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In response to growing concerns over the burning of peat swamp forests, researchers have begun 
developing methods of mapping forest fire. Forest fire is one of the major causes of deforestation of 
tropical peat swamps in Malaysia. A way of identifying which peat swamp forest is vulnerable to forest 
fire is to develop a fuel type map to classify forest fire into different risk levels. In this study, remote 
sensing and geographical information system (GIS) techniques were integrated. Landsat Thematic 
Mapper (TM) image dated April 3

rd
, 1999, which corresponded to fire incident in this study area was 

used. The objective of this paper is to map fuel types in peat swamp forests. Results show that 
greenness and wetness components of Tasselled cap, used in classification, accurately captured 
greener and wetter area by combining supervised image and Tasselled cap image. The overall kappa 
statistics was 0.94 for combined supervised and Tasselled Cap classification. High values of kappa 
statistics for certain vegetation classes were due to the availability of representative pixels in the 
classes.  
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INTRODUCTION 
 
Conservation is critical to a large tropical peat forests in 
Southeast Asia, such as those in Kalimantan, Borneo, 
and Malaysia. Tropical peat lands contribute significantly 
to terrestrial carbon because of their high carbon content 
and high carbon accumulation rates, which are higher 
compared to those of boreal and temperate peat lands. 
Fires are one of the negative impacts which caused 
forest and land degradation. Fire produces high carbon 
emission as a consequence of fire smoke (Miettinen and 
Liew, 2010). Changes in fire regimes have also increased 
attention on many national parks and protected area due 
to forest fire (Crabtree et al., 2009). Forest disturbance 
caused reduction in live biomass and increase the 
amount of coarse woody debris and the forest floor 
(Goulden et al., 2011).  

More research is necessary for countries such as 
Malaysia and Indonesia to ensure adequate fire-monitoring 
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and prevention. The extensive habitat damage and poor 
air quality are some of the effects of forest fires caused 
by El Nino (El Nino Southern Oscillation or 
ENSO1997/1978) in Southeast Asia, South America, and 
southern United States. Peat lands consist of layers of 
organic materials containing a significant portion of the 
world’s carbon in which tropical peat lands account for 
about 15% of the global total. These peat lands are 
sensitive ecosystems and are vulnerable to seasonal 
changes within their local and regional climates as well 
as to disturbances due to human activities. Small scale 
activities, such as camping, can bring about forest fires, 
which release carbon into the atmosphere and contribute 
to environmental degradation. 

On the other hand, large scale activities, such as 
agricultural conversion, pose a threat via extensive land-
clearing. Oil palm conversion in particular threatens 
pristine peat swamp forest and distinctive vegetation 
species. Peat swamp areas are viewed to be suitable for 
oil palm plantations. Most of the lands needed for 
expansion of the oil-palm industry are located in Malaysia 
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and Indonesia. Contribution of peat lands to global 
carbon cycle is relatively high for the temperate zone, 
and about 15% of the global peat land carbon may reside 
in tropical peat land. There are about 2.7 million ha of 
peat and organic soils in Malaysia. Sarawak has the 
largest area of peat in the country, covering about 1.66 
million ha and constituting 13% of the state (Wong, 
1991). Pahang was represented as the second largest 
peat land in Peninsular Malaysia, boasting about 219 561 
ha of peat (Law and Silvadurai, 1968). The integration of 
remote sensing and GIS may improve accuracy and 
reduce the cost of fuel mapping. With development of 
new satellite sensors and radars such as ASTER and 
ALOS PALSAR, respectively, remote sensing becomes 
an ultimate tool in mapping vegetation types. 

Recent research found using MODIS (Moderate 
Resolution Imaging Spectroradiometer) imagery fire 
issues such as fire risk assessment can be done in 
Brazilian Amazon forest (Maeda et al., 2011). In addition, 
fuel type map can be generated using high resolution 
satellite data such as Landsat TM (Riano et al., 2002). 
Therefore, we used Landsat TM image to classify fuel 
types by using combined maximum likelihood classifier 
and indices-transformed images to assess the accuracy 
of the classification. Techniques employed in this study 
tend to improve classification because it is sensitive to 
phonological changes (Dymond, 2005).  

