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Soluble solids content (SSC) and pH are two important quality parameters of fruit vinegars. Visible and
near infrared (VIS/NIR) spectroscopy was employed to determine SSC and pH of fruit vinegars based on
partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM). 300 vinegar
samples were prepared. PLS models were developed with different preprocessing methods including no
treatment, smoothing way of Savitzky-Golay, standard normal variate, 1st- and 2nd-derivertives.
Simultaneously, certain selected latent variables (LVs) were used as LS-SVM inputs according to their
explained variance. Finally, LS-SVM models with RBF kernel were developed compared with PLS
models. The raw spectral data showed the best performance. The best LS-SVM models were achieved
with 7 LVs for SSC and 6 LVs for pH, and LS-SVM outperformed all PLS models. The correlation
coefficient (r), RMSEP and bias for validation set were 0.980, 0.667 and -0.043 for SSC, whereas 0.992,
0.040 and -0.006 for pH, respectively. The overall results indicated that VIS/NIR spectroscopy combined
with LS-SVM could be used as a rapid alternative method for the prediction of SSC and pH of fruit
vinegars. These results would be helpful for the process monitoring during the fermentation of fruit
vinegars.

Key word: Visible and near infrared spectroscopy, fruit vinegar, soluble solids content, pH, partial least squares
analysis, least squares-support vector machine.

INTRODUCTION

Fruit vinegars are mainly made of different kinds of fruits
and their residuals by traditional fermentation and modern
food processing techniques. Fruit vinegars have some
physiological functions because fruit vinegars are rich in
organic acid, amino acid, vitamins, mineral substances
and so on (Chang et al., 2005). The soluble solids content
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(SSC) and pH are two important internal quality
parameters of fruit vinegars. SSC is the main reflection of
organic sugars such as glucose, sucrose and fructose.
The pH is a measure of its acidity such as acetic, lactic,
citric, malic acids and so on. The SSC and pH influence
the taste of fruit vinegars and reflect the stage of
fermentation. In some countries, the quality evaluation of
vinegars had been implemented by chemical analysis or
sensory analysis such as pyrolysis-mass spectrometry
(Anklam et al., 1998; Lipp et al., 1998), ion-selective
electrodes (Lapaetal, 1995), gas chromatography
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(Cocchi et al., 2004, 2006; Durante et al., 2006; Tesfaye
et al., 2004), electronic nose (Anklam et al., 1998; Zhang
et al., 2006), atomic absorption spectrum (Oliveira et al.,
2007) and so on. Some new detection techniques were
also applied for the identification and quantification of the
main organic components of vinegars by high resolution
'H NMR spectroscopy (Caligiani et al., 2007). However,
these methods were time consuming, laborious and costly
and not convenient enough for the fermentation process
monitoring. Therefore, a new and fast detection method
was quite necessary for the quality determination of fruit
vinegars. Nowadays, near infrared spectroscopy is widely
used as alternatives to wet chemistry procedures for
determining concentrations of major classes of chemical
compositions. Near infrared spectroscopy has unrivalled
characteristics with combination of high speed, accuracy,
simplicity and low cost. Hence, near infrared
spectroscopic technique is widely applied for quantitative
and qualitative analysis in industries such as agriculture,
pharmaceuticals, food, textiles, cosmetics and polymer
production industry (Yan et al., 2005; Liu et al., 2011). In
the quality evaluation of vinegars, near infrared
spectroscopy had been applied for the determination of
aging of vinegar during storage (Casale et al., 2006),
prediction of organic acids and other quality parameters of
wine vinegar (Saiz-Abajo et al., 2006), the determination
of reducing sugars (Fu et al., 2005), total procyanidins
(Garcia-Parrilla et al., 1997), ethanol and acetic acid
(Yano et al., 1997). Liu et al. (2008) applied visible and
short-wave near infrared spectroscopy to evaluate the
quality parameters of rice vinegar. Fan et al. (2011)
studied the classification of fermented vinegar and
blender vinegar using near infrared spectroscopy.
However, there were few reports on the determination of
soluble solids content (SSC) and pH of fruit vinegars
using visible and near infrared (VIS/NIR) spectroscopy.

