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Genotype x environment interaction (GEI) of 42 rice genotypes tested over nine seasons was analyzed to 
identify stable resistance to blast disease incited by Magnaporthe oryzae. The genotypes were raised in 
uniform blast nursery in a randomized complete block design with three replications. The GEI was 
analyzed following the regression models as well as additive main effects and multiplicative interaction 
(AMMI) model. AMMI analysis of variance revealed that the first two interaction principal component 
axes (IPCA) explained 37.28 and 33.47% of the interaction effects in 14.63 and 14.02% of interaction 
degrees of freedom, respectively and rest of the five IPCAs were noisy. Integrating biplot display and 
genotypic stability statistics enabled five groupings of genotypes based on similarities in their 
performance across environments. The biplot generated using the environment and genotype scores for 
the first two IPCAs revealed the positioning of the five host genotype groups (HG) into four sectors. HG-
1 constituting of 28 genotypes exhibiting low stability index (Di values), low IPCA-1 as well as IPCA-2 
scores and low mean disease scores across seasons of testing, were identified as possessing stable 
resistance to the disease. Although, both regression and AMMI models were equally potential in 
partitioning of GEI, AMMI analysis and the biplot display were more informative in differentiating 
genotype response over environments, describing specific and non-specific resistance of genotypes, 
identifying most discriminating environments and thus could be useful to plant pathologists as well as 
breeders in supporting breeding program decisions. 
 
Key words: Additive main effects and multiplicative interaction (AMMI) model, rice blast disease, Magnaporthe 
oryzae, regression model, stable resistance. 

 
 
INTRODUCTION 
 
Rice blast disease caused by Magnaporthe oryzae is one 
of the serious diseases causing heavy yield losses in 
most of the rice growing countries. Sincere attempts have 
been made for identification of several resistant varieties 
as well as genes governing resistance  to  different  races  
 

of the causal pathogen. The presence of wide variability 
in pathogen population has further complicated the 
resistance breeding program (Wescott, 1985). Breeders 
and plant pathologists are often charged with the 
responsibility of identification and development  of  stable 
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resistant varieties as an economic method of disease 
control strategy. Selection of stable resistant genotypes 
across diverse environments represents the ideal for 
making optimal progress in breeding program. Proper 
identification and characterization of resistance, its 
efficient use in breeding program and disease 
management strategy is facilitated by relating its 
phenotypic expression to genotype and environment 
main effects and GEI. During the past few decades, 
various statistical techniques like joint regression analysis 
(JRA), AMMI and GGE-biplot have been used to analyze 
mostly yield parameters (Crossa et al., 1990; Adhikari et 
al., 1995; Yoshitola et al., 1997; Gauch and Zobel, 1996) 
and scarcely, disease resistance. The application of 
regression model has been made for stable blast (Gu et 
al., 2004; Mukherjee et al., 1998) and bacterial blight 
(Nayak and Chakrabarti, 1986) resistance in rice. The 
potentiality of AMMI model was demonstrated for 
identification of stable blast resistance in rice (Abamu et 
al., 1998), broom rape resistance in faba beans (Flores et 
al., 1996) and late blight resistance in potato (Forbes et 
al., 2005). Stable net blotch resistance in barley was 
identified by application of both AMMI and JRA models 
(Robinson and Jalli, 1999). 

Stable resistance in the host plant can be evaluated in 
terms of the number of years it retains original level of 
resistance and whether it is effective against a large 
number of different pathogen-genotypes (van der Plank, 
1971). In order to identify stable resistance, the host 
genotypes have to be exposed to repeat testing under 
different environments, either through multi-location trials 
during the same year or repeated testing at the same 
location during several years (Gu et al., 2004). The 
classical analysis of GEI concentrates on the analysis of 
stability rather than that of adaptation. The analysis is 
based on the regression of varietal performance on a site 
index as proposed and modified by (Finlay and 
Wilkinson, 1963; Eberhart and Russell, 1966; Perkins 
and Jinks, 1968; Freeman and Perkins, 1971). Apart from 
concentrating on stability, these models are also very 
restrictive in the type of interaction for which they 
account. These models assume a strong linear 
relationship between the varietal performance and 
environmental factors, which requires a dominant 
physical gradient over environments.  

More flexible statistical models for describing GEI such 
as the AMMI model are useful for a better understanding 
of GEI. The AMMI model is a hybrid analysis that 
incorporates both the additive and multiplicative 
components of the two-way data structure. AMMI biplot 
analysis is considered to be an effective tool to diagnose 
GEI patterns graphically. The additive portion is 
separated from interaction by analysis of variance. The 
principal component analysis (PCA), which provides a 
multiplicative model, is applied to analyze the interaction 

effect from the additive ANOVA model. The biplot display of 
PCA scores plotted against each other provides visual 
inspection  and  interpretation  of  GEI  components.  The  
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integration of biplot display and genotypic stability 
statistics enables genotypes to be grouped on the basis 
of similarity in performance across diverse environments. 

The great potentiality of AMMI model has been 
successfully utilized to analyze the GEI and identify 
stable resistant host genotypes. Following the biplot 
graphic display of matrices with the application of 
principal component analysis (Gabriel, 1971), the 
differential host pathogen interactions between 
Rhizoctonia solani isolates and tulip cultivars were 
analyzed by Schneider et al. (1999) and between 10 rice 
yellow mottle virus isolates and 13 differential host 
genotypes by (Onasanya et al., 2004). Host-pathogen 
interaction between 52 isolates of Xanthomonas oryzae 
pv. oryzae and 16 rice genotypes employing AMMI model 
(Nayak et al., 2008) and between 8 isolate groups of 
Pyrenophora teres and 13 barley line groups was 
analyzed with the help of GGE biplot display analysis 
(Yan and Falk, 2002) to arrive at some valuable 
conclusions on their relationships. Effective breeding 
programs on disease resistance depends on a thorough 
understanding of the complex host-pathogen interactions, 
which could be simplified following statistical models like 
the pattern analysis, principal component analysis, AMMI 
model or GGE biplot display analysis. The objective of 
the present study was to (i) analyze and interpret the GEI 
in rice blast pathosystems, (ii) assess the response of the 
genotypes across environments and (iii) recognize stable 
blast resistant genotypes for use in breeding programs. 
 
 
MATERIALS AND METHODS 
 

Plant material and growing conditions  
  
Seeds of 42 rice genotypes were collected from the International 
Germplasm collections, International Rice Research Institute (IRRI), 
Philippines through the National Bureau of Plant Genetic 
Resources (NBPGR), New Delhi, India and the National 
Germplasm collections maintained at the Central Rice Research 
Institute, Cuttack, India. The seeds were sown in a uniform blast 
nursery with the susceptible check variety Karuna sown in alternate 
rows as well as all around the nursery, as spreader rows. Thus 
each test variety was raised within one meter long single-row plot, 
surrounded by susceptible spreader rows of Karuna. Seeds were 
sown with a spacing of 10 cm between rows and 5 cm between 
plants. The experiment was conducted in a randomized complete 
block design with three replications. High nitrogen fertilizer (100 kg 
N ha-1) in the form of ammonium sulfate was applied in split doses. 
High relative humidity was maintained throughout the period of 
experimentation, by running the sprinkler irrigation system during 
hotter periods of the day (10 am to 3.30 pm) with an intermittent 
stoppage of half an hour after each hour of irrigation. The 
experiment was repeated over a period of nine seasons (5 dry + 4 
wet seasons), from dry season 1997 to dry season 2001. 
    