Therefore, the indices can be used to distinguish the 
green vegetation with soil from green vegetation and 
brown vegetation. Crist and Cicone (1984) indicated that 
Tasselled Cap could discriminate brightness of soil, 
greenness of vegetation, and wetness of moisture. One 
of the advantages of using Tasselled Cap is that it 
incorporates more information into vegetation indices 
using six different bands of light.  

Accurate fuel type maps provide information for fire 
managers to carry out prevention, detection, and 
suppression strategies, such as forest cleaning, pre-
scribed burning, and vigilance tower locations (Riano et 
al., 2002). Fire risk can be reduced by prioritizing fire 
management through characterization of fuel types. In 
pre-fire planning, an important factor that should be 
considered is fuel type.  

The relationship of fuel type with fire hazard is 
unpredictable and varies according to area. Therefore, 
fuel maps are essential for computing spatial fire hazard 
and risk and simulating fire growth and intensity across a 
landscape (Keane, 2001). Fuel mapping is an extremely 
difficult and complex process, requiring expertise in 
remotely sensed image classification and GIS. Data that 
can be used for classification come mainly from satellite 
images, aerial photography, and field measurements. 
However, there is still a need to find an appropriate and 
accurate method for fuel mapping.  

Therefore, fuel types need to be well classified by 
applying continuous improvised methods to facilitate risk 
hazard assessment in fire prone area. 

 
 
 
 
Forest fire in Malaysia 
 
In Malaysia, large forest land is being continually 
converted to non-forestry use, and burning is one of the 
methods being used in the process (AIFM, 1996). 
Recently, the problems caused by fire in Malaysia have 
become more serious and need to be addressed in the 
right perspective. The problems caused by fire are not 
only affecting the people in Malaysia, but also those who 
live beyond the Malaysian boundary. The threat of fire to 
the forests in Peninsular Malaysia is minimal compared to 
Borneo. Severe forest fires were recorded in Sabah since 
1993. In 1998, more than 100 000 ha of forest reserves in 
Kudat, Sandakan, Kota Kinabalu, Keningau, and Tawau 
were burned. In Sarawak, forest fires were confined to 
plantation forests. A small plantation area of Acacia 
mangium and Shorea macrophylla were destroyed every 
year from 1981 to 1994 due to agricultural activities in 
adjoining farmlands. According to Sarawak Environmental 
Quality Report (EQR, 2000), March 1998 was when the 
most severe fire occurred where peat swamp forest near 
Miri burned. Air Pollution Index (API) reached the 
“hazardous level” and was later stabilized down to “very 
unhealthy” in April 1998. 

Peat swamp forest found in the lowlands of tropical 
area represents another forest fire fuel type. With 
decreasing precipitation and lowering of the water table in 
the peat swamp biome, the organic layers progressively 
dry out. During 1982 to 1983 ENSO, a number of 
observations in East Kalimantan confirmed a desiccation 
of more than 1 to 2 m of organic layers (Johnson, 1984). 
While the spread of surface and ground fires in this type 
of organic terrain is not severe, deep burning of organic 
matter leads to toppling of trees and complete removal of 
standing biomass. It is further assumed that smouldering 
organic fires may persist throughout the subsequent 
rainfall period and get reactivated as an ignition source in 
the next dry spell (Goldammer and Seibert, 1989). 
Severe occurrences of forest fires in peat swamp forests 
were recorded in Pahang from early 1998 until May 1998, 
in which more than 10 000 ha of peat swamp forest 
burned (Forest Research Institute of Malaysia/FRIM, 
1998). According to FRIM (1998), peat swamp forest fire 
in Pahang occurred in heavily disturbed (logged) land 
forest because of improper water management and 
prolong dryness.  

