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Due to increasing wood consumption and pulp and paper demands, plantations of fast growing tree 
species, have a growing importance for the sustainability of industrial wood raw material. 
Consequently, the efficient utilization of fast growing plantations can have a large impact on 
productivity. Adequate management requires good understanding of factors affecting tree growth. 
This study aimed to determine the factors that influence stem radial growth of juvenile Eucalyptus 
hybrids grown in the east coast of South Africa. Measurement of stem radius was conducted using 
dendrometers on sampled trees of two Eucalyptus hybrid clones (Eucalyptus grandis × Eucalyptus 
urophylla, GU and E. grandis × Eucalyptus camaldulensis, GC). Daily averages of climatic data 
(temperature, solar radiation, relative humidity and wind speed) were simultaneously collected with 
total rainfall from the site. In this study, path analysis was employed. The joint effect of the climatic 
variables as well as the direct effect of each climatic variable was studied. Bootstrap estimation 
procedures, which relax the distributional assumption of the maximum likelihood estimation method, 
were used. It is found that all variables had a positive effect on stem radial growth. The study showed 
that tree age is the most important determinant of radial measure.  
 
Key words: Bootstrap, cross-validation, dendrometer, maximum likelihood, path analysis, standardized 
regression weights.  

 

 

INTRODUCTION 
 
Eucalyptus has increasingly become the most widely 
planted, hardwood genus in the world (Turnbull, 1999). 
Eucalypts provide sawn timber, mine props, paper, pulp, 
fiberboard, poles, firewood, charcoal, essential oils, 
honey and tannin products. Eucalypt plantation growth 
rate is an important economic factor as fast growing trees 
will be available for processing earlier compared to 
slower growing trees. Tree growth and the ultimate 
production of wood is a product of the interaction of 
genetic (Kozlowski and Pallardy, 1997; Apiolaza et al., 
2005; Zweifel et al., 2006), silvicultural (Pallett  and  Sale,  
 

2004) and environmental factors (Gallaham, 1962; 
February et al., 1995; Searson et al., 2004; Drew and 
Pammenter, 2006).  

Climatic factors such as temperature, humidity, 
sunlight, rainfall (Eagleman, 1985; Miller, 2001) and wind 
speed (Wadsworth, 1959) contribute to the growth of 
plants. Growth generally occurs under a broad range of 
climatic variables, but ideal growth occurs during 
optimum climatic conditions. The net contribution of each 
climatic variable is, however, often masked or influenced 
by one or more  other  climatic  variables.  Understanding  
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the relationships between climatic variables and the  
pattern of stem growth would facilitate the prediction of 
wood  properties for a given site. However, such studies 
are limited. Available studies commonly focus on growth 
rate and pattern of growth as a function of age (Miehle et 
al., 2009; Crecente-Campo et al., 2010; Mateus and 
Tomé, 2011). Downes et al. (1999) studied the effects of 
climatic variation on radial growth of irrigated eucalypts in 
Australia. The work of Downes et al. (1999) focused on 
daily stem growth patterns in irrigated Eucalyptus 
globulus and E. nitens in relation to climate. Applying 
multiple regressions, they have shown that weather 
variables accounted for 40 to 50% of the variance in stem 
radial increment. Downes et al. (2009) gave an excellent 
overview on measuring and modeling stem growth and 
wood formation. Since most eucalypt plantations rely on 
natural conditions for growth (no irrigation), assessments 
of the effects of the natural environment is useful to begin 
to understand what the potential impact of drought or 
even climate change may have, not only on growth, but 
potentially also on wood properties. Drew et al. (2009) 
studied the relationship between stem radius and climatic 
factors using the correlation matrix. The methods used by 
both Downes et al. (1999) and Drew et al. (2009) do not 
permit any other relationships among the independent 
variables to be specified. This limits the potential of the 
variables to have direct, indirect and total effects on each 
other. The path models approach used in this study can 
overcome these limitations. This paper describes the 
effects of tree age and climatic variation on radial growth 
of Eucalyptus grandis × E. urophylla (GU) and E. grandis 
× E. camaldulensis (GC) hybrid clones established in 
Zululand on the eastern coast of South Africa. The 
particular emphasis of this paper is on determining the 
climatic factors that most influence radial growth of 
Eucalyptus hybrid clones during the juvenile stages of 
growth.   