 
Recording observation and statistical analysis  
 
Critical observations on the percent host tissue damaged by the 
disease were recorded on the day the spreader rows of susceptible 
check Karuna succumbed to the disease with 100% severity. The 
data  on  average  percentage  of   the   terminal   disease   severity  



5494         Afr. J. Agric. Res. 
 
 
 
recorded for five severely infected plants in each test variety were 
used for analysis of GEI and identification of stable resistant 
genotypes. The stable performance of 42 rice genotypes tested 
over a period of nine seasons, was analyzed following regression 
models of Eberhart and Russell (1966), Perkins and Jinks (1968) 
and Freeman and Perkins (1971). Genotypes with disease severity 
scores of ≤10%, regression coefficient bi=0 and deviation from 
regression as small as possible (S2

d=0) was considered to be highly 
stable. The AMMI model was applied, with additive effects for the 
42 rice genotypes (G) and nine seasons of testing 
(Environments=E) and multiplicative term for GxE interactions. The 
AMMI analysis first fits additive effects for host genotypes and 
environments by the usual additive analysis of variance procedure 
and then fits multiplicative effects for GxE by principal component 
analysis (PCA). The AMMI model is  
 

 
 
where Yij is the disease score of the ith genotype in the jth 
environment, gi is the mean of the ith genotype minus the grand 
mean, גk is the square root of the eigen value of the PCA axis k, £ik 
and Yjk are the principal component scores for PCA axis k of the ith 
genotype and the jth environment, respectively and Rij is the 
residual.The environment and host genotypic PCA scores are 
expressed as unit vector times; the square root of גk, that is, 
environment PCA score = גk

0.5 Yik; host genotype PCA score = גk
0.5 

£ik (Zobel et al., 1988). 
The AMMI stability index ‘Di’, which is the distance of interaction 

principal component (IPC) point with origin in space, was estimated 
according to the formula suggested by Zhang et al. (1998) as: 

  

 
 

where, c is the number of significant IPCs, and Y2
is is the scores of 

the host genotype i in IPCs. 
The AMMI analysis was conducted using the computer software 
INDOSTAT (2004) for windows. To assess fitting AMMI model, 
predictive and post-dictive approaches offered by Zobel et al. 
(1988) were applied to the data. The association among the stability 
parameters was verified by Pearson’s correlation analysis. 

 
 
RESULTS 
 
The disease progress 
 
Conducive conditions created by application of high 
nitrogenous fertilizer, closer spacing and maintenance of 
high humidity through sprinkler irrigation system helped in 
creation of high disease pressure during all the nine 
seasons of experimentation. The average disease 
reaction expressed by the 42 rice genotypes over the 
nine test environments was ranged between 0.93 and 
100%, while the mean response of nine environments 
averaged over 42 host genotypes, was ranged between 
15.67 and 26.43%; the general mean being 20.45% 
(Table 1). The environmental index ranged from -4.78 to 
5.97. The genotypes 14 and 42 showed highest level of 
100% severity, while the genotypes 1, 2, 3, 6, 7, 9, 11, 
13, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30 and 
31   showed   consistently   resistant    reactions    across  

 
 
 
 
seasons of testing. The rest of the genotypes exhibited 
variable degrees of resistance to susceptibility reactions. 
The distribution properties of disease severity (%) among 
42 rice genotypes tested across nine seasons presented 
in a box plot (Figure 1) depicts the degree of dispersion in 
the population. The minimum and maximum disease 
scores indicated a broad spectrum of disease reactions 
ranging from 0 to 100% severity. A significant shift in box 
position as well as median values towards lower end 
signified the positive skewness in the distribution. Small 
inter-quartile range implied high uniformity or low 
variations among the central 50% observations. There 
were a number of outliers in the population on the higher 
side, the origin of which were traced back to the 
susceptible genotypes.  
 
 
AMMI analysis of variance 
  
The AMMI analysis of variance of 42 rice genotypes 
tested over nine environments revealed that 84.04% of 
the total sum of squares (SS) was attributable to the 
genotypes (G), 1.05% to the environments (E) and 
14.91% to GEI effects (Table 2). A large SS for G 
indicated that the genotypes were diverse with large 
differences among the means, causing most of the 
variations in the level of their disease reactions. The 
small proportion of SS for E indicated that the difference 
among the environmental means was not very high. The 
magnitude of GxE SS was 5.64 times smaller than that 
for the SS for G, thus indicating that the differences in the 
response of the genotypes across environments were not 
that substantial.  

The first interaction principal component axis (IPCA-1) 
accounted for 37.28% of the interaction SS in 14.63% of 
the interaction degrees of freedom. Similarly, IPCA-2 
explained further 33.47% of the interaction SS. The mean 
square (MS) for both IPCA-1 and IPCA-2 were significant 
at P = 0.01 level and cumulatively contributed to 70.75% 
of the total interaction. Therefore, the post-dictive 
evaluation using F-test at P = 0.01 suggested that these 
two IPCAs of the interaction were significant for the 
model with 94 degrees of freedom. IPCAs 3 to 7 captured 
mostly noise, since the MS were not significant, together 
explained only 28.75% of the total SS and therefore did 
not help to predict validation observations. Thus the 
interaction of the 42 genotypes across nine environments 
was best predictable by the first two principal 
components. 
  
 
AMMI-1 biplot display 
  

The graphical representation of AMMI analysis reveals 
the main effect means on the abscissa and IPCA-1 
scores of both host genotypes as well as the 
environments simultaneously on the ordinate. The 
interaction is described in terms of differential sensitivities  

 

    n 

  Yij = µ + gi + ej + Σ גk £ik Yjk + Rij 
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Table 1. Mean blast disease scores (severity %) for 42 rice genotypes across nine environments. 
 

Genotype  
DS 

1997 

WS 

1997 

DS 

1998 

WS 

1998 

DS 

1999 

WS 

1999 

DS 

2000 

WS 

2000 

DS 

2001 
Mean 

DZ-192 3.33 5.83 3.33 1.67 3.33 1.67 3.33 3.33 3.33 3.24 

DM-27 0.00 3.33 0.00 1.67 6.67 1.67 3.33 3.33 1.67 2.41 

Tieu-phai 0.00 0.00 0.00 1.67 6.67 3.33 3.33 3.33 3.33 2.41 

E-425 3.33 15.00 3.33 6.67 8.33 6.67 3.33 6.67 3.33 6.30 

Mak-thua 33.33 6.25 33.33 1.67 1.67 3.33 3.33 3.33 1.67 9.77 

Sam houang 0.00 2.08 0.00 6.67 6.67 3.33 3.33 3.33 6.63 3.56 

Sakai 3.33 0.83 3.33 0.41 3.33 1.67 0.83 1.67 6.67 2.45 

Seritus malam-A 3.33 25.00 6.67 3.33 6.67 6.67 3.33 6.67 6.67 7.59 

Seritus malam-B 0.00 0.00 0.00 6.67 8.33 6.67 3.33 6.67 6.67 4.26 

Jumi-1 0.00 23.33 0.00 6.67 6.67 3.33 1.67 0.83 6.67 5.46 

Laurent-TC 3.33 2.08 3.33 1.67 6.67 3.33 3.33 4.16 3.33 3.47 

Chiang-tsene-tao 1.67 15.00 1.67 3.33 3.33 1.67 6.67 1.67 3.33 4.26 

Chokoto 0.00 0.00 0.00 0.00 6.67 0.00 3.33 3.33 6.67 2.22 

India dular 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Raj bhawalta 6.67 0.00 6.67 1.67 6.67 1.67 0.83 1.67 6.67 3.61 