Open burning of plant residues in large tract of land 
peat, shifting cultivations, and collection of non-timber 
forest products by Orang Asli, as well as lack of an 
integrated water management programme also contri-
buted to the forest fire. There are many possible causes 
of forest fire in Malaysia. FRIM (1998) reported that the 
possible causes of forest fire, particularly in peat swamp 
forest in Peninsular Malaysia in 1998 were land clearing 
for oil palm plantation and other industrial purposes, 
fishing, camping, and other activities by local and Orang 
Asli communities as well as unknown causes. In a  report  



 

 
 
 
 
compiled by Department of Forestry of Peninsular 
Malaysia (2001), most cases of forest fire in Peninsular 
Malaysia in 1998 were caused by negligence and 
carelessness, and six cases were activities by Orang 
Asli. Only one case was caused by spark from high 
voltage electricity cables.  
 
 
MATERIALS AND METHODS 
 
Study area 
 

This study was conducted at peat swamp forest of Pekan, Kuantan, 
Pahang, west of Malaysia. This area is located at longitude 103° 16’ 
E and latitude 3° 44’ N, covering approximately 2480.95 ha of land 
and bordered by a newly established oil palm plantation (Figure 1). 
The climate of Pahang is typical to Peninsular Malaysia which 
experiences the equatorial climate. The annual averages of 
temperatures are between 20.5 and 36°C. The maximum annual 
rainfall was 3601.6 mm, which occurred in 1993 while the minimum 
annual rainfall was 1908 mm which was in 1997. For rainy days, the 

yearly maximum was 222 days (that is, year 1999) while the 
minimum was 140 days (that is 1997). In 1998, total annual rainfall 
was 2970 mm. During that year, the monthly maximum rainfall was 
1108 mm, which occurred in December while the minimum rainfall 
was 1.2 mm, which occurred in February (Figure 2 and Table 1). 
Relative humidity (RH) was between 77 and 89%, and RH of 79% 
was recorded in February (Figure 3).  

Highly disturbed peat swamp forest due to fire allowed fast 
growing species such as sedges and grasses to replace tree 

communities. The disturbed peat swamp forest areas consist of (1) 
totally destructed sites - for example industrial estates and housing 
areas, (2) destructed sites - for example agricultural areas such as 
oil palm, (3) successional level – (a) pioneer community, (b) alang 
alang community (Imperata cylindrical) (c) weed community, (d) 
Macaranga community, and (4) secondary forest. Disturbed peat 
swamp forests also generate more fern colonies at the first stage of 
regeneration. Huge differences between natural peat swamp 
vegetation composition, structures, and species are generally a 
consequence of destroyed hydrological systems such as streams 
(Manshhor and Asyraf, 2001). A forest fire was recorded on 12

th
 

March 1998 at the study area. Although forest fire is a repeated 
incident in Penor/Kuantan District, it was the first forest fire 
occurrence in that particular area. According to the Kuantan Forest 
Department District officers, land clearing activities at Ladang Sri 
Meranti Oil Palm Plantation was believed to cause the fire, which 
was located next to the study area. 
 
 

Image processing  

 
In this study, Landsat TM image of 12

th
 April 1999 was retrieved 

and radiometrically corrected by using normalization. This simple 

method is based primarily on the fact that infrared data (> 0.7 m) 
are largely free of atmospheric scattering effects, whereas the 

visible region (0.4 to 0.7 m) is strongly influenced by them. The 
method involves evaluating histograms of the various bands of 
scattering, taking place in these wavelengths (Jensen, 1996). 

Haze reduction was applied to reduce atmospheric scattering 
effects in the visible band, that is bands 1 to 3. Haze reduction 
method is designed to minimize the influence of path radiance 
effects. One mean of haze compensation in multispectral data is to 
observe the radiance recorded over the target areas of essentially 
zero reflectance. For example, the reflectance of deep clear water 

is essentially zero in near-infrared region spectrum (Lillesand and 
Kiefer, 2000). Haze reduction routine was applied throughout the 
scene of the study area.  
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Figure 1. Locations of the study area. 