 
 
MATERIALS AND METHODS 
 

Study design 
 

A dendrometer trial, which focused on the growth of two Eucalyptus 
hybrid clones was established on Sappi landholdings at 
KwaMbonambi (28.53°

 
S, 32.140

 
E, 55 m MASL) on the Zululand 

coast in the eastern part of South Africa. On average, the site 
receives 1,000 mm of rainfall per annum and has a mean annual 
temperature of 21°C (Drew et al., 2009). The experiment was 
designed to extend over a seven-year period divided into separate 
phases of growth. Each phase ended with the destructive sampling 
of study trees to facilitate measurement of wood anatomical 
characteristics. The results presented in this study are based on the 
data collected only during the first of these phases of growth. This 
phase ran for 16 months from April 2002 until August 2003. Two 
Eucalyptus hybrid clones, E. grandis × E. urophylla (GU) and E. 
grandis × E. camaldulensis (GC), which were commercially 
deployed at the time, were established in the trial (Drew, 2004).  

Planting took place on 16 July 2001. Prior to planting, in April 
2001, stumps of the trees from the previous rotation on the site 
were treated with herbicide (to  prevent  coppicing)  and  slash  from  

 
 
 
 
harvest was burnt. Each rooted cutting was planted in a planting pit 
between existing stumps, with approximately two liters of water. 
The two clones were planted in alternating blocks (three repeats) of 
7 × 24 trees at a spacing of 3 m (E-W) × 2.5 m (N-S). Within each 
block of a particular clone, three plots of 12 (3×4) trees, each with 
two surrounding rows of trees were identified. The plots were 
established as pairs, such that for any phase of the research, a GU 
and a GC plot could be measured simultaneously. Within a 12 tree 
plot, nine trees were selected from each clone for intensive 
monitoring of radial growth and other physiological characteristics 

during Phase 1 (Drew, 2004). Radial growth ( )mµ was measured 

using 18 electric point dendrometers (AEC) mounted on nine trees 
per clone in adjacent plots. One dendrometer was mounted on the 
north side of each sampled tree, at breast height (1.3 m), from 
when trees were nine-months-old. In addition to radial growth, an 
automatic weather station was installed at a distance of 
approximately 200 m from the trial to record hourly temperature 
(°C), relative humidity (%), solar radiation (mJ/h), rainfall (mm) and 
wind speed (m/s). Later on the daily total rainfall and the daily 
average of other variables were obtained from the hourly data. The 
data set used in this study has a total of 8,640 observations for the 
two clones which is the daily data. Half the data set pertains to the 
GU clone and the remaining half to the GC clone. 
 
 
Data analysis 
 
The statistical method employed to analyze the data is path 
analysis. A brief description of path analysis and its relation to the 
classical regression model is given. Path analysis is the statistical 
technique used to examine causal relationships between two or 
more variables. It involves a set of simultaneous regression 
equations that theoretically establish the relationship among 
observed variables in the path model. Path analysis extends the 
idea of regression modeling and gives the flexibility of quantifying 
indirect and total causal effects in addition to the direct effect which 
is also possible in regression analysis (Bollen, 1989). In other 
words, regression analysis allows an independent variable to 
influence an outcome variable only directly. Path analysis however 
gives more flexibility and predictor variables are allowed to 
influence the outcome variable directly as well as indirectly through 
other mediating variables. Path analysis shares the following 
principles of regression analysis: 
 
1. The direction of influence in the relationship of variables should 
be specified from the theory behind the investigation;  
2. Independent variables are assumed to be measured without 
error. 
3. The relationship between target variables is linear. 
4. Any outcome variable in the system of equations under 
investigation has an error term attached to it.  
 
Path analysis is an extension of the regression model, which 
researchers use to test the fit of a correlation matrix with a causal 
model that has been, tested (Garson, 2004). The aim of path 
analysis is to provide estimates of the magnitude and significance 
of the hypothesized causal connections among sets of variables 
displayed through the use of path diagrams. There are three 
interrelated components in path analysis (Bollen, 1989): 
 
1. The translation of a conceptual problem into pictorial 
presentation, which shows the network of relationships; 
2. Obtaining systems of equations that relate observed correlation 
and covariance to parameters; and 
3. Decomposition of effects of one variable on another (that is, 
direct, indirect and total effects) from the correlation of measured 
variables.  
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Figure 1. Path diagram showing the effect of age and climatic variables on radius of 

Eucalyptus hybrid clones during the first measured phase of growth. Time = age; 
solrad = solar radiation; relhum = relative humidity; windsp = wind speed. 

