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Drought and salt stress is the major constrains to crop productivity. However, resistant genotypes 
improve their physiological mechanisms to cope with these stresses. In this study, we have 
investigated the influences of drought and salt stress on dry weight, leaf osmotic potential, leaf water 
potential, leaf temperature and stomatal conductance in sensitive and resistant melon genotypes.  Four 
melon genotypes (sensitive, CU 40 and CU 252; resistant CU 196 and CU 159) were grown in a mixture 
of peat:perlite of 2:1 ratio in growth chamber. Salt and drought stresses were observed in 30 days old 
melon plants.  In order to perform salinity stress, 200 mM NaCI was used. The drought stress was 
achieved by decreasing irrigation water gradually and finally irrigation was completely stopped. The 
plants were subjected to the salt and drought stresses for 12 days. At the end of the experiment; shoot 
dry weight, osmotic potential, leaf water potential and stomatal conductance were lower in salt and 
drought-sensitive genotypes (CU 40 and CU 252) than the resistant ones (CU 159 and CU 196). The leaf 
temperature was increased under stress conditions in melon genotypes. The results showed that 
resistant melon genotypes have more efficient stress protection mechanisms to survive under salinity 
and drought conditions.  
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INTRODUCTION 
 
Climatic changes due to global warming can cause 
serious reductions in yield and crop quality. Among the 
agricultural crops such as field crops and fruit trees, the 
vegetables are more vulnerable for climatic changes 
(Turkes, 1999). Drought and salinity is the major 
environmental constraints to crop productivity. Due to the 
higher productivity of irrigated land than the rain-fed land, 
the saline area has still been increasing as a result of 
improper irrigation water management. Consequently, it 
is necessary to study the physiological response of crop 
plants to salt and drought stresses in order to develop 
appropriate strategies to carry on food production under 
adverse environmental conditions (Zheng et al., 2009). 

Salinity and drought causes detrimental effects on 
plant’s life. The reduction in growth is consequence of 
several physiological responses including modifications 
of ion balance, water  status,  mineral  nutrition,  stomatal 

behavior, photosynthetic efficiency, carbon allocation, 
and utilization. The rate of photosynthetic CO2 
assimilation is generally reduced by salinity and drought. 
This reduction is partly due to a reduced stomatal 
conductance and consequent restriction of the availability 
of CO2 for carboxylation (Brugnoli and Lauteri, 1991). 
Physiological changes (stomatal conductance, water 
potential, osmotic potential) in plants growing under salt 
or water-deficit conditions have been developed as 
effective indices for resistant screening in plant breeding 
programs (Ashraf and Harris 2004; Parida and Das, 
2005; Ashraf and Foolad, 2007; Cha-um and Kirdmanee, 
2009). 

Loss of water from turgid leaf tissue in response to 
transpiration results is not only a significant decline in 
water potential but also a decline in osmotic potential. 
Greater  plant  fresh  and  dry  weights under drought and  
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salinity are desirable characters. A common adverse 
effect of water and salt stress on crop plants is the 
reduction in fresh and dry biomass production (Dasgan et 
al., 2002; Grzesıak et al., 2006; Dasgan and Koc, 2009; 
Kusvuran, 2010). The response of plants to salinity and 
drought stress have been assessed using different 
physiological measurement techniques, such as water 
potential, leaf osmotic potential and stomatal 
conductance and these parameters have been used in 
assessment of abiotic stress-related studies such as 
drought and salinity screening (Ashraf and Oleary, 1996).  

Melon (Cucumis melo L.) is an important horticultural 
crop, often cultivated in arid and semi-arid regions of the 
world, where salinity begins to threat, or has already 
been a problem. In general, melon is known to be 
moderately resistant to salinity and drought. It has been 
shown that these stresses cause several types of 
damage such as growth inhibition (Franco et al., 1997; 
Mendlinger, 1994; Dasgan and Koc, 2009; Kusvuran, 
2010), metabolic disturbances (Mavrogianopoulos et al., 
1999), and yield and quality losses (del Amor et al., 
1999). 

