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The new model to predict photosynthetic rate (Pn) using back propagation neural network (BPNN) 
based on uniform design (UD) was studied. Four parameters of BPNN were designed at six levels 
individually by UD experiment to optimize the architecture of the BPNN model. The optimal parameters 
were used to construct an intelligent, feasible BPNN model which could more accurately predict the 
photosynthetic rate of sunflowers response to environmental factors. The constructed BPNN model had 
three layers namely input layer, hidden layer with nine neurons and an output layer. Four environment 
factors including photosynthetic active radiation (PAR), temperature (T), carbon dioxide level (CO2) and 
relative humidity (RH) were input layers, and photosynthetic rate (Pn) as an output layer. Results 
showed that the predicted values and actual values of Pn fitted very well, with mean absolute 
percentage error (MAPE) of 3%, mean square error (MSE) of 0.75 µmol CO2 m

−2
s
−1 

and mean absolute 
error (MAE) of 0.72 µmolCO2 m

−2
s
−1

. There was no significant difference using significant test between 
the actual values obtained from portable photosynthetic system and predicted value calculated by 
models. The conclusion was that the model established by BPNN based on UD was more accurate than 
stepwise regression to predict Pn of sunflowers giving the environmental factors (PAR, T, CO2 and RH).  
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INTRODUCTION 
 
Sunflower (Helianthus annuus L.), belonging to 
Asteraceae family is one of the major oil seed crops, as a 
foodstuff and also known as an ornamental plant (David 
et al., 2008). The success of wide plantations depends on 
their productivity determined by the interaction of 
physiological factors with the environment and physio-
logical processes,  such  as  photosynthesis  (Saraswathi  
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Abbrevations: BPNN, Back propagation neural network; UD, 
uniform design; Pn, photosynthetic rate; PAR, photosynthetic 
active radiation; T, temperature; CO2, carbon dioxide level; RH, 
relative humidity; MAPE, mean absolute percentage error; 
MSE, mean square error; MAE, mean absolute error. 

and Paliwal, 2008). Considering the time, labor and 
costly-consuming factors to monitor the photosynthesis of 
plants directly, it is necessary to establish an intelligent, 
feasible neural network model, for the important 
relativities of photosynthetic rate with cultivation and 
productivity (Nagel and Griffin, 2004). Predicting 
photosynthetic rate of lettuce using statistical regression 
and neural network has been reported by Frick et al. 
(1998); however, the errors between their predicted 
values and actual values were 14.3 and 24.6% by 
statistical regression and neural network models, 
respectively. Meanwhile, the parameters for constructing 
network models were empirical (Kaur and Raghava, 
2004). In fact, the theoretically optimal architecture of 
neural network was the optimal combination of parame-
ters, but it is difficult to be selected by empirical method. 
To  gain  a  more  precise  architecture,  it was necessary  
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Table 1. Parameters and their levels for UD. 
 

Parameter 
Level 

1 2 3 4 5 6 

X1 4 6 7 9 11 13 

X2 0.01 0.02 0.03 0.04 0.05 0.06 

X3 0.2 0.4 0.6 0.7 0.8 0.9 

X4 2000 3000 4000 5000 6000 7000 
 

Symbols x1, x2, x3 and x4 represented factors for numbers of neurons in hidden layer, learning rate, 
momentum parameter and iteration numbers respectively. Number 1 to 6 represents the level of each 
parameter. 

 
 
 
to quest an optimal network for predicting photosynthetic 
rate. 

UD has wide use on experiments design. The aim of 
UD is to choose a set of n experimental points that are 
scattered uniformly on all experiments. Thus, the advan-
tage of UD is to obtain experiments that are uniformly 
scattered in the domain. So, UD is a good candidate for 
some experiments design because of its good features, 
such as its functional agility in arranging experimental 
runs and its robustness against model uncertainty (Zhang 
and Fang, 2006). Therefore, in comparison with empirical 
method, the larruping trait of UD is to achieve results with 
a great number of factors and factor levels but fewer 
numbers of experiments (Wang et al., 2008). 

BPNN has been proved to be a powerful tool for many 
fields such as prediction on β-turn types in proteins (Kaur 
and Raghava, 2004), predicting protein secondary 
structure (Wood and Hirst, 2004) and predicting harvest 
dates of greenhouse-grown sweet peppers (Lin and Hill, 
2007). However, up to date, there is no report on 
prediction photosynthetic rate using BPNN based on UD. 
In this research, BPNN model based on UD was used to 
determine a more precise protocol for predicting 
photosynthetic rate of sunflower. Many factors can 
directly or indirectly effect photosynthetic rate of plants, 
but the main environmental factors are PAR, CO2, T and 
RH. Therefore, it is very necessary to establish an 
intelligent, feasible model to predict Pn under natural 
environment only with PAR, CO2, T and RH.  
 