Sechi aman 0.00 0.00 0.00 0.00 3.33 3.33 1.67 3.33 3.33 1.67 

Surjamukhi 16.67 6.67 16.67 33.33 6.67 6.67 1.67 3.33 3.66 10.59 

IR-5533-PP-854 0.00 0.00 0.00 3.33 6.67 6.67 3.33 6.67 6.67 3.70 

Madhukar 0.00 0.00 0.00 0.00 3.33 6.67 3.33 6.67 3.33 2.59 

Milayeng-51 0.00 0.00 0.00 0.00 3.33 0.00 1.67 1.67 1.67 0.93 

PTB-8 3.33 0.00 3.33 2.08 0.00 0.00 0.00 0.41 3.33 1.39 

Dahanala-2014 33.33 1.67 3.33 3.33 4.16 3.33 1.67 6.67 4.17 6.85 

Lien-tsan-50-A 8.33 1.67 8.33 3.33 3.32 3.33 3.33 1.66 3.66 4.11 

Lien-tsan-50-B 0.00 0.00 0.00 3.33 6.67 3.33 3.33 3.33 6.67 2.96 

N-22 33.33 1.67 33.33 16.67 16.67 10.83 6.67 10.83 16.67 16.30 

Salum pikit 0.00 0.00 0.00 3.33 3.33 1.67 3.33 1.67 1.67 1.67 

PTB-18 6.67 0.00 6.67 0.83 4.10 0.00 6.67 4.16 3.33 3.60 

DNJ-155 3.33 0.00 3.33 3.33 3.33 6.67 1.67 6.67 3.33 3.52 

DJ-88 3.33 4.17 3.33 1.67 3.33 3.20 10.00 3.33 6.67 4.34 

UCP-188 0.00 0.00 0.00 3.33 3.33 0.00 6.67 1.04 3.33 1.97 

Goda heenati 3.33 0.00 3.33 6.67 6.67 0.00 6.67 2.08 6.67 3.94 

Kalubalawee 33.33 100.0 33.33 66.67 33.33 33.33 16.67 66.67 16.67 44.44 

Bakka-biasa 100.0 33.33 100.0 100.0 33.33 33.33 16.67 66.67 33.33 57.41 

Tiace 100.0 100.0 100.0 100.0 100.0 50.00 66.67 100.0 100.0 90.74 

ARC-7046 100.0 66.67 100.0 100.0 33.33 50.00 33.33 100.0 33.33 68.52 

Prolific 33.33 0.00 33.33 3.33 3.33 0.83 3.33 3.33 3.33 9.35 

Pusa-4-1-11 100.0 25.00 100.0 16.67 66.67 50.00 33.33 66.67 33.33 54.63 

Ratna 33.33 100.0 100.0 100.0 33.33 20.00 33.33 20.00 33.33 52.59 

Jaya 66.67 100.0 100.0 33.33 66.67 66.67 66.67 66.67 66.67 70.37 

CR-289-1045-16 100.0 15.00 100.0 66.67 100.0 50.00 100.0 33.33 100.0 73.89 

CR-570 0.00 15.00 0.00 6.67 8.30 3.33 6.67 6.67 8.37 6.11 

Karuna 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Mean 24.68 20.70 26.43 21.94 19.96 15.67 16.23 20.08 18.41 20.45 

Env. index 4.23 0.25 5.97 1.49 -0.50 -4.78 -4.23 -0.37 -2.05  
 

DS = dry season; WS = wet season. 
 
 
 

of the genotypes to the most discriminating 
environmental variable that can be constructed. 
Displacement along the  abscissa  reflects  differences  in 

main effects, whereas displacement along the ordinate 
illustrates differences in interaction effects. Host 
genotypes  or   environments   appearing   almost   on   a  
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Figure 1. Box plot depicting the distribution 
properties of disease severity (%) among 42 rice 
genotypes across nine seasons of testing (♦ q1, ■ 

min.,▲ med., × max., q3). 

 
 
 

Table 2. AMMI analysis of variance for resistance of 42 rice genotypes across nine environments. 
 

Sources of variation Degrees of freedom Sum of squares Mean squares % Variance explained 

Total 377 404609.84 1073.24**  

Genotypes(G) 41 340045.96 8293.80** 84.04 

Environments(E) 8 4247.66 530.96** 1.05 

GxE Interaction 328 60316.22 183.89** 14.91 

AMMI IPCA-1 48 22485.56 468.45** 37.28 

AMMI IPCA-2 46 20186.17 438.83** 33.47 

AMMI IPCA-3 44 7872.75 178.93 13.05 

AMMI IPCA-4 42 6032.20 143.62 10.00 

AMMI IPCA-5 40 2183.19 54.58 3.62 

AMMI IPCA-6 38 737.61 19.41 1.22 

AMMI IPCA-7 36 515.88 14.33 0.86 

Residual 34 302.86 8.91 0.50 
 

**Significant at P=0.01 level. 

 
 
 
perpendicular line have similar means and those falling 
almost on a horizontal line have similar interaction 
patterns. Genotypes with IPCA-1 scores close to zero 
have small interactions and hence show wider adaptation 
to the tested environments. A large host genotypic IPCA-
1 score have high interactions and reflects  more  specific 

adaptation to the environments with IPCA-1 values of the 
same sign (either positive or negative).  

 The scores and main effects can be read from the 
graph (Figure 2) and used to predict the expected level of 
resistance for any host genotype and environment 
combination.   For  any  GE  combination  in  the  AMMI-1  
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Figure 2. AMMI-1 biplot display of mean blast disease severity 5 and IPCA-1 scores of 42 genotypes 
across nine environments. Host genotypes (▲), Environments (♦). The numerals for host genotypes and 
environments are provided in Tables and 3, respectively. 

 
 
 
biplot (Figure 2), the additive part (main effects) of the 
AMMI model equals the G mean plus E mean minus the 
grand mean. The multiplicative part (interaction effects) is 
the product of G and E IPCA-1 scores. For example, the 
highly resistant genotype-20 with environment-9 had a 
main effect of 0.93%+18.41%-20.45%=-1.11%. The 
interaction effects would be the products of the respective 
IPCA-1 scores = -0.82 x -4.68 = 3.84. The AMMI model 
estimated the resistance of genotype-20 in environment-9 
as -1.11 + 3.84 = 2.73%, which fits the observed 
resistance level of 1.67%. Host genotypes and 
environments with IPCA-1 scores of the same sign 
produce positive interactions effects, while the 
combinations of IPCA-1 scores of opposite signs have 
negative specific interactions. 

Five groupings of the host genotypes (HG) are evident 
from the biplot generated from the present study (Figure 
2). HG-1 includes 28 host genotypes viz. 1, 2, 3, 4, 6, 7, 
8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 
27, 28, 29, 30, 31 and 41 with mean disease score of 
3.61% which is much less than the grand mean 
(20.45%). This group of genotypes has small negative 
IPCA-1 scores ranging from -1.10 to -0.18. For these 
genotypes, the AMMI-1 model predicts disease reactions 
that are close to those of the AMMI-0 model on the 
environments  E-5,  6,  7  and  9   with   negative   IPCA-1 

scores ranging from -0.56 to -0.31 and are well adapted 
to above respective environments. These genotypes 
have smallest interactions and hence possess most 
stable non- race-specific resistance to blast disease. 

HG-2 consists of 4 host genotypes viz. 5, 17, 25 and 36 
with a mean severity level of 11.49%, which is although 
less than the grand mean (20.45%) possess moderate 
resistance to the disease. They have small positive IPCA-
1 scores ranging from 0.20 to 1.02 and are well adapted 
to the environments E-1, 2, 3, 4 and 8 with positive IPCA-
1 scores ranging from 1.95 to 5.43. These genotypes 
have small interactions possessing race-specific 
resistance to the disease in specific environments. 

HG-3 includes 4 host genotypes viz. 32, 33, 35 and 38 
with a mean severity level of 55.74% which is much 
above the grand mean, that is, high susceptible scores. 
These genotypes have high positive IPCA-1 scores 
ranging from 3.65 to 6.05. This group of genotypes is well 
adapted to the environments E-1, 2, 3, 4 and 8 with high 
positive IPCA-1 scores ranging from 1.95 to 5.43. They 
have very high interactions and hence are highly unstable 
across the nine environments. 