The aim of this work was to compare the changes in 
water potential, osmotic potential, stomatal conductance 
and leaf temperature of melon genotypes that have 
different response as resistant and sensitive to drought 
and salinity.  
 
 
MATERIALS AND METHODS 
 

Two salt and drought resistant (CU 159 and CU 196) and two salt 
and drought sensitive (CU 40 and CU 252) melon varieties were 
used as plant materials (Kusvuran, 2010). Seeds of four genotypes 

melon were germinated in a mixture of peat:perlite substrate (2:1). 
After 16 days of sowing when the seedlings reached the 3 leaf 
stage, the uniformity seedlings were transferred to 17 cm diameter 
of plastic pots containing 2 L of peat:perlite substrate (2:1). The 
plants were grown in growth chamber and irrigated with nutrient 
solution. The composition of the nutrient solution used was as 
follows (M): Ca(NO3)2 4H2O, 3.0x10

-3
; K2SO4, 0.90x10

-3
; 

MgSO47H2O, 1.0x10
3
; KH2PO4, 0.2x10

-3
; H3BO3, 1.0x10

-5
; 10

-4
 

FeEDTA, MnSO4 H2O, 1.0x10
-6

; CuSO45H2O, 1.0x10
-7

; 
(NH)6Mo7O244H2O, 1.0x10

-4
; ZnSO4 7H2O, 1x10

-4
 (Dasgan and Koc, 

2009). Two plants were grown per pot and 3 pots were included in 
each replicate. 

Salt treatment has been started by 50 mM NaCl concentration 
and increased by the increments of 50 mM NaCl per day until a 
final concentration of 200 mM NaCl was achieved at the end of 4th 
day. Applied amount of water in the experiment was calculated 
according to the ratio of “drained water / applied water” (Schröder 

and Lieth, 2002). Under the control conditions, without stress, this 
ratio was around 30%. Drought stress was achieved by decreasing 
irrigation water gradually during 4 days. Drought treatment has 
been started by saturated pots 100% and then water deficit was 
performed 25% decrements (75, 50, and 25%) of the control pots 
per day. At the end of the 4 days, the terminal water stress was 
started and water was completely stopped (Kusvuran, 2010; 
Kusvuran et al., 2011).  

Control plants were grown under non-stress conditions for the 

same period of time.  The drainage ratio in control and salt-stressed 
plants was always maintained around 30% of the applied water. 
Fully  expanded  melon  leaves  were  sampled  for measurement of 

 
 
 
 
leaf water potential, stomatal conductance, leaf temperature and 
osmotic potential from 22 days after sowing (DAS) and then every 3 
days that is, at 29, 32, 35 and 38 DAS the periodical measurements 
have been realized. Leaf water potential (MPa) was measured by 
the pressure chamber with Plant Water Status Console mark and 
3005-1412 model instrument (Soilmoisture Equipment Corp., 
Goleta, California, USA; Pearcy et al., 1989). Measurements were 
done with the third leaf from the tip of the plants. 

Osmotic potential (MPa) was determined according to 
Küçükkömürcü (2011), 1 g of fresh leaves from the fourth leaf of the 
plants was weighed and homogenized  with 19 ml distilled water. 
The homogenized leaf samples were kept at -20°C. The 
homogenized samples were passed from the 0.45 µm precision 

filters. These samples were measured with the freezing point 
osmometer with Knauer mark and 7400 model instrument (Berlin, 
Germany). The osmotic potential was calculated according to the 
Van’t Hoff equation (Silva et al., 2010). Leaf temperature was 
measured using infrared thermometer and stomatal conductance 
was measured by a porometer with Delta-T Devices mark and AP4 
model instrument (Cambridge, UK) from the 5th leaves of the melon 
plants 

 
 

RESULTS 
 
Salt and drought stresses significantly decreased shoot 
dry weight of the melon genotypes in comparison to the 
control plants without stress. Resistant genotypes 
protected their growth performances under saline (NaCl) 
and drought stresses. While the genotypes CU40 and CU 
252 had high reductions in their shoot dry weights, CU 
196 and CU 159 had relatively low reductions in their 
shoot dry weights. At the end of 12

th
 days, dry weight was 

reduced by 63.02 and 63.99% in sensitive genotype CU 
252 under salt and drought stress, respectively. However, 
it was decreased by 21 to 26% in resistant genotype CU 
196 in salt and drought stress (Table 1).  