 
 
 
The statistical analyses were performed using AMOS software 
(Amos Development Corporation). Path analysis was conducted by 
considering the radial measure as dependent climatic variables and 
age as independent factors explaining the radial growth. The chi-
square statistic, the normed fit index (NFI), and root mean square 
error of approximation (RMSEA) were used to estimate model fit. 
The larger the probability associated with the chi-square, the better 
the fit of the model to the data (Bollen, 1989; Byrne, 2001). The NFI 
tests the hypothesized model against a reasonable baseline model 
and ideally should be 1·0. A RMSEA of < 0·10 is considered a good 
fit and < 0·05 is very good and lower than 0.01 is considered as 
beautiful fit (Steiger, 1990). Model validity was assessed using the 
expected cross validation index (ECVI). Path significance was 
based on the critical ratio (CR), with a CR > 2 in absolute value 
considered as significant (Arbuckle, 2006; Schumacker and Lomax, 
2004). 

 
 
RESULTS AND DISCUSSION  

 
The independent variables included in the study were the 
five major climatic variables that were measured and the 
age of the trees. The association between the 
independent variables and the radial growth 
measurement of the clones is presented in Figure 1. The 
numbers displayed at the top of the diagram refer to the 
goodness of fit of the model. This fit statistic is the 
likelihood ratio chi-square test. The p-value associated 
with this measure is  0.894,  which  is  by  far  larger  than 

0.05 and indicates a non-statistical significance of the chi-
square test. This implies the model is consistent with the 
data. The numbers displayed next to the double headed 
arrows are estimated correlation coefficients. 

Various measures of fit (Table 1) are presented for the 
fitted model, given in Figure 1, and include the saturated 
model, which is the ideal fit by including all possible 
paths. A model that can be defined as good is one that 
does not differ significantly from the saturated model 
despite omitting paths from the saturated model. On the 
other hand, the ordinary regression model or independent 
model fits by ignoring any potential relatedness between 
the independent variables thus considering all 
correlations among the independent variables as zero.  

The statistical significance of individual parameter 
estimates for the paths in the fitted model (Figure 1) is 
one of the important criteria to be studied. The 
significance can be seen by computing the critical values, 
which are obtained by dividing the parameter estimates 
by their respective standard errors. The computed critical 
values together with the corresponding p-values are 
presented in Table 2. The regression weights for all 
variables were significant with the exception of rainfall, 
which was dropped from the model.  

The other issue to consider at this stage is the 
magnitude and direction of the parameter estimates. In 
this  particular  model  all  the  regression   weights   were 
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Table 1. Different fit measures for the fitted model, saturated and ordinary regression models. 
 

Fit measure 
Model 

Fitted model
1
 Saturated model

2
 Ordinary regression

3
 

Chi square 0.02  1287.06 

Chi square p-value 0.89  0 

Normed fit index (NFI) 1 1 0 

Root mean square error of approximation (RMSEA) 0  0.386 

Expected cross-validation index (ECVI) 0.006 0.006 3.13 

ECVI lower bound 0.006 0.006 3.068 

ECVI upper bound 0.007 0.006 3.193 

Modified expected cross validation index (MECVI ) 0.006 0.006 3.131 
 
1
The model presented in Figure 1. 

2
Model that includes all possible paths. 

3
The independent model that assumes no correlation 

between the independent variables. 
 
 
 

Table 2. Regression weights indicating the relationship between radial growth and each independent variable for the 
combined data set (Maximum Likelihood Estimates). 
 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value 

Radius<---time 313.51 2.18 143.91 *** 

Radius<---temperature 23.74 12.64 1.88 0.06 

Radius<---solar radiation 2817.03 220.03 12.80 *** 

Radius<--- relative humidity 63.76 5.75 11.09 *** 

Radius<---wind speed 1447.03 73.63 19.65 *** 
 

*** the p-value is less than 0.001. 
 
 
 
positive indicating the existence of a positive relationship 
between radial growth and the climatic variables. The 
standardized regression coefficients are 0.832 (age of a 
tree), 0.012 (temperature), 0.092 (solar radiation), 0.076 
(relative humidity) and 0.113 (wind speed). This suggests 
that the most important variable to explain radial growth 
is age of the tree. It is also estimated that the predictors 
of radius explain 79% of its variance. In other words, the 
error variance of radius is approximately 20.9% of the 
variance of radius itself. 