 
 

 
Fuel type mapping  
 

Landsat TM images acquired in 2000 (for the same area), 
topography maps, and land use maps were used as reference 
during the geometric correction procedure. Accurate registration of 
multi-spectral remote sensing data is essential for analyzing land 
use and land cover conditions of a particular geographical location. 
In this study, a first-order polynomial linear transformation function 
was used, and nearest neighborhood re-sampling algorithm was 
applied, since this did not alter the radiometric values of individual 
pixels. 

In this study, unsupervised classification technique was applied 
to supplement the classification process and provide better 
identification of classes. Unsupervised classification technique is an 

automatic, fast, and effective tool to label the pixels into simple land 
process (Jensen, 2005). The iterative process attempts to minimize 
the distance between clusters’ centres, while minimizing the variance
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Figure 2. Rainfall of the study area in 1998. 

 
 

 
Table 1. Rainfall and rainy days for ten years period (1990 – 

1999) in Kuantan, Pahang. 
 

No. Year Rainfall (mm) Rain days 

1. 1990 2699.7 167 

2. 1991 3048.2 187 

3. 1992 2847.5 189 

4. 1993 3601.6 194 

5. 1994 3408.6 214 

6. 1995 3081.3 198 

7. 1996 2245.0 185 

8. 1997 1908.0 140 

9. 1998 2970.0 170 

10. 1999 3242.2 222 
 

Source: Malaysia Meteorological Service, 2000. 

 
 
within each cluster. This technique requires a defined number of 
classes to which pixels will be assigned. Furthermore, it represent a 
data class, assigns pixels into candidate clusters, and then moves 
them from one cluster to another in an interactive classes. It 
requires a minimal input as low as five pixels or fewer to can 
separate out all the basic land-cover types, for example, forest from 
non-forest. The Maximum Likelihood Classifier (MLC) is one of the 
most important image classification methods that have been widely 
used in vegetation and land cover mapping. It was used to assess 
the spectral response patterns, which quantitatively evaluates both 
the variance and covariance of the spectral data of the training sites 

when classifying an unknown pixel and placing pixels into the class 
with the highest probability of belonging (Lillesand and Kiefer, 
2000). Moreover, it was also tested for fuel model (Lanorte and 
Lasaponara, 2008). In this study, more than 60 samples were 
collected during the classification process. Since the classes were 
close together, a high collection of training data were required. This 
is especially true because the classes have a variety of spectral 
responses or tones. As such, the same pixels of the training data 
were merged and the processing of training data collection was 
repeated to match the actual class. 

This was an attempt to improve discriminations amongst different
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Figure 3. Relative humidity of the study area in 1998. 

 
 
 
ground conditions, such as vegetation (peat swamp forest), soil 
(burn peat), and water (canal). The vegetation types in the study 

area were analyzed using digital classification systems, specifically, 
vegetation index of Tasselled Cap (TC) transformation (Christ and 
Cicone, 1984). Vegetation index measures the amount and 
distribution of green vegetations by utilizing its capacity to intensely 
absorb solar radiation in the red spectral region and strongly scatter 
it in the near-infrared (Gobron et al., 2000).  