The objectives of this study were: 1) to investigate the
feasibility of using visible and near infrared spectroscopy
to determinate the soluble solids content and pH of fruit
vinegars; 2) to obtain the optimal partial least squares
(PLS) models with comparison of different preprocessing
methods including smoothing way of Savitzky-Golay,
standard normal variate, 1st and 2nd-derivertives; 3) to
obtain the optimal number of latent variables and develop
the least squares-support vector machine (LS-SVM)
regression models for the prediction of SSC and pH of
fruit vinegars.

MATERIALS AND METHODS
Fruit vinegar samples

In this study, five varieties of fruit vinegars were obtained in local

market. They were made from different fruits including aloe, apple,
lemon, peach and plum. All these fruit vinegars were fermented
vinegars and produced by Taiwan Pai Chia Chen Brewery & Foods
Co., Ltd. All the fruit vinegar samples were stored in the laboratory
with a constant temperature of 25 + 1°C for more than 48 h to
equalize the temperature. 60 samples for each variety and a total of
300 samples were prepared for spectral analysis. 225 fruit vinegar
samples (45 samples for each variety) were randomly selected for
the calibration set, whereas the remaining 75 samples (15 for each
variety) were applied for the validation set. No single sample was
used in calibration and validation sets at the same time. Before the
spectral scanning, the fruit vinegars were homogenized by putting
the bottles upside down for several times to achieve the same
concentration of fruit vinegar in the same bottle.

Spectral acquisition and reference methods for SSC and pH

In this study, a handheld FieldSpec Pro FR (325-1075 nm)/A110070
spectroradiometer with Trademarks of Analytical Spectral Devices,
Inc. (Analytical Spectral Devices, Boulder, USA) was applied for the
spectral scanning. The field-of-view (FOV) of the spectroradiometer
is 25°. The light source consists of a Lowell pro-lam interior light
source assemble/128930 with Lowell pro-lam 14.5 V bulb/128690
tungsten halogen bulb that could be used both in visible and near
infrared region (325 to 1075 nm). The transmission mode was
applied for this experiment. The light source was placed at a height
of approximately 300 mm above the sample. The space between the
light source and sample was depended on the energy of light source
and what kind of sample was detected. The energy of light source
could be adjusted according to the standard curve of
spectroradiometer. Some adjustments of light source energy and
space had been done before 300 mm was settled. The probe was
under the sample, and the distance between the sample and probe
was 50 mm and this value was settled by the spectroradiometer.
Fruit vinegar sample was placed in a cuvette with a 2 mm light path
length. The transmission spectra were measured from 325 to 1075
nm at 1.5 nm intervals with an average reading of 30 scans for each
spectrum. For each sample, three transmission spectra were
scanned and the average spectrum of these three transmission
spectra was used as the spectra data of this sample. All spectral
data were stored in a personal computer and processed using the
RS® software for Windows (Analytical Spectral Devices, Boulder,
USA) designed with a graphical user interface.

The reference value of SSC was measured by an Abbebenchtop
refractometer (Model: WAY-2S, Shanghai Precision & Scientific
Instrument Co. Ltd., Shanghai, China). The refractive index
accuracy is +0.0002 and the °Brix (%) range is 0 to 95% with
temperature correction. The pH was measured using a pH meter
(Model: PHS-4CT, Shanghai Dapu Instrument Co. Ltd., Shanghai,
China), with the accuracy of 0.001 pH units.

Preprocessing methods

In this study, calibration models with different preprocessing
methods were compared to achieve the best prediction performance.
Firstly, the transmission spectra were transformed into ASCII format
by using the ASD ViewSpecPro software (Analytical Spectral
Devices, Boulder, USA). Three transmission spectra for each
sample were averaged into one spectrum and then the averaged
spectrum was transformed into absorbance spectrum by log (1/T).



The preprocessing was implemented by “The Unscrambler V 9.6”
(CAMO Process AS, OSLO, Norway). Secondly, the raw spectra
and some preprocessed spectra were obtained for the development
of calibration models. The preprocessing methods included
smoothing way of Savitzky-Golay (SG) (Gorry, 1990), standard
normal variate (SNV) (Barnes et al., 1989), 1st-derivertive (D1) and
2nd-derivertive (D2) (Chu et al., 2004). Thirdly, the first and last 75
nm was removed from the spectral data, and only the region of
wavelengths (400 to 1000 nm) was used for calibrations and
validations to avoid low signal-to-noise ratio.