Although the goodness of fit measures indicate that the 
fitted model (Figure 1) is a good fit (Table 1), the 
parameter estimates show that rainfall has no direct 
influence on the radial growth. An attempt was made to 
modify the fitted model (Figure 1) by making rainfall a 
required variable in the model. Such a modification 
procedure is called specification search (Leamer, 1978). 
The objective of specification search is to alter the 
original model in search of a model that is better fitting in 
some sense, and yields parameters having practical, and 
in this case biological significance, and substantive 
meaning. The path diagram for the first attempt at 
modification is presented in Figure 2. For this path 
analysis model, a good ‘goodness of fit’ was obtained. 
The calculated value of the chi-square statistics was 
3.194 with one degree of freedom and a p-value of 0.074. 

However, the goodness of fit for the second fitted model 
(Figure 2) was not as good as the model fit shown in 
Figure 1. The parameter estimates for the second fitted 
model (Figure 2) suggest that rainfall had no direct 
significant effect. Therefore, no additional information 
was gained by modifying the path diagrams from that of 
Figure 1 to that of Figure 2.  

The third attempt at specification search was to 
consider a model fit for the second fitted model (Figure 2) 
that excluded wind speed as an explanatory variable 
(Figure 3). The model fit was good and parameter 
estimates were significant. The regression weight for 
rainfall in the prediction of radial growth was significantly 
different from zero at the 0.001 level (two-tailed, Figure 
3). This indicates that rainfall has a significant effect on 
the radial growth of trees in the absence of wind speed. 
For this model, it is estimated that the predictors of radial 
growth explain 78.2% of its variance. This is very close to 
the value obtained for the first model (Figure 1), which 
includes all the predictors in the model. The standardized 
regression coefficients were 0.859 (age of a tree), 0.042 
(temperature), 0.096 (solar radiation), 0.026 (relative 
humidity) and 0.03 (rainfall). These standard regression 
coefficients indicate that age of the tree is the most 
important variable in determining the stem radial growth. 
Models   fitted   without   temperature   or   tree   age    as 
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Figure 2. Path diagram showing the effect of age and climatic variables on radius 
of Eucalyptus clones when rainfall is considered a required variable. Time = age; 
solrad = solar radiation; relhum = relative humidity; windsp = wind speed. 

 
 
 

 
 
Figure 3. Path diagram showing the effect of age and climatic variables on 

radius of Eucalyptus clones when wind speed is omitted as an explanatory 
variable. Time = age; solrad = solar radiation; relhum = relative humidity.



2690         Afr. J. Agric. Res. 
 
 
 
explanatory variables did not fit well. A model that 
excluded relative humidity fitted well and resulted in 
rainfall having a significant effect on radial growth. The 
significance of rainfall in the absence of relative humidity 
and solar radiation was possibly caused by 
multicollinearity (where two or more predictor variables in 
a multiple regression model are highly correlated). The 
correlation among the climatic variables themselves is 
also significant. When only rainfall and wind speed were 
considered independent variables, the regression weight 
for rainfall became negative. The same occurred when 
only rainfall and relative humidity were treated as 
independent variables. This wrong sign of coefficients is 
an indication of possible multicollinearity. As a result, the 
effect of rainfall on radial growth cannot be completely 
ruled out, as its non-significance is possibly caused by 
multicollinearity. Some researchers noted that structural 
equation models are robust against multicollinearity 
(Malhotra et al., 1999), with some going as far as to 
explicitly state that Structural Equation Models (SEM) can 
remedy multicollinearity problems. For example, 
Maruyama (1998) argues that "structural equation 
approaches can help deal with some cases where the 
correlations among the predictors are large”. On the other 
hand, some researchers have warned that 
multicollinearity can lead to SEM estimates being far from 
the true parameters, as well as the occurrence of large 
standard errors of the estimates (Jagpal, 1982; 
Grapentine, 2000). A simulation study by Grewal et al. 
(2004) showed some conditions under which 
multicollinearity caused problems. The study showed that 
when multicollinerity is extreme, type II error rate 
(accepting the null hypothesis when it is false) is 
generally, unacceptably high. They also indicated that for 
multicollinearity levels of between 0.6 and 0.8, type II 
error rates can be substantial (greater than 50% and 
frequently above 80%), if composite reliability is weak, 
explained variance (R

2
) is low and sample size is 

relatively small. When multicollinearity levels are between 
0.4 and 0.5, type II error rates tend to be quite small 
except when reliability is weak, R

2 
is low and the sample 

size is small. In the present study R
2 

values were large 
and the multicollinearity level was not high.  