Leaf water potential and osmotic potential of melon 
genotypes decreased under salt and drought stresses as 
compared to those in the control treatment. The leaf 
water potential of melon genotypes was around -0.60 to -
0.77 throughout the 3

th
 in salt and drought stress period. 

On the other hand, throughout the stress period, leaf 
water potential was significantly decreased, particularly in 
sensitive genotypes (Table 2). The effect of salinity and 
drought on leaf water potential and osmotic potential 
were more dramatic in sensitive genotypes CU 40 and 
CU 252 than in resistant genotypes CU 159 and CU 196. 
At the end of the 12 days, the osmotic potential 
decreased to 160 and 562% in sensitive genotypes CU 
40 and CU 252, respectively, however, it decreased to 69 
and 118% in resistant genotypes CU 159 and CU 196, 
respectively under salinity and drought. Leaf water 
potential and osmotic potential more effected to drought 
stress than salt stress. Leaf water potential decreased by 
average 50% under drought stress; however salinity was 
decreased by 37% (Table 2).  

Four melon genotypes showed a higher leaf 
temperature under salt and drought stress than in the 
control treatment (Table 3). Generally, salt and drought 
stresses    had   similar    affects   on   melon   genotypes. 
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Table 1. Changes in the dry weight of four melon genotypes treated for 12 days with 200 mMol/l NaCl 
and drought stress. 
  

Genotype Days 
Dry weight (g/plant) 

Control Salinity Drought 

CU 40 

0 0.59
i
 0.43

j
 0.39

k
 

3 1.33
d
 0.83

h
 0.84

h
 

6 1.71
c
 0.92

g
 0.93

g
 

9 2.63
b
 1.13

e
 0.98

f
 

12 2.87
a
 1.34

d
 1.11

e
 

 LSD 0.030 

   

CU 252 

0 0.52
j
 0.52

j
 0.47

k
 

3 1.16
d
 0.86

i
 0.91

h
 

6 1.91
c
 1.07

g
 1.11

f
 

9 2.76
b
 1.13

e
 1.09

f
 

12 3.11
a
 1.15

d
 1.16

d
 

 LSD 0.017 

   

CU 159 

0 0.59
m
 0.58

m
 0.55

m
 

3 1.16
i
 0.98

l
 1.05

k
 

6 1.94
c
 1.09

j
 1.37

h
 

9 2.83
a
 1.58

f
 1.60

e
 

12 2.75
b
 1.76

d
 1.43

g
 

 LSD 0.029 

   

CU 196 

0 0.56
m
 0.70

l
 0.68

l
 

3 1.27
i
 1.13

k
 1.22

j
 

6 1.69
f
 1.56

h
 1.64

g
 

9 2.35
b
 1.82

e
 1.81

e
 

12 2.59
a
 1.91

d
 2.04

c
 

 LSD 0.019 
 

*Different letters in each column show significant differences at P ≤ 0.05. 

 
 
 
Together with the onset of stress, leaf temperature begun 
to increase among the melon genotypes. This increase 
was more remarkable after the 9th day of stress. 
However, the 12th of stress, tolerant genotypes showed 
some reduction in leaf temperature compared to the 
sensitive genotypes. 

The stomatal conductance values of all the genotypes 
decreased continuously during the salinity and drought. 
The resistant genotypes (CU 159 and CU 196) had 
significantly greater stomatal conductance than those of 
the sensitive genotypes (CU 40 and CU 252). For salinity, 
the stomatal conductance value on the 3

th
 was 11.48 and 

14.94% in sensitive genotypes, 16 to 21% in tolerant 
genotypes, on the other hand, for drought, these rates on 
the 3

th
 was 33.90 to 41.76% in sensitive genotypes 

(Table 3). Compared to control, stomatal conductance 
reduced to 40 and 58% after 12 days, respectively, in CU 
196 and CU 159 (resistant) genotypes, but it was 66 and 
81% in CU 40 and  CU  252 (sensitive)  genotypes  under 

salt and drought stress. At the same time end of the 12th 
days, the stomatal conductance of drought stress was 
significantly lower than that of salinity. Decreasing of 
stomatal conductance was on average 67% in drought 
stress, however in salinity, it was 59%. 
 