Partial least squares analysis

Partial least squares (PLS) analysis is a widely utilized
multi-analysis and regression method for the spectroscopy analysis.
PLS analysis can be applied to develop a calibration model to
progress the prediction of chemical components of fruit vinegars.
PLS considers simultaneously the spectra data matrix X and the
target chemical component matrix Y (Cen et al., 2006). PLS uses
the chemical concentration information during the decomposition
process, so the spectra containing higher constituent concentrations
can be weighted more heavily than those with low concentrations. In
the development of PLS model, full cross-validation was used to
validate the quality and to prevent overfitting of calibration model.
Hence, PLS models could be developed for the determination of
SSC and pH of fruit vinegars. In this paper, PLS analysis was also
used as a way to extract the latent variables (LVs) of the spectral
data. The LVs could be used as new eigenvectors to present the
important information of the original spectra, reduce the
dimensionality and compress the original spectra data. The
explained variance of LVs could explain the variance of the original
spectra data to the chemical constituents. According to the
explained variance, certain PLS factors could be selected as the
inputs of least squares-support vector machine (LS-SVM) to develop
the calibration models. Then, LS-SVM models could be applied for
the quality assessment of fruit vinegars.

The predictive capability of models was evaluated by the following
standards: correlation coefficient (r), root mean square error of
calibration (RMSEC) or prediction (RMSEP), bias, slope and offset.
The values of correlation coefficient and RMSEP were the main
evaluation indices in this paper. The slope and bias should be taken
into consideration for distinguishing systematic errors and studying
the correlation between the reference and VIS/NIR models.
Generally, a good model should have high correlation coefficients,
low RMSEC, RMSEP and bias values, and the slope values should
be closely to the value 1.

Least squares-support vector machine

Least squares-support vector machine (LS-SVM) is a
state-of-the-art learning algorithm and has a good theoretical
foundation in statistical learning method. LS-SVM is capable of
dealing with linear and nonlinear multivariate analysis and resolving
these problems in a relatively fast way (Vapnik, 1995; Suykens and
Vandewalle, 1999; Suykens et al., 2002). Moreover, SVM is capable
of learning in high-dimensional feature space with fewer training
data. It employs a set of linear equations instead of quadratic
programming (QP) problems to obtain the support vectors (SVs).
SVM embodies the structural risk minimization (SRM) principle
instead of traditional empirical risk minimization (ERM) principle to
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avoid overfitting problems. The details of LS-SVM algorithm could
be found in the literatures (Vapnik, 1995; Guo et al., 2006; Chen et
al., 2007). The LS-SVM regression model can be expressed as:

y(X) =iaiK(x,xi)+b
= D

Where K(x, xj) is the kernel function, x;is the input vector, q;is
Lagrange multipliers called support value, b is the bias term. All the
calculations were performed using MATLAB 7.0 (The Math Works,
Natick, USA). The free LS-SVM toolbox (LS-SVM v 1.5, Suykens,
Leuven, Belgium) was applied with MATLAB 7.0 to develop the
calibration models.

RESULTS AND DISCUSSION
Spectral features and statistics of SSC and pH

Figure la shows part of raw absorbance spectra of five
varieties of fruit vinegars. Figure 1b to d shows the
preprocessed absorbance spectra with combination of SG
and SNV, combination of SG, SNV and D1, and
combination of SG, SNV and D2, respectively. The trends
of the spectral curves were quite similar and there were
no obvious peaks or valleys in the visible and near
infrared spectral region. Table 1 shows the statistics of
SSC and pH of fruit vinegar samples. A relatively wide
range of SSC and pH were covered in the calibration and
validation sets due to different varieties of fruit vinegars.
This wide range of SSC and pH was helpful for the
development of calibration models.

PLS models and selection of latent variables

After the transform of the transmission spectra into
absorbance spectral data, the PLS models with different
preprocessing methods were developed for the
determination of SSC and pH of fruit vinegars. Four kinds
of preprocessing combinations were applied including no
preprocessing, combination of SG with 3 segments and
SNV, combination of SG, SNV and 1st-derivertive, and
combination of SG, SNV and 2nd-derivertive. Twenty
latent variables were calculated for each kind of
preprocessing methods and the optimal nhumbers of latent
variables were different by different preprocessing models.
After the computation, different calibration models were
developed for the determination of SSC and pH of fruit
vinegars. The performance of the models was validated
by 75 samples in validation set. The prediction results for
calibration and validation sets by different PLS models are
shown in Table 2. The results indicated that the PLS
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Figure 1. Part of raw absorbance spectra (a), preprocessed spectra with SG and SNV (b), SG, SNV and
1st-derivertive (c) and SG, SNV and 2nd-derivertive of fruit vinegars (d).