Estimates of regression weights for rainfall, which is 
important for growth, were inconsistent. Consideration of 
more complex models may improve results. In the path 
diagrams considered thus far only one dependent 
variable (radial growth) was used. Path analysis allows 
the simultaneous modeling of several related regression 
relationships. This means that path analysis can handle 
more than one independent variable in the model. 
Moreover, a variable can be a dependent variable in  one 
relationship and an independent variable in another 
relationship of the path model. An attempt was made to fit 
a model where two dependent variables, namely rainfall 
and temperature, mediated the effects of relative 
humidity, solar radiation and wind speed. In this model,  it  

 
 
 
 
was hypothesized that the age of a tree had a direct 
effect on radial growth. Solar radiation, relative humidity 
and wind speed were assumed to have an indirect effect. 
The fitted model is presented in Figure 4.  

The value of the chi-square statistic is 862.7 with a p-
value of zero. This indicates that the model does not fit 
the data well. However, the parameter estimates of the 
regression weights are all significant (Table 5). The 
magnitude of each effect is quantified by standardized 
regression coefficients. The standardized regression 
coefficients are 0.87 (age of the tree), 0.091 
(temperature), and 0.018 (rainfall). From this it can be 
seen that the most important variable to explain radial 
growth is tree age. For the model in Figure 4 there are 
three structural equations, one for each of the three 
dependent variables: rainfall; temperature and radius. In 
terms of variable names, the structural equations are:  
 

3inf

2

1inf

errortimeetemperaturallraradius

errorspeedwindradiationsolarhumudityrelativeetemperatur

errorspeedwindradiationsolarhumudityrelativeallra

+++=

+++=

+++=  

 
This model includes direct effects (e.g. age of the tree on 
radial growth), indirect effects (e.g. effect of relative 
humidity through rainfall) and correlated independent 
variables (e.g. relative humidity, solar radiation and wind 
speed). The estimated model using AMOS statistical 
software is given by:  
 

timeetemperaturallraradius

speedwindradiationsolarhumudityrelativeetemperatur

speedwindradiationsolarhumudityrelativeallra

67.32937.178inf73.20

39.177.8017.0

22.327.6196.0inf

++=

++=

+−=

 
From the fitted model (Figure 4) the positive effect of the 
predictors, rainfall, temperature and tree age can be 
seen. The standardized regression weights for this model 
indicate that tree age, temperature and rainfall are 
respectively important determinants of radial growth.  

The data set to which the above models were applied 
was a combined data set (for both E. grandis hybrid 
clones). In order to see if there was any difference 
between the two clones, a multiple group analysis was 
used. In this regard, the good fitting model produced in 
Figure 1 and the model with multiple dependent variables 
(Figure 4) was considered. The good fitting model of 
Figure 1 was fitted to the data set for GU clone, alone. 
The model fitted the data very well. The value of the chi-
square statistics was 0.06 with one degree of freedom 
and the corresponding p-value was 0.804. The next 
question to address was whether the same model fitted 
the data for the GC clone. Furthermore, the equality of 
the parameters needed to be tested. Instead of a 
separate group analysis, a single analysis that 
simultaneously estimated parameters and tested 
hypotheses about both groups was considered. This 
method provided a test for the significance of any 
differences found between the GU and GC clones. In 
addition, if there  were  no  differences  between  the  two
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Figure 4. Path diagram showing the effect of multiple dependent variables 

(rainfall and temperature) on radial growth of Eucalyptus clones. Time = age; 
solrad = solar radiation; relhum = relative humidity. 

 
 
 
clones, or if group differences concerned only a few 
model parameters, the simultaneous analysis of both 
groups would have provided more accurate parameter 
estimates than would have been obtained from separate 
single-group analyses. A test for pair wise path coefficient 
differences for the two clones was conducted. Some fit 
measures for various models were generated, together 
with fit measures for saturated and independence models 
are shown in Table 3.  

The structural weight model specifies that the 
regression weights for predicting radial growth from the 
measured climatic variables and the age of tree were the 
same for the GU and GC clones. The unconstrained 
model is the model that assumes that all the parameters 
for the two groups are different. For the unconstrained 
model, the value of chi-square was 0.08 with the 
corresponding p-value equal to 0.96. This indicated that 
the unconstrained model fitted the data very well. The 
structural weight model with a chi-square value of 364.59 
and with seven degrees of freedom was rejected at any 
conventional significance level, suggesting that the 
regression weights of the two clones were significantly 
different. The assumption that the regression weights for 
the exogenous variables were the same for both clones 
was not supported. The estimated regression weights for 
the unconstrained model are summarized in Table 4  and 

Table 5. When comparing the regression weights for the 
two clones, these were all positive, indicating a positive 
effect of the climatic variables as well as tree age on 
radial growth. In addition, regression weights obtained for 
the GU clone were larger than those obtained for the GC 
clone, indicating that the GU clone grows faster than the 
GC clone. Regression weights of the GU and the GC 
clones, for the multiple dependent model in Figure 4, 
were also compared. The regression weights for the two 
clones were significantly different. The results of this 
model also show that the GU has faster growth than the 
GC clone.  