 
MATERIALS AND METHODS 
 
Data collection for BPNN 
 
Seeds of sunflowers were sown in the trial field of China West 
Normal University (N: 30.812°, E: 106.067°) on the 3th of March, 
2008. Water and nutrients were managed normally during the 
whole growth period. Using LI-6400 portable photosynthesis system 
LI-6400 ( Li-Cor, Lincoln, NE, USA) to measure the daily variation of 
photosynthesis of flowering sunflowers in natural habitats from 7:00 
am to 19:00 pm on 20th, 21st and 22nd of July 2008, and 
corresponding parameters of photosynthetic active radiation (PAR), 
temperature (T), carbon dioxide level (CO2), relative humidity (RH), 
stomatal conductance (Cond), intercellular carbon dioxide level (Ci), 
transpiration (Tr) and photosynthetic rate  (Pn)  were  measured  by 

LI-6400 portable photosynthesis system. We measured three 
sunflowers leaves once an hour and every sunflower had three 
replicates; the average values of three sunflowers were obtained. 
So, twelve groups of data were obtained daily and thirty-six groups 
of data were obtained after three days. The daily variations of 
sunflowers’ photosynthesis were measured on sunny and cloudless 
days. Because of the appearance of small cloud at 16:00 pm on the 
21st July, 2008, eleven groups of data were analyzed. Therefore, 
thirty-five groups of data were obtained to establish BPNN models. 
All measurements were under natural conditions. Every groups of 
data included these parameters: photosynthetic active radiation 
(PAR), temperature (T), carbon dioxide level (CO2), relative 
humidity (RH) and photosynthetic rate (Pn). 

 
 
Experimental design and optimizing BPNN 

 
Four parameters, numbers of neuron in hidden layer (x1), learning 
rate (x2), momentum parameter (x3) and iterations number (x4), 
were divided into six levels individually and processed by U6 (6

4) 
(Table 1). Then six representative experiments were conducted by 
DPS software and the optimal combination of parameters with least 
error was employed to establish BPNN model. The obtained thirty-
five groups of data were divided randomly, so that twenty-seven 
groups were used as training samples and eight groups as 
predicting samples to establish BPNN model and stepwise 
regression model. 

To compare the results of training and testing qualitatively, the 
following three errors were defined (Zhang and Fang, 2006):  

 
 
Mean absolute percentage error (MAPE) 
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This is the average error size as a percentage of the mean of the 
variable being forecasted. 

 
 
Mean square error (MSE) 
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This is the average of squared forecast errors. 
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Table 2. The U6 (6
4) table and mean absolute errors. 

 

Number of experiment 
Variable level 

Mean square errors 
X1 X2 X3 X4 

N1 3 6 6 2 0.90 

N2 4 5 1 1 0.75 

N3 6 1 3 4 2.06 

N4 2 3 2 6 1.27 

N5 5 5 5 5 1.43 

N6 1 6 4 3 1.98 
 

Every model was repeated thirty times and the optimal model (combination of network 
parameters by N2) with least mean square errors (MSE) were chosen and saved for predicting. 

 
 
 

 
 

Figure 1. The topology of the back propagation 
neural network including three layers. The neuron 
numbers in each layers are input neurons, hidden 
neurons and output neuron in ratio 4: 9: 1. Input 
neurons are CO2 (carbon dioxide level), PAR 
(photosynthetic active radiation), RH (relative 
humidity) and T (temperature). Output neuron is Pn 
(photosynthetic rate). 

 
 
 

Mean absolute error (MAE) 
 





n

1t

tt ŷy
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This is the sum of the absolute values of the errors divided by the 

number of errors. In the formulae above, yt and tŷ
denotes the 

actual value and the predicted value, respectively. 
DPS software was used for UD and data analysis (Tang and 

Feng, 2006). Matlab V6.5 was used for BPNN program.  
 
 

RESULTS  
 

BPNN model based on UD 
 

From   the  results  of  UD  design  (Tables  1  and  2),  an 

optimized architecture was accepted with least MSE of 
0.75 µmol CO2 m

−2
s

−1
 due to the network parameters: 

number of neurons in hidden layer (x1) = 9, learning rate 
(x2) = 0.05, momentum parameter (x3) = 0.2, and iteration 
numbers (x4) = 2000. To reduce overfitting, the training 
and testing error was selected as 0.001. Therefore, the 
optimal topological architecture of the back propagation 
neural network was “4 -9 -1”, which was used to predict 
photosynthetic rate under four environmental factors as 
input layers (Figure1). 