Table 1. The statistics of SSC and pH of fruit vinegars in calibration and validation sets.

Constituent Data set Sample no. Range Mean Standard deviation
Calibration 225 40.0-49.6 44.0 3.277

SSC (°Brix) Validation 75 40.3-49.5 44.0 3.296
All samples 300 40.0-49.6 44.0 3.276
Calibration 225 2.896-3.735 3.520 0.313

pH (pH units) Validation 75 2.898-3.733 3.520 0.313
All samples 300 2.896-3.735 3.520 0.312

models with raw spectra achieved the optimal
performance for both SSC and pH. The correlation
coefficient (r), RMSEP and bias for validation set were
0.966, 0.849 and 0.044 for SSC, whereas 0.974, 0.073
and 0.004 for pH, respectively. The reason for the better
performance of raw spectra than those of SG, SNV, 1st
and 2nd-derivertives spectra was that the noise of the raw

spectra was enlarged by these preprocessing methods.
This could be seen in Figure 1. Many noises are shown at
the beginning and the end of the spectra in Figure 1c and
d.

The preprocessed spectra enhanced no features of the
raw spectra. This situation was consistent with the
literature for the vintage year determination of rice wine
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Table 2. Prediction results of SSC and pH by PLS models with different preprocessing methods.
Preprocessing Lvs ' rd RMSEC/RMSEP " Bias Slope Offset
Calibration-SSC (°Brix)
None ? 7 0.976 0.716 -3.4x10°® 0.952 2.109
SG°, SNV © 6 0.956 0.957 -1.0x10” 0.914 3.769
SG, SNV, D1 ¢ 6 0.968 0.817 -1.1x107 0.938 2.746
SG, SNV, D2 ¢ 3 0.952 1.003 -2.0x10”" 0.906 4.143
Validation-SSC (°Brix)
None 7 0.966 0.849 0.044 0.921 3.507
SG, SNV 6 0.948 1.043 -0.006 0.915 3.756
SG, SNV, D1 6 0.942 1.115 0.019 0.944 2.472
SG, SNV, D2 3 0.950 1.023 -0.010 0.875 5.489
Calibration-pH (pH units)
None 6 0.978 0.065 3.5x10° 0.956 0.155
SG, SNV 8 0.967 0.799 2.0x10® 0.934 0.231
SG, SNV, D1 9 0.964 0.083 6.4x107 0.929 0.249
SG, SNV, D2 6 0.931 0.114 5.5x10°® 0.866 0.471
Validation-pH (pH units)
None 6 0.974 0.073 0.004 0.898 0.362
SG, SNV 8 0.956 0.092 0.008 0.911 0.321
SG, SNV, D1 9 0.894 0.140 -0.006 0.826 0.607
SG, SNV, D2 6 0.851 0.167 0.004 0.814 0.658

2None: no preprocessing; ° SG: smoothing way of Savitzky-Golay; ° SNV: standard normal variate; ® D1: 1st-derivertive; ® D2: 2nd-derivertive; '
LVs: latent variables; 9r: correlation coefficient; " RMSEC/RMSEP: root mean square error of calibration or prediction.

(Yu et al.,, 2007). The scatter plots of predicted versus
reference values in validation set are shown in Figure 2a
for SSC and Figure 2b for pH. The solid line was the fitting
line corresponding to the ideal unity correlation between
the predicted and reference values. In Figure 2, there
were only four levels corresponding to the five different
varieties of fruit vinegars. The reason could be explained
as follows. The mean values of SSC were 46.1, 40.7, 43.1,
49.3 and 41.1 °Brix for aloe, apple, lemon, peach and
plum vinegars, respectively. The SSC of apple and plum
were quite similar and this small difference could not be
distinguished in Figure 2a. Hence, the samples of apple
and plum were mixed together and only four levels are
shown in Figure 2a, but actually these four levels of SSC
were corresponding to five different varieties of fruit
vinegars. For the similar reason in Figure 2b, the mean
values of pH were 3.727, 3.613, 2.902, 3.681 and 3.678
pH units for aloe, apple, lemon, peach and plum vinegars,
respectively. The pH values of peach and plum were quite
similar and the samples were mixed together in Figure 2b,

but actually these four levels of pH were corresponding to
five different varieties of fruit vinegars. During the analysis
of PLS, twenty LVs were calculated for SSC and pH of
300 samples and certain LVs would be selected as input
data set of the least squares-support vector machine
(LS-SVM). Although, the whole spectral wavelength
region (400 to 1000 nm) could be applied as the inputs,
the training time using LS-SVM increased with the square
of the number of training samples and linearly with the
number of variables (dimension of spectra) (Chauchard et
al., 2004).