HG-4 consists of 2 host genotypes namely, 34 and 37 
with a mean severity level of 72.69% which is much 
above the grand mean and possesses high susceptible 
reactions.  They  have  relatively  higher  positive  IPCA-1 
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scores ranging from 0.74 to 1.63 and are well adapted to 
the environments E-1, 2, 3, 4 and 8 with IPCA-1 scores 
ranging from 1.95 to 5.43. They have high interactions 
and hence are highly unstable. 

HG-5 constitutes 4 host genotypes viz. 14, 39, 40 and 
42 with the highest mean severity level of 86.07% which 
is much above the grand mean and possesses high 
susceptibility levels. These genotypes have low negative 
IPCA-1 scores ranging from -0.07 to -3.59 and are well 
adapted to the environments E-5, 6, 7 and 9 with high 
negative IPCA-1 scores ranging from -3.08 to -5.57. They 
possess stable susceptibility over the environments. 

The direction and magnitude of differences among 
genotypes along the abscissa (disease severity %) and 
ordinate (IPCA-1 scores) can be read from the graph 
(Figure 2). The best resistant genotypes should show 
zero to low level of disease severity and should be stable 
across the tested environments. Any host genotype 
showing lower absolute IPCA-1 score would produce a 
lower absolute GxE interaction effect than that with 
higher absolute IPCA-1 score and have less variable 
disease reactions (that is, more stable) across the 
environments. The host genotype stability ranking based 
on lower absolute IPCA-1 scores was HG-1 (-0.18 to -
1.10), HG-5 (-0.07 to -3.59), HG-2 (0.20 to 1.02), HG-4 
(0.74 to 1.63) and HG-3 (3.65 to 6.05). The groups of 
host genotypes in HG-1 and HG-2 are depicted on the 
horizontal axis in AMMI-1 biplot display (Figure 2). HG-1 
has very high level of resistance with mean disease 
severity level of 3.61% and low negative IPCA-1 scores. 
HG-2 has moderate level of resistance with mean 
disease severity level of 11.49% and low positive IPCA-1 
scores. Hence the 28 genotypes in HG-1 were identified 
as possessing highly stable resistance, while the four 
genotypes in HG-2 possessed relatively moderate stable 
resistance to the disease. The genotypes in HG-3, HG-4 
and HG-5 exhibited high levels of disease severity much 
above the grand mean, small to large absolute IPCA-1 
scores which produced higher absolute interaction 
effects. Thus, these genotypes have more variable 
disease reactions across the tested environments and 
hence are considered as unstable. 

The nine environments show variability in the main 
effects and interactions, the IPCA-1 scores showing clear 
higher negative or positive interactions (Figure 2) due to 
the two groups of environments (EG). EG-1 constituting 
of E-1, E-2, E-3, E-4 and E-8 showed highest main 
effects and large positive IPCA-1 scores, while EG-2 
consisting of E-5, E-6, E-7 and E-9 showed high 
response to the host genotypes with high negative 
interaction IPCA-1 scores. 
 
 
Response of five host genotype groups to nine 
environments  
 
Disease severity of five host  genotype  groups  averaged 

 
 
 
 
over nine environments ranged from 3.61% for HG-1 to 
86.07% for HG-5 and the response of nine environments 
ranged between 34.80% for E-7 and 62.93% for E-3 
(Table 3). The ranking of the HGs in ascending order of 
their average severity levels was HG-1<HG-2<HG-3<HG-
4<HG-5 and similar ranking of environments on the basis 
of their average response was E-6<E-7<E-9<E-5<E-2<E-
8<E-4<E-1<E-3. The genotypes in HG-1 exhibited 
highest degree of resistance with the disease severities 
ranging from 2.14 to 5.11% across nine environments. 
HG-2 exhibited varied degrees of resistance ranging from 
3.65 to 29.16% showing susceptibility under E-1, E-3 and 
E-4. The host genotypes under HG-3, HG-4 and HG-5 
exhibited consistently high degree of susceptibility across 
all the nine environments. 
 
 
AMMI-2 biplot display 
  
The AMMI is an explorative technique by which the GxE 
relationship can be expressed in terms of interaction 
patterns derived in bi-plots. A bi-plot is a graphical 
representation in which genotypes and environments are 
displayed simultaneously. The interaction is described in 
terms of differential sensitivities of the genotypes to the 
most discriminating environmental variables (AMMI-axes) 
that can be constructed. These environmental variables 
and the genotype sensitivities are estimated from the 
table itself. For simple interpretation of the biplot, the 
genotypes with vector end points far from the origin 
contribute relatively more to the interaction than those 
with vector end points close to the origin. In the present 
experiment, the genotypes 32, 33, 35, 38 in HG-3; 37 in 
HG-4 and 40 in HG-5 have relatively greater contribution 
to the interaction than the others (Figure 3). The 
aforementioned genotypes with vector end points far 
apart, show considerable interactions with rest of the 
genotypes including the 28 genotypes in HG-1. 
Genotypes, for which the directions of the vectors almost 
coincide, have similar pattern of interactions like those in 
HG-1 and HG-5. On the other hand, when the directions 
are opposite, the interaction patterns of the 
corresponding genotypes show negative correlation like 
those within HG-1, HG-5; and HG-2, HG-3, HG-4. Thus 
the genotypes and environments showing considerable 
interactions could be easily identified from the bi-plot. 

AMMI analysis extracted values of the scores for IPCA-
1 to IPCA-7 in respect of 42 host genotypes as well as 
nine environments. A biplot is generated using the IPCA-
1 and IPCA-2 scores for the 42 host genotypes and 9 
environments with the first principal component axis on 
the abscissa and the second on the ordinate (Figure 3). 
The biplot displayed both the host genotypes and 
environments simultaneously in four sectors of a single 
scattered plot depending upon the positive or negative 
signs of the scores on the first two principal components. 
Sector-1 represents host genotypes or environments with  
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Table 3. Mean response (severity %) of 5 host genotype groups (HG) exposed to nine environments. 
 

Environment HG-1 HG-2 HG-3 HG-4 HG-5 Mean 

DS-1997 3.09 29.16 66.67 100.00 91.67 58.12 

WS-1997 4.11 3.65 75.00 62.50 78.75 44.80 

DS-1998 2.14 29.16 83.33 100.00 100.00 62.93 

WS-1998 2.92 13.75 91.67 58.34 75.00 48.34 

DS-1999 5.11 7.08 33.33 83.34 91.67 44.11 

WS-1999 2.97 5.41 34.16 50.00 79.17 34.34 

DS-2000 3.57 3.75 25.00 50.00 91.67 34.80 

WS-2000 3.79 5.21 63.34 83.34 75.00 46.14 

DS-2001 4.80 6.25 29.16 66.67 91.67 39.71 

Mean 3.61 11.49 55.74 72.69 86.07 45.92 
 

DS = dry season; WS= wet season. 

 
 
 

 
 
Figure 3. AMMI-2 biplot display of 42 rice genotypes and nine environments for their response to 
blast disease. Scores on the first axis (IPCA-1) account for 37.28% and second axis (IPCA-2) 
account for 33.47% of GxE SS. Environment points are at the end of the spike. The numerals for 
genotypes and environments are provided in Tables 1 and 3, respectively. 