The maximum likelihood estimates given in Tables 4 
and 5 require the data to be of a continuous scale and 
have a multivariate normal distribution. The approximate 
standard errors used in the inference were therefore 
produced based on formulae that depend on normality 
assumptions. Non-normality can lead to spuriously low 
standard errors, with degrees of underestimation ranging 
from moderate to severe. The consequences are that, 
because the standard errors are underestimated, the 
regression paths and factors / error covariances will be 
statistically significant, although they may not be so in the 
population (Byrne, 2001).  

It is known that many data do not qualify for 
multivariate  normality   and   the   current    data    is    no
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Table 3. Summary of fits for various models including the structural weight model.  
 

Model Number of parameters Chi-square df P-value Chi-square / df 

Unconstrained 54 0.08 2 0.96 0.04 

Structural weights  49 364.59 7 0.00 52.09 

Structural covariance s 28 364.59 28 0.00 13.02 

Structural residuals  27 1293.58 29 0.00 44.61 

Saturated model  56 0.00 0   

Independent model  14 29255.12 42 0.00 696.55 
 

df = Degrees of freedom. 

 
 
 

Table 4. Regression weights for the GU clone when the path model in Figure 1 was fitted to compare the two clones (Unconstrained). 
 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value Label 

Radius<---time 341.88 3.33 102.81 *** b1_1 

Radius<---temperature 43.34 19.30 2.25 0.025 b2_1 

Radius<---solar radiation 3253.04 335.85 9.69 *** b3_1 

Radius<---relative humidity 75.14 8.77 8.57 *** b4_1 

Radius<--- wind speed 1570.35 112.39 13.97 *** b5_1 
 

***indicates  the p-value is less than 0.001. 

 
 

Table 5. Regression weights for the GC clone when the path model in Figure 1 was fitted to compare the two clones (Unconstrained). 

 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value Label 

Radius<---time 285.14 2.075 137.436 *** b1_2 

Radius<---temperature 4.13 12.040 .343 0.732 b2_2 

Radius<---solar radiation 2381.02 209.543 11.363 *** b3_2 

Radius<---relative humidity 52.39 5.472 9.575 *** b4_2 

Radius <---wind speed 1323.72 70.119 18.878 *** b5_2 
 

*** indicates  the p-value is less than 0.001. 

 
 
exception. Using AMOS statistical software the data was 
checked to see whether it had a multivariate normal 
distribution. The Mardia's (1970) coefficient of 
multivariate kurtosis was 57.31 with a critical ratio of 
237.3, which highly favours multivariate non-normality of 
the data. 

A possible approach to overcome the problem of the 
existence of multivariate non-normal data is to use a 
method known as "bootstrap" (West et al., 1995; Yung 
and Bentler, 1996). This technique enables us to create 
multiple subsamples from an original data base. The 
importance of drawing these multiple samples is that we 
can examine parameter distributions relative to each of 
these newly produced samples. These distributions serve 
as a bootstrap sampling distribution and technically 
operate in the same way as the sampling distribution 
generally associated with parametric inferential statistics. 
In contrast to traditional statistical methods, however, the 
bootstrap sampling distribution is concrete and allows for 
comparison of parametric values over  repeated  samples 

that have been drawn (with replacement) from the 
original sample. The bootstrap method is free from the 
distributional assumptions and can be used to generate 
an approximate standard error for many statistics without 
having to satisfy the assumption of multivariate normality. 
With this beneficial feature in mind, the bootstrap method 
was applied to the good fitting model in Figure 1. In this 
process, 10,000 bootstrap samples were generated. The 
reported value of the chi-square was 0.018 with one 
degree of freedom. The bootstrap standard errors for 
regression weights are presented in Table 6. The table 
lists the bootstrap estimate of the standard error for each 
independent variable in the model. Each value represents 
the standard deviation of the parameter estimates 
computed across the 10,000 bootstrap samples. These 
values were compared with the values of the approximate 
maximum likelihood estimates presented in Table 2. 
Some discrepancies between the two sets of standard 
error estimates were observed. The third column of Table 
6, labeled SE-SE provides the approximate standard
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Table 6. Bootstrap standard errors for the path model in Figure 1. 
 