In order to reduce the computational time, certain
selected latent variables were used as the inputs data
according to their explained variance by PLS analysis.
The LVs could explain most of the spectral variances and
represent the main information of the raw spectra to the
chemical constituents. The explained variance of certain
LVs for SSC and pH are shown in Tables 3 and 4. It
indicated that the first seven LVs could explain 93.4% of
the total variance for SSC, the next LV only contributed
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Figure 2. Predicted versus reference values of SSC (a) and pH (b) by PLS models with
raw spectral data.
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Table 3. The explained variance of certain latent variables by PLS analysis.

Parameter SSC pH
Latent variable 5 6 8 5 6 7 8
Explained variance (%) 90.6 92.2 93.9 92.3 94.1 94.9 /
Table 4. Prediction results of SSC and pH by LS-SVM models with different latent variables.
Lvs ® (v, 0" r¢ RMSEC/RMSEP ° Bias Slope Offset
Calibration-SSC (°Brix)
6 (195.1, 4.2) 0.999 0.096 8.0x10° 0.997 0.121
7 (70.7, 6.6) 0.999 0.169 -3.8x10° 0.993 0.308
8 (130.1,7.7) 0.999 0.111 -7.9x10°° 0.996 0.171
Validation-SSC (°Brix)
6 (195.1, 4.2) 0.977 0.708 -0.061 0.948 2.229
7 (70.7, 6.6) 0.980 0.667 -0.043 0.928 3.132
8 (130.1,7.7) 0.973 0.772 -0.133 0.931 2.930
Calibration-pH (pH units)
5 (376.6, 19.3) 0.995 0.030 -4.1x107 0.986 0.050
6 (273.4, 10.9) 0.999 0.014 2.1x107 0.996 0.015
7 (337.9, 21.3) 0.998 0.017 -9.9x10™" 0.994 0.020
Validation-pH (pH units)
5 (376.6, 19.3) 0.987 0.050 0.004 0.976 0.088
6 (273.4, 10.9) 0.992 0.040 -0.006 0.987 0.040
7 (337.9, 21.3) 0.990 0.043 -0.001 0.968 0.112

2LVs: latent variables; ° (y, 0®): the parameters of LS-SVM regression models; °r: correlation coefficient;  RMSEC/RMSEP: root

mean square error of calibration or prediction.

0.5% of total variance which was less than 1% and
contributed not so much as the first seven LVs. In order to
obtain the optimal number of LVs for SSC, different LVs (6,
7 and 8 LVs) were used as the inputs of LS-SVM for
comparison. For the same explanation, the seventh LV
explained an additional 0.8% of the total variance, and
LVs (5, 6 and 7 LVs) were applied as the inputs of
LS-SVM for the pH prediction. Therefore, the optimal
number of LVs for LS-SVM calibration could be achieved
by the comparison of prediction performance and the
computational time could be reduced by LS-SVM models.

LS-SVM models

Before the application of LS-SVM, three crucial problems
were required to solve, including the optimal input data
set, proper kernel function and the optimal LS-SVM

parameters. The optimal inputs had been settled by using
the aforementioned LVs. The commonly used kernel
functions were linear, polynomial, radial basis function
(RBF) kernel and multi-layer perceptron (MLP). Currently,
there was no systematic methodology for the selection of
kernel function. However, compared with the
aforementioned kernel functions, RBF kernel as a
nonlinear function was a more compacted supported
kernel and able to reduce the computational complexity of
the training procedure. Simultaneously, RBF kernel could
handle the nonlinear relationships between the spectra
and target attributes and give a good performance under
general smoothness assumptions (Wang et al., 2003).
Thus, RBF kernel was recommended as the kernel
function of LS-SVM in this paper. There were two
significant parameters to be decided in the LS-SVM
model. The regularization parameter gam (y) determined
the tradeoff between minimizing the training error and
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Figure 3. Predicted versus reference values of SSC (a) and pH (b)
by LS-SVM models.

minimizing model complexity. The parameter sig” (6°) of
RBF kernel function was the bandwidth and implicitly
defines the nonlinear mapping from input space to some
high dimensional feature space. In order to obtain the
optimal combination of (y, 0°), a two-step grid search
technique was employed with leave-one-out cross
validation to avoid overfitting problems. The ranges of y
and o” within (10°to 10% were set based on experience
and previous researches (Guo et al., 2006; Chen et al.,
2007; Belousov et al., 2002). Grid search tries values of
each parameter across the specified search range using

geometric steps.