To test the aforementioned optimal BPNN model via 
eight predicting samples, the predicted values and actual 
values were observed (Table 3 and Figure 2), with the 
MPAE and MAE being 3% and 0.72 µmol CO2 m

−2
s

−1
, 

respectively. There were no significant difference 
between the actual values and predicted values by 
significant test (P>0.05). Therefore, the model based on 
UD and BPNN could be considered usable for predicting 
photosynthetic rate of sunflowers. 
 
 
Stepwise regression model 
 
y = 85.0434－0.2724*T－0.2601*CO2 + 0.4734*RH + 0.0064*PAR        (4) 
 
The value of the equation R

2
 was record as 0.8793. Then 

the predicting sample data were used to test the stepwise 
regression model, with the MAPE, MAE and MSE being 
7%, 1.53 and 1.76 µmolCO2m

−2
s

−1
,
 
respectively. There 

were no significant difference between the actual values 
and predicted values by significant test (P = 0.96). The 
results indicated that there were no agreements between 
the actual values and the predicted values as BPNN 
model. 
 
 
DISCUSSION 
 

Optimal architecture of BPNN by UD and stepwise 
regression analysis 
 
The BPNN is the most successfully and widely used 
algorithm.  A  typical   three-layer  network,  including   an  
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Table 3. The results via the optimal model.  
 

Number of 
samples 

Actual value 

(µmolCO2m
−2

s
−1

) 

Predicted value 

(µmolCO2m
−2

s
−1

) 

Absolute error 

(µmolCO2m
−2

s
−1

) 

Absolute percentage 
errors (%) 

1 16.90 16.95 0.05 0.00 

2 34.20 32.71 1.49 0.05 

3 32.40 33.28 0.88 0.03 

4 33.70 32.69 1.02 0.07 

5 12.10 13.07 0.97 0.06 

6 15.30 16.23 0.93 0.00 

7 33.40 33.42 0.02 0.02 

8 20.70 20.32 0.38 0.03 

Mean 24.84 24.83 0.72 0.03 
 

(MAE, mean absolute error) = 0.72 µmolCO2m
−2

s
−1

; (MAPE, mean absolute percentage error) = 3%. Significant difference between 

predicted values and actual values by significant test with P = 0.998 (P＞0.05). 
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Figure 2. Comparison of actual values and predicted values by optimal BPNN model. 

 
 
 
input layer, a hidden layer and an output layer was 
implemented in many applications, but still difficult to 
determine parameters such as numbers of hidden neuron 
and learning rate (Zhang and Fang, 2006). UD was 
employed here to optimize the architecture of BPNN for 
its most efficient experimental design and reducing the 
number of experiments extraordinarily. In this study, only 
six models were conducted, replacing a great many 
models with arbitrary combination of parameters. 

Compared with previous report (Frick et al., 1998), this 
work supplied a better model to predict photosynthetic 
rate and the results also show that the MAPE and MSE 
by BPNN model were better than by stepwise regression. 
Therefore, it could be concluded that the model 
established here was much more accurate than statistical 
stepwise regression model. From the results, it was also 
indicated  that  the  relationship  between   photosynthetic 

rate and impact factors was very complicated, and 
satisfactory results could be obtained by the powerful tool 
BPNN for prediction of nonlinearities, but not from linear 
regression models. 
 
 
Optimal photosynthetic rate by improving 
environmental conditions 
 
A higher photosynthetic rate should increase carbon gain 
and correspondingly increase oxygen accumulation of 
biomass, leading to an increase in fitness (Arntz et al., 
2000). It is also commonly assumed that instantaneous 
photosynthetic rates of leaves are the consequence of 
environmental factors directly or indirectly (Zhang et al., 
2005). To evaluate photosynthetic performance and to 
analyze   photosynthetic   acclimation   to   environmental  



 
 
 
 
factors such as high CO2 concentrations, biochemical 
models of photosynthesis were used increasingly 
(Peterson et al., 1999). However, the simulation required 
representation of the intra-canopy or restriction environ-
mental factors (Urban et al., 2003). After taking the 
aforementioned information into account, intelligent 
accurate prediction of photosynthetic rate under natural, 
even perturb conditions (Bunce, 2008; Kakani et al., 
2008) was very necessary. 