The nine fuel type classes were categorized based on the criteria 
set by Manshhor and Asyraf (2001) and also adapted and modified 
from Prometheus system (Lanorte and Lasaponara, 2007). 
Particularly, the fuel types of the study area were identified and 
carefully verified during the field work of this study. Photos for the 
study area were taken immediately after the acquisition of Landsat 
TM image data along with the fuel types. In this study, grasslands 
covered about half of the study area. In Southeast Asia, canals 
provide accessibility to illegal users who often drain peat swamps 
for oil palm plantations. Drained peat swamps will lose their 
ecological functions of soaking and storing water to mitigate floods 

and as water catchments to buffer coastal lands from the intrusion 
of salty marine water (Ainuddin et al., 2006). This draining causes 
oxidation and collapsing of the soil where fine fuels such as 
grasslands, and slash fuels within the peat will be drier during the 
drought; thereby increasing the likelihood of ignition by illegal users 
such as hunters and honey collectors. The category of ‘Bushes-1’ 
was a pioneer succession species, which was mostly found in small 
patches and scattered in highly disturbed peat swamp forest widely 

across Malaysia and Indonesia (Table 2). Moreover, peat lands 
were also present over large contiguous areas in both countries 
(Dymond et al., 2002).  

Tasselled cap transformation (TC) 

 

TC has advantages over Normalized Difference Index (NDVI), in 
that it incorporates more information by using six bands of light 
(excluding the thermal band). Crist and Cicone (1984) developed 
this index by producing three data structure axes defining the 
vegetation information content: brightness, which is the weighted 
sum of all bands as determined by the phonological variation in soil 
reflectance; greenness, which is orthogonal to brightness and 
measures the contrast between the near infrared and visible bands; 
and wetness, which relates to canopy and soil moisture. The 
usefulness of the TC components (greenness, brightness, and 
wetness) was corroborated by Wang and Xu (2009), as well as by 
Hansen et al. (2001), in a study which estimated the age, structure, 
and complexity of mature and old-growth forest stands. TC can also 
be used to re-classify previously analyzed data by bringing a new 
perspective to the data structure, allowing a more direct view and 
defining features that correspond to the spectral variations. 

Although TC was originally developed for agricultural 

applications, it has been found to be sensitive to the structural 
characteristics of forest environments as well. In particular, changes 
in the TC wetness components have been identified as a reliable 
indicator of changes in the forest, particularly damages caused by 
forest fires. Crist et al. (1986) stressed the usefulness of the 
wetness components in distinguishing forest and natural vegetation 
from cultivated vegetation at TM spatial resolutions. This capability 
shows the advantage of TC in detecting the increased shadowing in 

forest stands, as compared to crop or grass canopies, for forest 
classifications. TC is also used to overcome several challenges 
when performing land cover classifications within a tropical forest 
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Table 2. Description of fuel types observed during field work classified using MLC and Tasseled Cap transformation techniques. 
 

No. Fuel type Description 

1 Canal-1 Drain in peat swamp forest 

2 Cleared land and burnt area-1 Open area of peat swamp forest which had been previously burned which 
remained with dead stumps  

3 Cleared land-1 Open area of peat swamp forest 

4 Young oil palm and burnt area Bare ground with young oil palm plantation  

5 Bushes Area found near the roads invaded by Imperata 

6 Bushes-1 Area found in peat swamp forest invaded by Imperata and Palmae groups 

7 Peat1 and road  Open peat swamp forest, and secondary and main road 

8 Peat Wetland with variable vegetation types 

 
 
 
region. It is a significant challenge, for example, to acquire data in a 
tropical region on days with high cloud cover and when water 
vapour is too low. During the rainy season in tropical regions, cloud 
cover is almost a daily occurrence. 

In such situation, the TC wetness measure proved a reliable 
indicator of forest haze reduction because it enhances image 
interpretation through minimizing the influence of path radiance 
data. Unlike other vegetation indices, such as the NDVI, TC is 
intended to detect relatively low-level changes in high-density 
forests, such as peat swamps. Land cleared by forest fires can be 
detected by using the TC index as the algorithm, as many studies 
have shown it to be an effective means for assessing forest 

transformations caused by forest fires and clear cuts (Ramsey et 
al., 2001). 

Furthermore, Collins and Woodcock (1996) agreed that the 
change in information was highly correlated with the wetness 
components of the TM TC transformation. NDVI, on the other hand, 
is limited in its ability to detect changes in land cover within forests 
because biophysical vegetation parameters are difficult to detect in 
a "saturated" mode (Huete et al., 1997). 