 
 
 
positive IPCA-1 as well as IPCA-2 scores, while sector-2 
represent positive IPCA-1 and negative IPCA-2 scores. 
Sector-3 represents negative IPCA-1 as well as IPCA-2 
scores and sector-4 represents negative IPCA-1 and 
positive IPCA-2 scores. In the present study, the 
environments were distributed into four sectors in the 
following manner: E-2, E-4 and E-8 in Sector-1; E-1 and 
E-3 in sector-2; E-5 and E-9 in sector-3; and E-6 and E-7 
in sector-4. The ranking of the environments in order of 

their level of response to the disease was E-6<E-7<E-
9<E-5<E-2<E-8<E-4<E-1<E-3. Among the host genotype 
groups, HG-2 and HG-4 fell into sector-2, HG-3 fell into 
both sector-1 and 2, HG-1 into both sector 3 and 4 and 
HG-5 into sector-3 and 4. The ranking of these groups of 
genotypes according to their levels of resistance was HG-
1 >HG-2 >HG-3 >HG-4 >HG-5. Thus the biplot not only 
displayed the GEI but also facilitated in visual description 
of ‘which win where’ pattern. 
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A polygon drawn in the biplot (Figure 3) by joining the 
host genotypes located farthest from the bi-plot origin, 
encompassing all other host genotypes, facilitates 
identification of the genotypes that are most resistant in 
specific environments. The vertex genotype in a sector is 
most or least resistant to the environment falling in that 
sector. In the present study, the vertex genotypes 32, 33, 
35, 37, 38 and 40 exhibit susceptibility in all the 
environments. All the 28 genotypes in HG-1 exhibited 
highly stable resistance in all the nine environments. 
However, three of the four genotypes in HG-5 showed 
high susceptibility in all the nine environments. The two 
genotypes in HG-4, though not positioned at the vertex, 
were susceptible in all the nine environments. The 
response of five genotype in HG-2 were variable, that is, 
resistant in E-2, E-5, E-6, E-7, E-8 and E-9; and 
susceptible in E-1, E-3 and E-4 (Table 3). 

There was a highly significant correlation between the 
mean disease severity percent and the IPCA-1 scores (r 
= 0.398**). Hence, the ‘G’ main effects can be 
represented by the IPCA-1 scores for the genotypes. The 
genotypes with lower IPCA-1 scores would produce a 
lower absolute GxE interaction effect than those with 
higher absolute IPCA-1 scores and have less variable 
degree of resistance (more stable) across environments. 
The stability ranking of the genotypes based on lower 
absolute IPCA-1 scores was those in HG-1, HG-5, HG-2, 
HG-4, HG-3. Thus the genotype group HG-1 (More 
resistant) and HG-5 (More susceptible) possessed high 
stability across the tested environments. Among them the 
genotypes in HG-1 exhibited least mean disease severity 
and hence possessed stable resistance. The genotypes 
in HG-5 exhibited highest level of susceptibility for which 
these were considered as possessing stable 
susceptibility.  

The discriminating ability of the environments can be 
judged by calculating the distance of each environment 
from the biplot origin. In this regard, the environments E-
1, E-2, E-3, E-4 and E-7 are most discriminating as 
indicated by long distance from the biplot origin. Host 
genotypes with IPCA-1 scores >0 responded positively 
(adaptable) to the environments that had IPCA-1 scores 
> 0 (that is, their interaction is positive), but responded 
negatively to the environments that had IPCA-1 scores 
<0. The biplot revealed that the genotypes in HG-2, HG-3 
and HG-4 with IPCA-1 scores >0 responded positively to 
the environments E-1, E-2, E-3, E-4 and E-8 with IPCA-1 
scores >0 and hence their interaction is positive and the 
genotypes in these three HG groups are adaptable to the 
five environments.  
 
 
AMMI stability index ‘Di’  
  
The distance of interaction principal component point with 
the origin in space is the AMMI stability coefficient ‘Di’. 
The estimate of  the  stability  index  ‘Di’  incorporates  the  

 
 
 
 
IPCA scores of the significant IPCs depending upon their 
contributions towards the interaction SS. The stability 
index is useful in evaluation and identification of host 
genotypes possessing stable resistance. The lower Di 
values indicate high stable resistance across the tested 
environments and vice versa. In the present experiment, 
there was a significant correlation between mean disease 
severity and the stability index Di (r = 0.501**).  

The ranking of host genotype groups in ascending 
order of Di values was those in HG-1 (0.47 to 1.89), HG-2 
(1.02 to 2.34), HG-4 (1.64 to 5.56), HG-5 (0.76 to 6.82) 
and HG-3 (5.99 to 7.08). The 28 genotypes in HG-1 
exhibited low Di values with mean disease score of 
3.61%, low negative IPCA-1 scores (-1.10 to -0.18) and 
consistently resistant reaction across nine environments 
of testing. Hence these 28 genotypes were identified as 
possessing stable resistance to the disease. The four 
genotypes in HG-2 showed low Di values (1.03-2.34) and 
small positive IPCA-1 scores (0.20-1.02). These 
genotypes showed high degree of resistance with 
occasional susceptibility during one season or the other 
and hence were considered as possessing average 
stability. Rest of the genotypes in HG-3, HG-4 and HG-5 
showed high levels of disease severity scores, high Di 
values, variable IPCA-1 and IPCA-2 scores and hence 
were not considered as possessing stable resistance to 
the disease (Table 4). However, the genotypes viz. 14, 
39 and 42 showed low Di values, small negative IPCA-1 
scores and consistent high disease scores. Hence these 
genotypes were considered as possessing stable 
susceptibility to the disease.  
 
 
Interaction pattern from response plot  
  
Response plots (Figure 4) indicate the nature of GEI with 
the main effects of genotypes and environments 
removed. The values plotted for each genotype group by 
environments are the deviations from additive main 
effects predictions of each variable. The larger the 
deviation, the greater is the interaction of the HG with the 
environment. The response may be positive or negative 
depending upon whether or not the HG resulted in more 
or less effects than the main effects expectation. In the 
present study, 28 genotypes in HG-1 showed positive 
interactions with E-2, E-5, E-6, E-7, E-8 and E-9 and 
negative interactions with E-1, E-3 and E-4. These 
genotypes also showed low mean disease scores and 
were located near the centre of the biplot in sector-2 
(Figure 3). They showed low negative IPCA-1 and 
positive IPCA-2 scores and hence were recognized as 
possessing stable resistance to blast disease. The four 
genotypes in HG-2 showed positive interactions with E-1, 
E-3, E-4 and negative interactions with E-2, E-5, E-6, E-
7, E-8 and E-9; moderately low mean disease scores. 
These genotypes were located near the centre of the 
biplot in sector-2,  with  low  positive  IPCA-1  scores  and  
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Table 4. Mean blast disease score, estimates of IPCA scores and AMMI stability index (Di) for 42 rice genotypes 
across nine environments. 

