normal distribution and Kernel density 
estimation, respectively. ASO and AVP scenarios represent the correlation 
coefficients estimated by all sampled observations, and by the average 
values of plots, respectively. In the lower plot, the average (rhombus), the 
median (vertical line), the distance between the 25th and 75th percentiles 
(length of the box) and the maximum and minimum values (outer spread) of 
the estimated correlation coefficient are presented for each scenario. 

 
 
 

 
 

Figure 5. Distribution of average values of correlation coefficient in AVP x AVT 
scenarios combination. Black and gray lines represent the normal distribution 
and Kernel density estimation, respectively. AVP and AVT scenarios represent 
the correlation coefficients estimated by average values of plots and treatments, 
respectively. In the lower plot, the average (rhombus), the median (vertical line), 
the distance between the 25th and 75th percentiles (length of the box) and the 
maximum and minimum values (outer spread) of the estimated correlation 
coefficient are presented for each scenario. 
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Figure 6. Descriptive analysis of correlation coefficients of 55 trait pairs 
estimated in 60 sample sizes by 1000 bootstrap simulations. Scenarios 
represent the original data coming from all sampled observations (ASO), 
coming from average values of each plot (AVP) and coming from average 
values of treatments (AVT). The rhombus within the box represents the 
average in the scenario. The horizontal line within the box represents the 
median value. The length of the box is the distance between the 25th and 
75th percentiles. Outer spread represents the maximum and minimum 
values. 

 
 
 

 
 

Figure 7. Condition number of correlation’s matrices among explanatory traits estimated with 60 different sample 
sizes. For each sample size, the traits’ values were estimated by average of 1000 bootstrap simulations of the 
original data coming from all sampled observations (ASO), coming from average values each plot (AVP) and 
coming from average values of treatments (AVT). 

 
 
 
 (Gunst and Mason, 1977) or to perform estimates by 
using equations partially modified  by  the  inclusion  of  a 

k constant in the diagonal elements of correlation matrix 
(Hoerl and  Kennard, 1970a), these techniques can mask 
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the true biological behavior’s response, because the 
deletion of the traits can reduce the model’s explanation 
power. The inclusion of the k constant is effective in 
reducing the magnitude of multicollinearity, however, also 
causes a bias in the regression analysis (Hoerl and 
Kennard, 1970a) 

The best strategy to mitigate the problems caused by 
multicollinearity is to reduce it since it becomes practically 
impossible to eliminate it. In this research, a simple 
method for mitigating the multicollinearity in correlation 
matrices is suggested: estimating the correlation 
coefficients considering all observations, maintaining 
traceability and individual variance of the sample. This 
can be accomplished without significant increase of time, 
labor and financial resources since, a priori, all sampled 
plants were assessed. 
 
 
Conclusion 
 
Estimates made with data based on averages (AVP and 
AVT scenarios) reduce the individual variances, 
overestimate the correlation coefficients and increase the 
multicollinearity in correlation matrices. Thus, studies that 
require explanatory traits in order to predict a dependent 
trait will present greater misstatements in the estimates of 
the regression coefficients, if these methods are used. By 
using values coming from all sampled plants, 210 plants 
are enough for estimating Pearson product-moment 
correlation coefficients among maize traits in the 
bootstrap confidence interval of 95% < 0.30. The current 
study about data arrangement on Pearson’s correlation 
coefficients presents useful information on the planning of 
future experiments in plant breeding involving biometric 
templates that require the correlation matrix for their 
estimates. 
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diameter; CD/ED, cob diameter/ear diameter ratio; CL, 
cob length; ED, ear diameter; EH, ear height; EL, ear 
length; NKR, number of kernels per row; NRE, number of 
rows per ear; PH, plant height; TKW, thousand-kernel 
weight; TNK, total number of kernels per ear. 
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