 
 
RESULTS  
 
Fuel type map 
 
The fuel-type layer was obtained from a combination of 
supervised classifications and TC transformations of the  
TM image acquired on 3

rd
 April 1999. Nine categories 

were defined: (i) Canal; (ii) Water logged; (iii) Cleared 
land and Burnt area-1; (iv) Cleared land-1; (v) Young oil 
palm and Burnt area; (vi) Bushes; (vii) Bushes-1; 
(viii)Peat-1 and Road, and (ix) Peat (Table 3). The fuel-
type layers are depicted in Figure 4. Four standard 
measures of accuracies are: 1) producer’s accuracy, 2) 
user’s accuracy, 3) overall accuracy, and 4) the Kappa 
statistical assessment. The overall accuracy is the 
percentage of correctly classified samples which were 
calculated by summing the number of pixels classified 
correctly and dividing by the total number of pixels 
(Lanorte and Lasaponara, 2007). All four of these 
accuracies were computed in order to evaluate the 
quality of the classifications. The omission error was 
presented by producer’s accuracy which the measure of 
omission errors is corresponding to those pixels 

belonging to the class of interest which the classifier has 
failed to recognize. The user’s accuracy on the other 
hand, refers to the measure of commission errors that 
correspond to those pixels from other classes which the 
classifier has labeled as belonging to the class of interest 
(Richards and Jia, 1999). Kappa accounts for all the 
elements of the confusion matrix and excludes 
agreement that occurs by chance.  

The Kappa coefficient expresses the proportionate 
reduction in errors generated by the classification 
process. Congalton (1991) found that Kappa provides a 
more rigorous assessment of classification accuracy. 
Supervised classification of Tasselled Cap transformation 
images were applied to four-band layers of brightness, 
greenness, wetness, and haze, for bands 1, 2, 3, and 4, 
respectively. Since the Tasselled Cap images appeared 
in different variations in each class, such as ‘Cleared 
land’ (mixed burnt area), ‘Young oil palm’ (mixed burnt 
area), and other classes, such as ‘Bushes’ and ‘Water 
logged’, were added.  
 
 
Classification accuracies 
 
Our study area comprised of a land cover with a range of 
reflectance values (DN), yielding minimum and maximum 

values of 10 and 100 m, respectively. A varying range of 
reflectance values like these can be a problem during 
land cover classification. For example, both ‘Young oil 
palm and Burnt area’ and ‘Cleared and Burnt area-1’ 

have highly similar reflectance values of 41 and 39 m, in 
band 4, respectively. The Tasselled Cap transformation 
technique, however, was able to distinguish those 
similarities. The Kappa statistic is computed as the sum 
of the diagonals, multiplied by the sum of each row, 
multiplied by the sum of each column, divided by the sum 
of each row, and multiplied by the sum of each column. 
Christ’s and Cicone’s studies showed that the TC 
transformation techniques are able to improve land cover 
classifications for vegetation because the TC is sensitive 
to phenological changes (Dymond et al., 2002). 

In this study, the image was transformed into TC images
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Table 3. Overall accuracy and Kappa (K^) accuracy table of supervised classification of TC. 
 

Class name 
Reference total 

(Column total) 

Classified total 

(Row total) 

Number 

correct 

Producers 

accuracy (%) 

Users 

accuracy (%) 
Kappa (K^) 

Young oil palm and burnt area 88 87 87 98.60 100.00 0.9860 

Peat-1 and road 17 18 17 100.00 94.44 1.0000 

Bushes 31 40 30 96.77 75.00 0.9677 

Bushes-1 20 29 20 100.00 68.97 1.0000 

Peat 51 50 48 94.12 96.00 0.9412 

Cleared land and burnt area-1 180 176 174 96.67 98.86 0.9667 

Cleared land -1 151 122 119 78.81 97.54 0.7881 

Canal 7 7 6 85.71 85.71 0.8571 

Water logged 11 11 11 100.00 100.00 1.0000 

Total 602 602 556   0.9452 

Overall accuracy 94.63  

 
 
 

 
 

Figure 4. Fuel type map of the study area using landsat TM image of 1999. 
 