 
DISCUSSION 
 
There are many researches related with the salinity and 
drought stresses but they are seperate. However our 
work included both dorught and salinity together. This 
study showed the similarities and differences of the some 
physiological reponses in melon plants under the drought 
and salinity conditions. So this study has given 
opportunity to compare both drought and salinity 
reponses in melons.   

According to the investigations on shoot fresh and dry 
weights,   plant  growth  of  the  melon   genotypes   were 
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Table 2. Changes in the osmotic potential and leaf water potential level in leaves of four melon genotypes treated 
for 12 days with 200 mMol/l NaCl and drought stress. 
 

Genotype Days Osmotic potential (MPa) Leaf water potential (MPa) 

  Control Salinity Drought Control Salinity Drought 

CU 40 

0 -0.66
f
 -1.02

b-f
 -0.79

d-f
 -0.62

de
 -0.58

ef
 -0.58

ef
 

3 -0.91
c-f

 -1.13
b-d

 -1.04
b-e

 -0.60
ef
 -0.64

de
 -0.76

b-d
 

6 -0.67
ef
 -1.22

bc
 -1.16

b-d
 -0.58

ef
 -0.

67c-e
 -0.77

bc
 

9 -1.06
b-d

 -1.33
b
 -1.36

b
 -0.60

ef
 -0.50

f
 -0.82

b
 

12 -0.85
c-f

 -2.21
a
 -2.37

a
 -0.62

ef
 -0.56

ef
 -1.02

a
 

 LSD 0.38 1.91 

    

CU 252 

0 -0.83
g-j

 -1.12
f-h

 -0.62
ij
 -0.58

h
 -0.61

gh
 -0.58

h
 

3 -1.06
f-i
 -1.27

fg
 -1.10

f-h
 -0.62

gh
 -0.67

e-g
 -0.77

ef
 

6 -0.81
h-j

 -1.41
ef
 -1.76

de
 -0.66

f-h
 -0.75

de
 -0.87

bc
 

9 -1.12
f-h

 -2.34 
c
 -2.10

cd
 -0.63

gh
 -0.80

cd
 -0.92

 b
 

12 -0.58
j
 -3.08 

b
 -3.84

a
 -0.61

gh
 -0.87

bc
 -1.14

a
 

 LSD 0.44 0.86 

    

CU 159 

0 -0.88
ef
 -0.80

fg
 -0.53

j
 -0.64

de
 -0.64

de
 -0.65

de
 

3 -0.80
fg
 -0.75

f-h
 -0.62

h-j
 -0.61

e
 -0.67

c-e
 -0.72

b-e
 

6 -0.69
g-i

 -1.25
d
 -0.59

ij
 -0.63

de
 -0.70

b-e
 -0.74

b-d
 

9 -0.80
fg
 -1.47

c
 -1.60

bc
 -0.61

e
 -0.74

b-d
 -0.80

ab
 

12 -1.02
e
 -1.73

b
 -2.03

a
 -0.63

de
 -0.

78 a-c
 -0.88

a
 

 LSD 0.15 0.11 

    

CU 196 

0 -0.48
d
 -0.62

cd
 -0.40

d
 -0.63

de
 -0.65

c-e
 -0.66

b-e
 

3 -0.98
bc

 -0.83
cd

 -0.61
cd

 -0.60
e
 -0.69

b-d
 -0.71

b-d
 

6 -0.50
d
 -1.37

ab
 -0.64

cd
 -0.60

e
 -0.74

b
 -0.73

bc
 

9 -0.97
bc

 -1.39
ab

 -1.50
a
 -0.59

e
 -0.77

b
 -0.84

a
 

12 -0.79
cd

 -1.50
a
 -1.73

a
 -0.63

de
 -0.82

a
 -0.86

a
 

 LSD 0.45 0.08 
 

* Different letters in each column show significant differences at P≤ 0.05. 