 

 Genotype Mean IPCA-1 IPCA-2 IPCA-3 IPCA-4 Di value 

DZ-192 3.24 -0.60 0.53 -0.18 0.02 0.80 

DM-27 2.41 -0.85 0.64 -0.20 0.28 1.06 

Tieu-phai 2.41 -1.01 0.47 -0.21 0.48 1.11 

E-425 6.30 -0.41 1.16 -0.32 -0.01 1.23 

Mak-thua 9.77 0.82 -1.86 -0.29 -1.61 2.03 

Sam houang 3.56 -0.88 0.64 0.12 0.78 1.09 

Sakai 2.45 -0.79 0.21 -0.08 0.17 0.82 

Seritus malam-A 7.59 -0.26 1.59 -0.32 -0.95 1.61 

Seritus malam-B 4.26 -1.00 0.57 -0.22 0.98 1.15 

Jumi-1 5.46 -0.38 1.85 0.24 -0.40 1.89 

Laurent-TC 3.47 -0.80 0.32 -0.27 0.22 0.86 

Chiang-tsene-tao 4.26 -0.55 1.21 0.09 -0.30 1.35 

Chokoto 2.22 -1.10 0.41 -0.08 0.36 1.17 

India dular 100.00 -0.63 0.43 -0.16 0.28 0.76 

Raj bhawalta 3.61 -0.71 -0.11 0.01 0.10 0.72 

Sechi aman 1.67 -0.91 0.46 -0.35 0.39 1.02 

Surjamukhi 10.59 1.02 -0.09 1.15 1.65 1.02 

IR-5533-PP-854 3.70 -1.08 0.54 -0.39 0.75 1.21 

Madhukar 2.59 -1.00 0.52 -0.67 0.50 1.13 

Milayeng-51 0.93 -0.82 0.42 -0.16 0.31 0.92 

PTB-8 1.39 -0.50 0.18 0.01 0.30 0.53 

Dahanala-2014 6.85 -0.18 -1.05 -1.18 0.63 1.06 

Lien-tsan-50-A 4.11 -0.48 -0.09 -0.03 0.06 0.47 

Lien-tsan-50-B 2.96 -1.05 0.48 -0.04 0.64 1.15 

N-22 16.30 0.20 -1.91 0.25 -0.01 1.92 

Salum pikit 1.67 -0.79 0.48 -0.03 0.57 0.92 

PTB-18 3.60 -0.71 -0.09 -0.13 0.08 0.72 

DNJ-155 3.52 -0.67 0.28 -0.55 0.57 0.73 

DJ-88 4.34 -1.02 0.46 0.02 0.14 1.12 

UCP-188 1.97 -0.94 0.47 0.20 0.56 1.05 

Goda heenati 3.94 -0.85 0.22 0.41 0.65 0.88 

Kalubalawee 44.44 3.65 4.88 -1.82 -0.01 6.09 

Bakka-biasa 57.41 5.83 -4.01 0.30 2.58 7.08 

Tiace 90.74 1.63 -0.13 0.86 -0.03 1.64 

ARC-7046 68.52 6.05 -1.67 -2.28 1.76 6.28 

Prolific 9.35 0.69 -2.24 -0.05 -1.17 2.34 

Pusa-4-1-11 54.63 0.74 -5.51 -3.59 -3.46 5.56 

Ratna 52.59 5.42 2.54 6.15 -2.61 5.99 

Jaya 70.37 -0.07 0.76 -0.88 -5.97 0.76 

CR-289-1045-16 73.89 -3.59 -5.80 4.82 0.22 6.82 

CR-570 6.11 -0.77 1.41 0.01 0.18 1.61 

Karuna 100.00 -0.63 0.43 -0.16 0.28 0.76 

 
 
 
negative IPCA-2 scores; and hence were considered as 
possessing average stability. The four genotypes in HG-3 
showed negative interactions of high magnitude with E-5, 
E-6, E-7, E-9 and positive interactions of high magnitude 
with E-1, E-2, E-3, E-4, E-8; positive IPCA-1 scores and 
both positive and negative IPCA-2 scores. These 

genotypes were located far away from the centre of biplot 
at the apex of the polygon and showed mean disease 
scores much above the grand mean. Hence this group of 
genotypes was considered to be highly unstable. Two 
genotypes in HG-4 showed positive interactions with E-1, 
E-3, E-5, E-8 and negative interactions with E-2,  E-4,  E-
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Figure 4. Response plot for five genotype groups and nine environments. 

 
 
 
6, E-7, E-9; positive IPCA-1 and negative IPCA-2 scores. 
These genotypes were located away from the centre of 
the biplot; showed high mean disease scores and hence 
were considered as highly unstable. The four genotypes 
in HG-5 showed negative interactions of low magnitude 
with E-2, E-4, E-6, E-8 and positive interactions of similar 
magnitude with E-1, E-3, E-5, E-7, E-9. These genotypes 
were positioned at the centre of the biplot with negative 
IPCA-1 and positive IPCA-2 scores. These genotypes 
were recognized as possessing stable susceptibility due 
to their highest mean disease scores across nine 
environments.  
 
 
Stability analysis by regression models 
  
Attempts were made to compare different stability 
parameters analysed by AMMI model and regression 
models. A critical comparison among the three regression 
models (E and R, P and J, F and P) based on GEI from 
ANOVA tables and genotype rankings based on bi and 
S

2
d, revealed similar trends. Hence, the ANOVA (Table 5) 

and GEI (Table 6) for Eberhart and Russell model only 
are presented here. The highly significant G and E mean 
squares revealed that the disease scores for 42 
genotypes are significantly different from each other and 
the environments also represented an array of diverse 

conditions for disease development. The pooled ANOVA 
showed that the GEI was a linear function of the additive 
environmental component. The GEI was further 
partitioned into linear and nonlinear components. The 
highly significant mean squares (MS) for these 
components indicated the presence of both predictable 
and unpredictable components of GEI. Highly significant 
GxE (linear) interaction indicated the presence of genetic 
differences among the genotypes for their regression on 
the environmental index. Significantly larger pooled 
deviation over pooled error indicated the existence of a 
significant departure from linearity and therefore some of 
the GEI cannot be predicted from the linear regressions. 

In the present context of stable disease resistance, 
host genotypes exhibiting low mean disease scores, 
small regression coefficient (bi = 0) and minimum 
deviation from regression (S

2
d = 0) were considered as 

possessing above average stability; those exhibiting low 
mean disease scores, bi = 1 and S

2
d = 0 were considered 

as possessing average stability, while those showing high 
disease scores, bi = 1 and S

2
d = 1 as most unstable for 

disease resistance. The GEI in the present study 
revealed that 12 genotypes viz. 5, 17, 25, 32, 33, 34, 35, 
36, 37, 38, 39 and 40 showed high mean disease scores, 
large interactions, bi ≥ 1 (Figure 5) and large MS-
deviations as well as MS-regressions (Table 6) and 
hence were considered unstable. The two genotypes viz.  
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Table 5. ANOVA for blast disease scores of 42 rice genotypes exposed to nine seasons. 
 

Sources of variation d.f. Sum of squares Mean squares F. Ratio 

Replication within Env. 18 9.57 0.53 0.004 

Genotypes (G) 41 340045.59 8293.79 59.19** 

Environments (E) 8 4247.38 530.92 3.79** 

E+(GxE) 336 64563.92 192.15 1.37** 

GxE 328 60316.54 183.89 1.31** 

Environments (Linear) 1 4247.38 4247.38 30.31** 

GxE (Linear) 41 19121.50 466.38 3.33** 

Pooled Deviation 294 41195.04 140.12 261.96** 

Pooled Error 738 394.75 0.53  

Total 377 404609.58 1073.23  
 

*Significant at P=0.01 level; d.f. = degrees of freedom. 

 
 
 

Table 6. Mean blast disease scores (severity %), the slope of regression (bi), ms deviation (s2
d), the 

contribution of genotypes to interactions for 42 rice genotypes exposed to nine environments. 
 

Genotypes Mean score Slope(bi) MS-Dev. (S
2

d) MS-GxE MS-REG. 