Parameter (un-standardized )  SE SE-SE Mean Bias SE-Bias 

Radius<---time 2.35 0.017 313.52 0.010 0.024 

Radius<---temperature 12.55 0.089 23.85 0.11 0.125 

Radius<---solar radiation 220.36 1.56 2816.58 -0.451 2.204 

Radius<---relative humidity  5.89 0.042 63.75 -0.018 0.059 

Radius<---wind speed 69.65 0.493 1446.07 -0.967 0.697 

      

Standardized parameter      

Radius<---time 0.004 0.000 0.832 0.000 0.000 

Radius<---temperature 0.006 0.000 0.012 0.000 0.000 

Radius<---solar radiation 0.007 0.000 0.092 0.000 0.000 

Radius<---relative humidity 0.007 0.000 0.076 0.000 0.000 

Radius<---wind speed 0.006 0.000 0.113 0.000 0.000 

 
 
 

Table 7. Ninety-five percent bootstrapped confidence intervals (bias-corrected percentile method). 

 

Regression weights Estimate Lower Upper P 

Radius<---time 313.51 308.86 318.03 0.000 

Radius<---temperature 23.74 -1.21 48.76 0.060 

Radius<---solar radiation 2817.03 2392.34 3252.47 0.000 

Radius<---relative humidity 63.76 52.27 75.19 0.000 

Radius<---wind speed 1447.03 1314.33 1588.51 0.000 

     

Standardized regression weights     

Radius<---time 0.832 0.824 0.841 0.000 

Radius<---temperature  0.012 -0.001 0.025 0.059 

Radius<---solar radiation 0.092 0.078 0.106 0.000 

Radius<---relative humidity  0.076 0.063 0.090 0.000 

Radius<---wind speed 0.113 0.103 0.124 0.000 
 
 
 

error of the bootstrap standard error itself. These values 
were very small indicating that the standard errors were 
estimated with a reasonable level of accuracy.  

Column four, labeled mean, lists the mean parameter 
estimates computed across the 10,000 bootstrap 
samples. Arbuckle (2006) on page 301 emphasized that 
this bootstrap mean is not necessarily identical to the 
original estimate. Column five (Bias) represents the 
differences between the bootstrap mean estimates and 
the original estimates. These values are very small for 
most of the cases and positive values indicate that the 
estimates of the bootstrap samples are higher than the 
original maximum likelihood estimates. The low bias 
indicates that the maximum likelihood estimates and the 
bootstrap estimates are very close to each other. The last 
column, labeled SE-Bias, reports the approximate 
standard error of the bias estimate. For the majority of the 
cases the estimated bias is smaller in magnitude than its 
standard error. This indicates that there is little evidence 
that the regression weights are biased.  

The bootstrap confidence intervals are presented in 
Table 7. The bias-corrected confidence intervals are used 
because these intervals are considered to yield more 
accurate values than percentile confidence intervals 
(Efron and Tibshirani, 1993). The confidence intervals for 
tree age, solar radiation, relative humidity and wind 
speed do not include zero. It can therefore be concluded 
that the regression weights of these dependent variables 
are significantly different from zero. The value of p in the 
'p' column of Table 7 indicates that a 100(1-p)% 
confidence interval would have one of its end points at 
zero. In this sense, the p-value can be used to test the 
hypothesis that an estimate has a population value of 
zero. In this case the relationship between radius and 
temperature has a p-value 0.06, which means that a 94% 
confidence interval would have a lower boundary at zero. 
In other words, a confidence interval at any level less 
than 94% such as 90% or 92% would not include zero, 
and therefore reject the hypothesis that the regression 
weight  is  zero  for  a  90%  confidence  interval.  For  the 
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relationship of radius with other independent variables 
the hypothesis at any conventional significance level 
such as 95 or 99% is rejected. Therefore, by applying the 
bootstrap method, it can be seen that the dependent 
variables had a significant effect on the radial growth of 
Eucalyptus trees. This result also agreed with the result 
obtained using the maximum likelihood method. It is also 
of interest to evaluate the appropriateness of the 
hypothesized model itself. Bollen and Stine (1993) 
provided a means of testing the null hypothesis that the 
specified model was correct. The Bollen-Stine bootstrap 
corrected p-value was 0.878. This corrected p-value 
indicates that the hypothesized model should not be 
rejected. This result is also in agreement with the 
maximum likelihood results. The other issue with the 
specified model was cross validation. To assess the 
validity of the model in Figure 1, expected cross 
validation index (ECVI) was applied. ECVI is proposed as 
a means to assess, in a single sample, the likelihood that 
the model cross-validates across similar size samples 
from the same population (Browne and Cudeck, 1989). It 
measures the discrepancy between the fitted covariance 
matrix in the analyzed sample, and the expected 
covariance matrix that would be obtained in another 
sample of equivalent size. Application of ECVI assumes a 
comparison of models, whereby ECVI index is computed 
for each model and then all ECVI values are placed in 
rank order. The model having the smallest ECVI value 
exhibits the greatest potential for replication. There is no 
determined appropriate range of values for ECVI as it can 
assume any value (Byrne, 2001). In the present case the 
values of ECVI are presented in Table 1. In assessing the 
hypothesized model, its ECVI value of 0.006 was 
compared with that of the independence model 
(ECVI=3.13). The ECVI for the saturated model was also 
0.006. The ECVI for the hypothesized model was less 
than that of the independence model. It can therefore be 
concluded that the hypothesized model represents the 
best fit to the data. Furthermore, a 95% confidence 
interval for ECVI is given by [0.006, 0.007]. This indicates 
that of the overall possible randomly sampled ECVI 
values, 95% of them will fall [0.006, 0.007], suggesting 
that the model cross validates over the independent 
model.  