The first step grid search was for a crude search with a
large step size and the second step for the specified
search with a small step size. After the process of grid
search, the optimal combination of (y, ¢®) would be
achieved for the LS-SVM models. The aforementioned
LVs were used as the input matrix to develop LS-SVM
model for the prediction of SSC and pH. The performance
was validated by 75 samples in the validation set.
Different optimal combinations of (y, 02) were obtained for
the prediction of SSC and pH. The prediction results are
shown in Table 4. After comparison of prediction
performance for both calibration and validation sets by
aforementioned evaluation standards, the best LS-SVM
models were achieved by 7 LVs for SSC and 6 LVs for
pH. This was consistent with the numbers of LVs used in
PLS models. The correlation coefficient (r), RMSEP and
bias for validation set were 0.980, 0.667 and -0.043 for
SSC, whereas 0.992, 0.040 and -0.006 for pH,
respectively. The results indicated that LS-SVM models
outperformed PLS models. The reason might be that
there were some latent nonlinear useful information in the
spectral data, and PLS only dealt with the linear
relationships between the spectra data and chemical
compositions. However, LS-SVM with RBF kernel could
make use of the nonlinear information of spectra data to
build the regression model. The results were in
agreement with the literature described that LS-SVM was
better than PLS models (Liu and He, 2007a; Thissen et
al., 2004). The scatter plots of predicted versus reference
values in validation set are shown in Figure 3a for SSC
and Figure 3b for pH. Compared with Figure 2, the
samples were distributed more closely to the fitting line.

The results indicated that the LS-SVM regression
method was better than PLS regression method, and
LS-SVM had a better capability for the prediction of SSC
and pH of fruit vinegars. Simultaneously, the prediction
results by LS-SVM were also better than those described
similar studies. Liu et al. (2007b) determined the SSC (r =
0.95) and pH (r = 0.94) of rice wines using VIS/NIR
spectroscopy and PLS analysis. Urbano-Cuadrado et al.
(2004) predicted reducing sugars (r = 0.844), pH (r =
0.905) and other parameters in different types of wines by
using NIR reflectance spectroscopy and PLS regression
method. Shao et al. (2007) predicted the acidity of
bayberry juice (r = 0.945) using VIS/NIR spectroscopy
and back propagation neural network. Liu and He (2007a)
applied VIS/NIR spectroscopy to determine the soluble
solids content (r = 0.959) and pH (r = 0.973) of cola
beverage. Therefore, the results indicated that VIS/NIR
spectroscopy combined with LS-SVM could be utilized as
an excellent prediction method for the determination of
SSC and pH of fruit vinegars. These results would be



helpful for the process monitoring during the fermentation
of fruit vinegars.

Conclusion

VIS/NIR spectroscopy combined with LS-SVM regression
method was successfully utilized for the determination of
SSC and pH of fruit vinegars. The PLS models were
developed for the determination of SSC and pH with
different preprocessing methods including no treatment of
raw spectra, combination of SG and SNV, combination of
SG, SNV and 1st-derivertive, and combination of SG,
SNV and 2nd-derivertive. The optimal prediction
performance was achieved by raw spectral data with 7
LVs for SSC and 6 LVs for pH. Simultaneously, certain
LVs were selected as the inputs of LS-SVM models
according to the values of explained variance. Different
LS-SVM models were developed with RBF kernel function
and a two-step grid search techniques. The prediction
results indicated that LS-SVM models outperformed PLS
models. The optimal number of LVs for LS-SVM was 7 for
SSC and 6 for pH, and this was consistent with PLS
models. The correlation coefficient, RMSEP and bias for
validation set were 0.980, 0.667 and -0.043 for SSC,
whereas 0.992, 0.040 and -0.006 for pH, respectively.

The overall results indicated that VIS/NIR spectroscopy
combined with LS-SVM method could be applied as an
alternative way for the determination of SSC and pH of
fruit vinegars. The results might be useful for the process
and online monitoring of vinegar fermentation.
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