1. DZ-192 3.24 0.060* 1.62 12.58 89.31 

2. DM-27 2.41 -0.264* 3.84 23.57 161.70 

3. Tieu-phai 2.41 -0.385* 3.50 27.31 193.94 

4. E-425 6.30 -0.117* 16.30 30.05 126.25 

5. Mak-thua 9.77 3.049* 71.92 116.02 424.72 

6. Sam houang 3.56 -0.373* 6.06 29.13 190.65 

7. Sakai 2.45 0.072* 4.32 14.66 87.02 

8. Seritus malam-A 7.59 -0.004 51.68 57.97 101.98 

9. Seritus malam-B 4.26 -0.557* 9.10 38.62 245.31 

10. Jumi-1 5.46 -0.243 59.67 71.75 156.30 

11. Laurent-TC 3.47 -0.047* 2.25 15.83 110.87 

12. Chiang-tsene-tao 4.26 -0.194* 20.97 36.36 144.10 

13. Chokoto 2.22 -0.319* 8.06 29.06 176.07 

14. India dular 100.00 0.000* 0.00 12.64 101.13 

15. Raj bhawalta 3.61 0.409 7.51 10.98 35.39 

16. Sechi aman 1.67 -0.324* 1.66 23.59 177.15 

17. Surjamukhi 10.59 1.683 75.87 72.28 47.13 

18. IR-5533-PP-854 3.70 -0.598* 5.77 37.35 258.38 

19. Madhukar 2.59 -0.563* 4.24 34.60 247.14 

20. Milayeng-51 0.93 -0.126* 1.45 17.30 128.27 

21. PTB-8 1.39 0.297* 1.64 7.68 49.92 

22. Dahanala-2014 6.85 1.285 91.35 80.96 8.23 

23. Lien-tsan-50-A 4.11 0.500* 3.57 6.29 25.33 

24. Lien-tsan-50-B 2.96 -0.427* 5.11 30.22 206.04 

25. N-22 16.30 2.359 54.91 71.39 186.71 

26. Salum pikit 1.67 -0.226* 1.63 20.43 151.97 

27. PTB-18 3.60 0.303* 7.60 12.80 49.14 

28. DNJ-155 3.52 -0.109* 4.93 19.87 124.43 

29. DJ-88 4.34 -0.363* 5.24 28.06 187.77 

30. UCP-188 1.97 -0.317* 4.83 26.17 175.54 

31. Goda heenati 3.94 -0.021* 9.29 21.29 105.34 

32. Kalubalawee 44.44 1.565 837.67 737.00 32.26 

33. Bakka-biasa 57.41 8.276* 368.48 991.72 5354.38 
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Table 6. Contd. 
 

34. Tiace 90.74 3.759 201.50 272.53 769.72 

35. ARC-7046 68.52 6.750* 488.18 845.15 3343.91 

36. Prolific 9.35 3.135* 71.06 119.79 460.93 

37. Pusa-4-1-11 54.63 5.380 675.29 833.43 1940.36 

38. Ratna 52.59 5.761 999.30 1160.89 2291.98 

39. Jaya 70.37 1.559 423.45 374.47 31.62 

40. CR-289-1045-16 73.89 1.913 1253.52 1107.36 84.26 

41. CR-570 6.11 -0.537* 20.45 47.74 238.77 

42. Karuna 100.00 0.000* 0.00 12.64 101.13 
 

Slope = slopes of regressions of genotype means on environmental index; ms-dev=deviation from regression 
component of interaction (s

2
d); ms-gxe=contribution of each genotype to interaction ms; ms-reg = contribution of each 

genotype to the regression component of the gxe interaction; * = slopes significantly different from 1.00 at p = 0.05 
level. 

 
 

 

 
 

Figure 5. Relationship between mean blast disease scores of 42 rice genotypes and the corresponding stability 
parameters ‘bi’. The numerals for genotypes are provided in Table 1. 

 
 
 

14 and 42, although showed small interactions, zero MS-
deviations and bi = 0; were considered as possessing 
stable susceptibility due to highest mean disease scores. 
Four genotypes viz. 8, 10, 15 and 22 showed bi = 1, small 
to high deviation from regression as well as interactions 
and hence were considered as possessing average 
stability. The 24 genotypes viz. 1, 2, 3, 4, 6, 7, 9, 11, 12, 
13, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31 and 
41 showed bi = 0, S

2
d = 0, small interactions and low 

minimum disease scores across environments, thus 
exhibiting unresponsiveness in their disease reactions to 
environmental changes and hence were considered as 
possessing above average stability in their resistance to 
rice blast disease.  

Association among different stability parameters 
estimated following E and R model, P and J model, F and 

P model, AMMI model was verified by calculating 
Pearson’s correlations (Table 7). Highly significant 
positive correlation of mean disease score with all the 
stability parameters implied that stable resistance to the 
disease across environments was associated with low 
stability indices. The strong relationship among the 
parameters further indicated that both regression and 
AMMI parameters were equally efficient in identification 
of stable resistant genotypes. A critical comparison of 42 
genotypes for their stability across nine environments 
revealed perfect agreement between the regression and 
AMMI models in the instability in expression of disease 
reaction of 12 genotypes viz. 5, 17, 25, 32, 33, 34, 35, 36, 
37, 38, 39 and 40 in HG-2, HG-3, HG-4 and HG-5. The 
two genotypes 14 and 40 possessed stable susceptibility 
in  both  the  models.  Out  of  rest  of  the  28   genotypes 
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Table 7. Correlation among the stability parameters for 42 rice genotypes across  nine seasons of testing. 
 

 Di IPCA-1 Bi ER S
2

d ER Bi PJ S
2

d PJ Bi FP S
2

d FP 

Mean 0.501** 0.398** 0.541** 0.566** 0.541** 0.566** 0.533** 0.565** 

Di  0.662** 0.794** 0.868** 0.794** 0.868** 0.789** 0.858** 

IPCA-1   0.833** 0.430** 0.833** 0.430** 0.842** 0.419** 

Bi ER    0.609** 0.999** 0.609** 0.998** 0.603** 

S
2

d ER     0.609** 0.999** 0.595** 0.997** 

Bi PJ      0.609** 0.997** 0.609** 

S
2

d PJ       0.595** 0.996** 

Bi FP        0.589** 
 

Mean = Mean disease severity %; Di = AMMI stability index; Bi = slope value; S
2
d = Deviation from regression; ER = Eberhart 

and Russell model; PJ = Perkins and Jinks model; FP = Freeman and Perkins model; ** = Significant at P = 0.01 level. 

 
 
 
recognized as possessing stable resistance in AMMI 
model, 24 genotypes in HG-1 of AMMI model were also 
recognized as possessing stable resistance in three 
regression models with bi = 0, S

2
d = 0. However, four 

genotypes viz. 8, 10, 15 and 22 recognized as 
possessing stable resistance in AMMI model, were 
considered possessing average stability in regression 
models with bi = 1.0, high S

2
d values and high 

interactions, mainly due to high disease scores above 
grand mean in one environment or the other.  
 
 
DISCUSSION 
 
GEI for resistance to diseases is the differential response 
of genotypes to changing environmental conditions 
(Mahalingam et al., 2006). A stable resistant genotype 
should possess high levels of resistance with low degree 
of fluctuations, when grown over diverse environments. 
Analysis of GEI for genotypes reduce errors in the 
breeding process as the selection in one condition cannot 
provide advantages in others. Among several methods of 
univariate and multivariate stability statistics proposed for 
analysis of GEI, AMMI analysis is widely used because it 
captures a large portion of GEI SS, clearly separates 
main and interaction effects and provides meaningful 
interpretations of the data (Ebdon and Gauch, 2002). The 
estimation of IPCAs is based on the GE residual matrix. 
An IPCA reflects some systematic pattern in the matrix 
indicating environment specific genotype response. 
Under complex situations, several significant IPCAs may 
be computed by the AMMI analysis to describe the 
interactions contained in the residual matrix. But the first 
few IPCAs capture the largest part of them and thus 
greatly reduce the dimensionality of the problem. 

In the present study, the largest part (85%) of the total 
variation of blast disease severity was explained by G 
and E main effects. Of the remaining variation, 70.75% 
were explained by the significant GEI captured by the first 
two IPCAs. Further IPCAs captured mostly noise and 
therefore, did not help to predict validation observation. 