 
 
Conclusions  
 
Classical methods, like ordinary regression models once 
the regression model is specified, do not permit any other 
relationships among the independent variables to be 
specified. This limits the potential of the variables to have 
direct, indirect and total effects on each other. In path 
analysis one can see the direct effect, indirect effect and 
total effects of variables. In path analysis a unique 
additional contribution of each variable can be studied 
using the standardized regression weights.  Even  though  

 
 
 
 
we can study the additional contribution of each variable 
in multiple regressions, this can work ideally only if all 
independent variables are highly correlated with the 
dependent variable and uncorrelated among themselves. 
In contrast, path models provide theoretically meaningful 
relationships in a manner not restricted to a multiple 
regression model (Schumacker, 1991). In path analysis, 
we can estimate parameters for more than one 
regression equation because this analysis can be 
considered as a series of regressions applied 
sequentially to the data. Structural Equation Models 
(SEM) are considered as path analysis involving latent 
variables. In the present case, latent variables were not 
included and hence path models were generated. Path 
analysis was employed mainly because the climatic 
variables were correlated and the unique, additional 
contribution of each climatic variable on radial growth of 
eucalypts was of interest.  

The best fitting path model generated in this study 
showed that all climatic variables and age of the tree had 
a positive effect on stem radial growth for the pooled data 
of both clones. Furthermore, all except one variable 
(rainfall) had a significant, direct effect on radial growth. It 
was also observed that the age of the tree was the most 
important variable explaining stem radial growth. 
Although rainfall was not significant in the best fitting 
model, it was found to be significant for the model that 
excluded wind speed and for the model that omitted solar 
radiation. This revealed that the effect of rainfall on radial 
growth cannot be ruled out. To compare the effect of the 
explanatory variables on the radial growth of the GU and 
GC clones, a single analysis that estimated parameters 
and tested hypotheses about both groups simultaneously 
was considered. The regression weights for the two 
clones were significantly different. The regression 
weights were all positive indicating the positive effect of 
the climatic variables as well tree age. In addition, the 
regression weights obtained for the GU clone were larger 
than the regression weights for the GC clone. This shows 
that the GU clone was growing faster than the GC clone 
which can easily be confirmed by looking at the growth of 
the two clones. 

The main estimation method for path models, or any 
structural equation model (SEM) is maximum likelihood 
estimation. This method requires a distributional 
assumption, which the present data failed to satisfy. The 
bootstrap method was then applied to overcome the 
methodological failure due to non-normality. The 
estimated bias using the bootstrap method was very 
small showing that there was little evidence of bias in the 
estimates. The conclusion reached using the maximum 
likelihood method agreed with that of the bootstrap 
method. The expected cross-validation index obtained for 
the hypothesized model also showed that this model 
cross-validated over the independent model.  

To sum up, the climatic variables measured in this 
study, together with  tree  age,  had  a  positive  effect  on  



 
 
 
 
stem radial growth during the juvenile stage of 
development. Age of the tree was the most important 
variable in explaining stem radial growth. The growth of 
the GU clone was faster than the growth of the GC clone, 
possibly indicating that this clone has better genetic 
potential. However, this could also indicate that, 
compared to the GC clone, the GU clone is better 
adapted to the environmental conditions, or it is able to 
use the available resources more effectively.  
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