The most important was that, the four key environ-
mental factors chosen from photosynthesis parameters 
as input layers including carbon dioxide level (CO2), 
photosynthetic active radiation (PAR), temperature (T) 
and relative humidity (RH) were feasible and convenient 
to observe, and thus to monitor the photosynthesis of 
sunflowers by the established intelligent model with less 
time, labor, and experimental cost consuming. Therefore, 
plant can grow well through monitoring timely and 
improving environmental conditions to enhance photosyn-
thesis performance, such as alleviating the lunch break 
phenomenon effectively and replying to greenhouse 
effect. 
 
 
Conclusion 
 
In conclusion, the intelligent, feasible model using BPNN 
based on UD was powerful for predicting photosynthetic 
rate under four natural environmental factors. Such 
information would enhance the ability to predict 
sunflowers’ function and competition between different 
species under changed environmental conditions. 
Although this method was only applied in sunflower, the 
results showed their potential applicability in other crops 
to grow well. 
 
 
ACKNOWLEDGEMENTS 
 
This work was financially assisted by Application and 
Basic Foundation, Science and Technology Bureau of 
Sichuan Province (2008JY0150), Key Program, 
Education Bureau of Sichuan Province (2003A098), and 
Sichuan Provincial Key Subject Program (SZD0420), 
People’s Republic of China. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chen et al.         5821 
 
 
 
REFERENCES 
 
Arntz AM, Delucia EH, Jordan N (2000). From fluorescence to fitness: 

variation in photosynthetic rate affects fecundity and survivorship. 
Ecology, 81: 2567-2576. 

Bunce JA (2008). Acclimation of photosynthesis to temperature in  
Arabidopsis thaliana and Brassica oleracea. Photosynthetica. 46: 
517-524. 

David L, Mary DP, Alvarado JL (2008). Sunflower (Helianthus annuus 
L.) as a pre-Columbian domesticate in Mexico. PNAS, 17: 6232–
6237. 

Frick J, Precetti C, Mitchell CA (1998). Predicting lettuce canopy 
photosynthesis with statistical and neural network models. Am. Soc. 
Horticul. Sci., 123: 1076-1080. 

Kakani VG, Surabhi GK, Reddy RK (2008). Photosynthesis and 
fluorescence responses of C4 plant Andropogon gerardii acclimated 
to temperature and carbon dioxide. Photosynthetica, 46: 420-430. 

Kaur H, Raghava GPS (2004). A neural network method for prediction 
of β-turn types in proteins using evolutionary information. 
Bioinformatics, 20: 2751-2758. 

Lin WC, Hill BD (2007). Neural network modeling of fruit colour and crop 
variables to predict harvest dates of greenhouse-grown sweet 
peppers. Can. J. Plant Sci., 87: 137-143. 

Nagel JM, Griffin KL (2004). Can gas-exchange characteristics help 
explain the invasive success of Lythrum salicaria?. Biol. Invasions, 6: 
101-111. 

Peterson AG, Ball JT, Luo Y (1999). The photosynthesis-leaf nitrogen 
relationship at ambient and elevated atmospheric carbon dioxide: A 
meta analysis. Glob. Change Biol., 5: 331-346. 

Saraswathi SF, Paliwal K (2008). Diurnal and seasonal trends in 
photosynthetic performance of Dalbergia sissoo Roxb. and 
Hardwickia binata Roxb. from a semi-arid ecosystem. 
Photosynthetica, 46: 248-254. 

Tang QY, Feng MG (2006). Data processing system: experiment 
design, statistical analysis and modeling. Science press, Beijing, pp. 
58-66, 253-263. 

Urban L, Roux XL, Sinoquet H, Jaffuel S, Jannoyer M (2003). A 
biochemical model of photosynthesis for mango leaves: evidence for 
the effect of fruit on photosynthetic capacity of nearby leaves. Tree 
Physiology, 23: 289-300. 

Wang LQ, Yang J, Deng E, Wang GB (2008). Optimizing the shoot 
proliferation protocol of Penthorum chinese by axillary buds. 
Biotechnol Lett., 30: 2199-2203. 

Wood MJ, Hirst JD (2004). Predicting protein secondary structure by 
cascade-correlation neural networks. Bioinformatics, 20: 419-420. 

Zhang GY, Fang BS (2006). A uniform design-based back propagation 
neural network model for amino acid composition and optimal PH in 
G/11 xylanase. J. Chem. Technol. Biotech., 81: 1185-1189. 

Zhang SB, Hu H, Zhou ZK, Xu K, Yan N, Li SY (2005). Photosynthesis 
in Relation to Reproductive Success of Cypripedium flavum. Ann. 
Bot-London, 96;43-49 