 
 

for analysis. The images of both indices are presented in 
Figure 5. Accuracy assessment was created to evaluate 
the quality of each classification using error confusion 
matrix and Kappa coefficient statistics. The Kappa 
coefficient statistics is widely used in accuracy 
assessment of classification. In this study, the best 
results were ‘Peat-1 and Road’, and ‘Bushes-1’ and 
‘Water logged’, which provided the K^ value of 1.000. 
‘Young oil palm and Burnt area’ and ‘Cleared land and 

Burnt area-1’, which were successfully classified after 
adapting TC method, provided K^ values of 0.9860 and 
0.9667, respectively. These indicate that the classification 
were 98.60 and 96.67% better than expected by chance 
(Yool and Miller, 2000).  

As a result, fuel type was divided into nine types as has 
been clearly mentioned earlier. The overall classification’s 
accuracy was 94.63% after adding in the TC transformation. 
The best results were obtained for ‘Bushes-1’ and  ‘Water 
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Figure 5. Landsat TM image after Tasseled Cap transformation techniques were 

applied.  The image represents low and high moisture of different land covers at 
the study area. 

 
 
 

logged’ with 100% accuracy and ‘Young oil palm and 
Burnt area’ with 98.60% accuracy, respectively. 
Particularly, the overall accuracy of supervised TC 
transformation classification for this study was 94.63%. 
This means that class accuracy was 94.63% greater than 
chance (Yool and Miller, 2000). The Kappa coefficient, 
which ranges between 0 and 1, was a conservative 
measure. Based on experience on application projects at 
the U.K. National Remote Sensing Centre, it was 
concluded that the classification accuracy for MLC 
ranges from 60 to 80%, depending upon land use/cover 
types and sensors. For that reason, this accuracy is 
acceptable for land cover classification. The Producer’s 
and User’s Accuracy are useful in defining the type of 
classification’s errors made and providing the perspective 
of accuracy (Mazlan and Wan, 2000). Based on the 
Producer’s Accuracy, ‘Peat-1 and Road’, ‘Bushes-1’, and 
‘Water logged’ scored a 100% accuracy with Kappa 
statistics of 0.9669, 0.9676, and 0.9754, respectively. 
‘Cleared land-1’ was low with 78.81% accuracy with 
Kappa statistics of 0.7571. Factors such as the small 
area of classes, contributed to the success of the 
classification. Moreover, ‘Canal’ was poorly identified with 
85.71% with Kappa statistic of 0.8490. For the other 
classes such as ‘Young oil palm and Burnt area’, ‘Peat’, 
‘Bushes’, and ‘Cleared land and Burnt area-1’ were 

classified within 94.12 to 98.60% accuracy. The overall 
result for the accuracy assessment is presented in Table 3. 
The high level of accuracy was due to the availability of 
representative pixels in each class. The accuracy was 
accepted when a study by Dimyati et al. (1996) found out that 

the accuracy levels for land cover classification was as high as 
89 and 89.4% for vegetated and non-vegetated land 
cover, respectively, including paddy and settlement area. 
It was also deemed as a superior result when Lillesand 
and Kiefer (2000) found out that TM sensor was more 
finely tuned for vegetation discrimination.  
 
 

Conclusion 
 

This study has successfully generated fuel types of 
different classifications of fire hazard rating index, using 
TC transformation techniques. Specifically, using Landsat 
TM data, the accuracy of 94% was achieved and was 
acceptable based on the study conducted using similar 
satellite data. Particularly, an accurate fuel type map is 
essential in providing information for fire managers to 
carry out prevention, detection, and suppression efforts.  
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