 
 
 
inhibited by salt and drought stresses. The effects of the 
both stresses drought and salinity showed parallel degree 
of damages on each melon genotype. These results 
indicate that drought and salinity were similarly inhibited 
the plant growth. Similar results were found by Asraf 
(1994), Cha-um and Kirdmanee (2009) and Kusvuran 
(2010). Maintenance of plant water status is a 
fundamental phenomenon for the maintenance of normal 
growth of plants under stressful environment (Ali and 
Ashraf, 2011). In this study, drought and salinity 
adversely affected different plant-water relation 
parameters such as leaf water potential, osmotic potential 
in melon genotypes. Due to this affect, plant growth was 
significantly decreased, especially in sensitive genotypes. 
It has been generally known that tolerance to drought and 
salinity usually involves the development of low osmotic 
potentials, mainly because of accumulation of solutes in 
the cells (Ashraf and Oleray, 1996). Leaf water content 
and gas exchange parameters are very  sensitive  to  salt 

and drought stress. Reductions in leaf water potential 
result in photosynthetic competence in many plant 
species. Plants water status depends on osmotic 
conditions of cells and transport of water from shoot. 
During the inhibition of water transport from root to shoot, 
osmotic regulation may actively influence water potential  
in assimilating tissues a limiting detrimental effects of salt 
and drought stresses on photosynthesis. 

Limitations in inhibiting photosynthesis under low 
osmotic potential might be caused by keeping relatively 
great volumes of protoplasts (Matthews and Boyer, 1984; 
Chaves et al., 2002; Grzesıak et al., 2006). In all the 
melon genotypes under salt and drought stress, leaf 
water potential and osmotic potential decreased. 
However, resistant genotypes showed higher water 
potential under both of the stress conditions. Levitt 
(1972), Ashraf and Oleary (1996), Anyia and Herzog 
(2004), Xu and Zhou (2008), and Echevarrıa-Zomeno et 
al. (2009)  have  suggested  that  leaf water potential may  
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Table 3. Changes in the leaf temperature and stomatal conductance level in leaves of four melon genotypes treated for 12 
days with 200 mMol/l NaCl and drought stress.  
 

Genotype Days Leaf temperature(°C) Stomatal conductance(mmol m
-2
s

-1
) 

  Control Salinity Drought Control Salinity Drought 

CU 40 

0 23.93
fg
 24.73

f
 23.73

g
 340

a
 237.0

c-e
 226

c-e
 

3 26.43
e
 30.2

bc
 26.4

e
 220.3

c-e
 195.0

d-f
 128.3

g-i
 

6 27.0
e
 29.6

 c
 27.93

d
 258.3

bc
 182.7

e-g
 88.7

ij
 

9 26.97
e
 30.37

bc
 30.03

bc
 249.3

b-d
 160.3

f-h
 64.0

j
 

12 29.53
c
 32.17

a
 30.83

b
 304.3

ab
 102.3 74.7

ij
 

 LSD 0.87 58.17 

    

CU 252 

0 23.63
h
 23.70

h
 22.10

 i
 261.0

ab
 226.0

bc
 192.0

cd
 

3 25.67
g
 29.0

cd
 27.73

ef
 174.0

d
 200.0

cd
 115.0

e
 

6 27.47
f
 28.93

cd
 28.40

de
 265.7

ab
 118.7

e
 94.3

ef
 

9 28.93
cd

 29.63
c
 29.60

c
 275.7

a
 91.3

ef
 71.0

ef
 

12 28.97
cd

 30.09
b
 32.57

a
 295.7

a
 70.0 

f
 54.3

f
 

 LSD 0.89 48.79 

    