The present observation is in agreement with those 
reported by Nayak et al. (2008), Forbes et al. (2005), 
Robinson and Jalli (1999) and Flores et al. (1996). On the 
contrary Abamu et al. (1998) reported significant 
contribution of first four IPCAs to GE SS. The GEI had a 
tremendous effect on the performance and ranking of the 
genotypes in specific environments, indicating that their 
disease reactions were impaired by interactions with the 
environment. For example, the genotypes in HG-2 
expressed resistance in E-2, 5, 6, 7, 8 and 9 but 
susceptibility in E-1, 3 and 4 and hence were not stable 
across environments; while those in HG-1 expressed 
consistently resistance reactions in all nine environments 
and thus were highly stable. The genotypes in HG-3, 4 
and 5 expressed susceptible reactions across all nine 
environments. 

The AMMI model describes GEI in more than one 
dimension and offers better opportunities for studying and 
interpreting GEI than ANOVA and regression of the mean 
(Vargas et al., 2001). In AMMI, the additive portion is 
separated from the interaction by ANOVA. Then the IPCA 
analysis which provides a multiplicative model is applied 
to analyze the interaction effect from the additive ANOVA 
model. The biplot display of IPCA scores provides visual 
inspection and interpretation of the GEI. Integrating biplot 
display and genotypic stability statistics enables 
genotypes to be grouped based on similarity in their 
performance across diverse environments. The five HGs 
recognized through AMMI analysis of the present data 
set, exhibited distinct interactions of stable resistance 
(HG-1) and susceptibility reactions. 

The results of AMMI analysis indicated that the model 
fits the data well which made it possible to construct the 
biplot and calculate genotype as well as environmental 
effects. The IPCA scores of a genotype in the AMMI 
analysis indicate the stability of the genotype across 
environments. The closer the IPCA scores to zero, the 
more stable the genotypes are across testing 
environments. In this study, the 28 genotypes in HG-1 
exhibiting consistently low disease reactions across 
environments and  expressing  zero  to  negative  IPCA-1 
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scores were recognized as possessing highly stable 
resistance compared with the rest four HGs which were 
unstable. The AMMI model and biplot were useful 
methods for the analysis of GEI for disease resistance in 
different plant-pathosystems (Flores et al., 1996; Abamu 
et al., 1998; Robinson and Jalli, 1999; Forbes et al., 2005 
Nayak et al., 2008; Jalata, 2011). In the present study, 
GE biplot and the stability index Di values were powerful 
tools for evaluation of stable blast resistant genotypes. 
The GE biplot not only displayed the interaction of 
genotypes and environments, but also facilitated a visual 
description of ‘which win where’ patterns. AMMI analysis 
also helped in explaining the GEIs in specific 
environments resulting in detection of suitable 
environment for each genotype group. Thus the present 
study identified HGs with specific positive adaptation to 
specific environments, which is a pattern of response that 
can be used in breeding for resistance to such 
environments. Overall, the expression of resistance of 
this group of genotypes to M. oryzae was robust, since 
the resistance levels were consistent in all tested 
environments. Conversely, the four genotypes in HG-5 
showed low negative interactions in four and low positive 
interactions in five environments, positioned at the center 
of the biplot with consistent high mean disease scores 
and thus exhibited well adaptation to respective 
environments with high levels of stability in their 
susceptibility. Among them, the genotype42 (Karuna) is 
being used as a susceptible check in blast screening 
programs and the genotype-14 (India Dular) as a 
differential variety in race identification programs. 

In the present study, partitioning and interpretation of 
GEI was based on three linear regression methods and 
the AMMI analysis. All methods explained similar SS 
patterns as evidenced from the respective ANOVA tables 
(Tables 2 and 5), thus indicating that they were equally 
efficient in partitioning and interpretation of GEI. The two 
stability measures (bi and S

2
d) estimated following three 

regression methods along with the AMMI stability index Di 
and IPCA-1 were found to be equally potential in 
determining the stability of rice genotypes to blast 
disease. This finding was substantiated by the highly 
significant correlations among these stability parameters 
(Table 7) and identification of 24 genotypes viz. 1, 2, 3, 4, 
6, 7, 9, 11, 12, 13, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 
29, 30, 31 and 41 as possessing stable resistance, 
following all the methods. Since AMMI combines ANOVA 
and PCA in one model, it was found to be more useful 
and informative in depicting the stable response of 
genotypes. However, the regression models also remain 
a good option. The present findings corroborate with 
those reported by Pinnschmidt and Hovmoller (2002) that 
combined JRA and AMMI are very useful for improving 
the evaluation of varietal resistance to net blotch in 
barley. On the contrary, AMMI analysis was reported to 
be a potentially useful method in improving the resistance 
status of barley to net blotch  (Robinson  and  Jalli,  1999) 

 
 
 
 
and that of rice to blast disease (Abamu et al., 1998). 

The classical stability ANOVA is not effective for 
detailed study of underlying patterns of interactions, while 
the AMMI model has been found to be an effective tool 
for a more in-depth analysis of interactions (Zobel et al., 
1988). AMMI is especially effective where the assumption 
of linearity of response of genotypes to changes in 
environment is not fulfilled (Adhikari et al., 1995; Zobel et 
al., 1988) which is required in stability analysis 
techniques of linear models. The AMMI model does not 
require this assumption, because it is a hybrid statistical 
model which incorporates both additive and multiplicative 
components of the two-way (G-E) data structure. It 
separates the additive main effects from the interaction 
which is analyzed as a series of multiplicative 
components using PCA and helps to indicate the 
interaction pattern. The strength of a correlation of the 
individual principal component with observed effect on 
the disease component can provide quantitative 
estimates of their importance as a possible cause of GEI 
(Ardales et al., 1996). 

A promising candidate genotype for stable non-race-
specific resistance would exhibit a good mean resistance 
level, little sensitivity to environmental mean disease 
levels as reflected by low slope (bi)values and small 
specific GEI as reflected by IPCA scores close to zero as 
well as residuals of the full model close to zero 
(Pinnschmidt and Hovmoller, 2002, Tiawari et al., 2011). 
Among the 42 rice genotypes, the 28 genotypes in HG-1 
fulfilled these criteria of possessing stable non-race-
specific resistance to blast disease, since they showed 
mean disease scores of 3.6% across environments, small 
interactions (GEI MS = 6.29-80.96), small specific GEI as 
reflected by negative IPCA-1 scores (-1.10 to -0.18), 
IPCA-2 scores (-1.05 to 1.85) and small residuals of the 
full model close to zero. The genotypes in HG-2 
possessing small positive IPCA-1 scores (0.20 to 1.02), 
negative IPCA-2 scores (-2.24 to -0.09), variable 
sensitivities to environments (9.35% to 16.30%) and high 
interactions (71.39 to 119.79), appeared to be 
possessing race specific resistance in certain 
environments. 
 
 
Conclusion  
 
Both regression and AMMI models were equally potential 
in partitioning the GEI. However, the AMMI model:  
 
(1) Described the GEI in more than one dimension and 
offered better opportunities for understanding and 
interpreting GEI; 
(2) Described the visual inspection of biplot display and 
interpretation of GEI facilitated identification of genotypes 
possessing stable resistance as well as discriminating 
environments;  
(3) Described  the  specificity  in  resistance  pattern   and 



 
 
 
 
adaptability of the genotypes to specific environments in 
a ‘which won where’ pattern, and 
(4) Integrate the biplot display and genotypic stability 
statistics enabled grouping of genotypes based on 
similarity in their performance across environments.  
 
The scientific information obtained could be useful to 
plant breeders and plant pathologists in supporting 
breeding program decisions. Thus, AMMI model emerged 
as a useful tool in partitioning and meaningful 
interpretation of GEI in rice blast pathosystem.  
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