CU 159 

0 23.30
h
 23.27

h
 22.97

h
 258.0

b
 385.0

a
 396.7

a
 

3 26.80
g
 29.57

d
 27.93

f
 225.0

bc
 261.0

b
 232.0

bc
 

6 27.55
fg
 29.60

d
 28.33

ef
 230.0

bc
 247.3

bc
 226.3

bc
 

9 29.05
de

 30.03
cd

 32.00
a
 265.0

b
 169.7

cd
 130.7

d
 

12 29.14
de

 30.73
bc

 31.60
ab

 290.0
b
 138.0

d
 121.0

d
 

 LSD 1.07 78.01 

    

CU 196 

0 23.50
h
 23.10

h
 23.00

h
 324.0

ab
 316.7

ab
 245.0

bc
 

3 26.83
g
 30.47

ab
 27.47

fg
 225.0

cd
 273.3

a-c
 251.0

bc
 

6 27.03
g
 29.00

de
 28.27

ef
 275.7

a-c
 348.3

a
 211.3

cd
 

9 30.43
ab

 30.10
bc

 30.6
a
 342.7

a
 267.0

a-c
 192.3

cd
 

12 30.00
bc

 29.93
b-d

 29.33
b-d

 319.0
ab

 189.0
cd

 151.3
d
 

 LSD 0.94 89.56 
 

*Different letters in each column show significant differences at P≤ 0.05. 

 
 

 

differentiate between resistant and sensitive cultivars of 
different crops. Moreover drought tolerant crops are 
expected to have much lower osmotic potentials than the 
drought sensitive ones when subjected to water deficit 
conditions (Ashraf and Oleary, 1996). 

Water deficit and salinity cause stomatal closure, a 
reduced transpiration rate, and elevated canopy foliage 
temperature (Halim et al., 1990). During drought, leaves 
are subjected to both heat and water deficiency stress 
(Clarke et al., 1993). As a consequence of the reduction 
in transpiration rates of leaves, leaf temperature 
increases. All of the melon genotypes were increased 
leaf temperature under salt and drought stress. 
Mohammadian et al. (2001) suggested that under 
drought conditions, sugar beet leaves wilt in response to 
water deficiency and tend to lay flat on the soil and thus 
increase the effective area exposed to the sun, therefore, 
reduction in transpiration rates of such leaves, leaf 
temperature increases. Azevedo et al. (2004) reported 
that leaf temperature increased with salinity. 

Under salinity or drought, leaf water potential and thus 
photosynthetic activity will decrease. The reduction in 
photosynthetic rate is usually due to low stomatal 
conductance, which also reduces the transpiration rate 
(Razzaghi et al., 2011). Thus plant development has 
decreased. Stomatal conductance is changed among 
species and genotypes within the same genotypes. Leaf 
water status interacts with stomatal conductance under 
salt and drought stresses. In the present study, stomatal 
conductance of the genotypes decreased under salt and 
drought stress. However the resistant genotypes CU 196 
and CU 159 have decreased with lower rate than 
sensitive genotypes CU 40 and CU 252. Medrano et al. 
(2002) suggested that good correlation was often 
observed between leaf water potential and stomatal 
conductance, in addition, Turner et al. (1998) reported 
that, stomatal conductance decreased as the osmotic 
potential decreased in sorghum and sunflower. Similar 
results were found in chickpea (Mafakheri, 2010), sugar 
beet (Dadkhah, 2010), and nut (Silva et al., 2011). 

http://scialert.net/asci/author.php?author=Ali%20Reza&last=Dadkhah
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Conclusion 
 

The results from this study indicate that osmotic effect 
plays a vital role in salt and drought tolerance of the 
melon genotypes. The behaviors of the melon genotypes  
under saline conditions appear to be similar to those 
under drought conditions. Plant growth rate, 
osmoticpotential, leaf water potential and stomatal 
conductance were decreased with salt and drought 
stresses. However, these changes occurred at lower rate 
in resistant genotypes, CU 159 and CU 196 than the 
sensitive ones, CU 40 and CU 252.  For assessing and 
screening melon genotypes for their tolerance to salinity 
and drought stresses during their young plant stage, 
these parameters can be used. 
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