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Soluble solids content (SSC) and pH are two important quality parameters of fruit vinegars. Visible and 
near infrared (VIS/NIR) spectroscopy was employed to determine SSC and pH of fruit vinegars based on 
partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM). 300 vinegar 
samples were prepared. PLS models were developed with different preprocessing methods including no 
treatment, smoothing way of Savitzky-Golay, standard normal variate, 1st- and 2nd-derivertives. 
Simultaneously, certain selected latent variables (LVs) were used as LS-SVM inputs according to their 
explained variance. Finally, LS-SVM models with RBF kernel were developed compared with PLS 
models. The raw spectral data showed the best performance. The best LS-SVM models were achieved 
with 7 LVs for SSC and 6 LVs for pH, and LS-SVM outperformed all PLS models. The correlation 
coefficient (r), RMSEP and bias for validation set were 0.980, 0.667 and -0.043 for SSC, whereas 0.992, 
0.040 and -0.006 for pH, respectively. The overall results indicated that VIS/NIR spectroscopy combined 
with LS-SVM could be used as a rapid alternative method for the prediction of SSC and pH of fruit 
vinegars. These results would be helpful for the process monitoring during the fermentation of fruit 
vinegars. 
 
Key word: Visible and near infrared spectroscopy, fruit vinegar, soluble solids content, pH, partial least squares 
analysis, least squares-support vector machine. 

 
 
INTRODUCTION 
 
Fruit vinegars are mainly made of different kinds of fruits 
and their residuals by traditional fermentation and modern 
food processing techniques. Fruit vinegars have some 
physiological functions because fruit vinegars are rich in 
organic acid, amino acid, vitamins, mineral substances 
and so on (Chang et al., 2005). The soluble solids content  
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(SSC) and pH are two important internal quality 
parameters of fruit vinegars. SSC is the main reflection of 
organic sugars such as glucose, sucrose and fructose. 
The pH is a measure of its acidity such as acetic, lactic, 
citric, malic acids and so on. The SSC and pH influence 
the taste of fruit vinegars and reflect the stage of 
fermentation. In some countries, the quality evaluation of 
vinegars had been implemented by chemical analysis or 
sensory analysis such as pyrolysis-mass spectrometry 
(Anklam et al., 1998; Lipp et al., 1998), ion-selective 
electrodes  (Lapa et al., 1995),  gas   chromatography  
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(Cocchi et al., 2004, 2006; Durante et al., 2006; Tesfaye 
et al., 2004), electronic nose (Anklam et al., 1998; Zhang 
et al., 2006), atomic absorption spectrum (Oliveira et al., 
2007) and so on. Some new detection techniques were 
also applied for the identification and quantification of the 
main organic components of vinegars by high resolution 
1
H NMR spectroscopy (Caligiani et al., 2007). However, 

these methods were time consuming, laborious and costly 
and not convenient enough for the fermentation process 
monitoring. Therefore, a new and fast detection method 
was quite necessary for the quality determination of fruit 
vinegars. Nowadays, near infrared spectroscopy is widely 
used as alternatives to wet chemistry procedures for 
determining concentrations of major classes of chemical 
compositions. Near infrared spectroscopy has unrivalled 
characteristics with combination of high speed, accuracy, 
simplicity and low cost. Hence, near infrared 
spectroscopic technique is widely applied for quantitative 
and qualitative analysis in industries such as agriculture, 
pharmaceuticals, food, textiles, cosmetics and polymer 
production industry (Yan et al., 2005; Liu et al., 2011). In 
the quality evaluation of vinegars, near infrared 
spectroscopy had been applied for the determination of 
aging of vinegar during storage (Casale et al., 2006), 
prediction of organic acids and other quality parameters of 
wine vinegar (Sáiz-Abajo et al., 2006), the determination 
of reducing sugars (Fu et al., 2005), total procyanidins 
(García-Parrilla et al., 1997), ethanol and acetic acid 
(Yano et al., 1997). Liu et al. (2008) applied visible and 
short-wave near infrared spectroscopy to evaluate the 
quality parameters of rice vinegar. Fan et al. (2011) 
studied the classification of fermented vinegar and 
blender vinegar using near infrared spectroscopy. 
However, there were few reports on the determination of 
soluble solids content (SSC) and pH of fruit vinegars 
using visible and near infrared (VIS/NIR) spectroscopy. 

The objectives of this study were: 1) to investigate the 
feasibility of using visible and near infrared spectroscopy 
to determinate the soluble solids content and pH of fruit 
vinegars; 2) to obtain the optimal partial least squares 
(PLS) models with comparison of different preprocessing 
methods including smoothing way of Savitzky-Golay, 
standard normal variate, 1st and 2nd-derivertives; 3) to 
obtain the optimal number of latent variables and develop 
the least squares-support vector machine (LS-SVM) 
regression models for the prediction of SSC and pH of 
fruit vinegars. 
 
 

MATERIALS AND METHODS 
 
Fruit vinegar samples 
 
In this study, five varieties of fruit vinegars were obtained  in  local 

 
 
 
 
market. They were made from different fruits including aloe, apple, 
lemon, peach and plum. All these fruit vinegars were fermented 
vinegars and produced by Taiwan Pai Chia Chen Brewery & Foods 
Co., Ltd. All the fruit vinegar samples were stored in the laboratory 
with a constant temperature of 25 ± 1°C for more than 48 h to 
equalize the temperature. 60 samples for each variety and a total of 
300 samples were prepared for spectral analysis. 225 fruit vinegar 
samples (45 samples for each variety) were randomly selected for 
the calibration set, whereas the remaining 75 samples (15 for each 
variety) were applied for the validation set. No single sample was 
used in calibration and validation sets at the same time. Before the 
spectral scanning, the fruit vinegars were homogenized by putting 
the bottles upside down for several times to achieve the same 
concentration of fruit vinegar in the same bottle. 
 
 
Spectral acquisition and reference methods for SSC and pH 
 
In this study, a handheld FieldSpec Pro FR (325–1075 nm)/A110070 
spectroradiometer with Trademarks of Analytical Spectral Devices, 
Inc. (Analytical Spectral Devices, Boulder, USA) was applied for the 
spectral scanning. The field-of-view (FOV) of the spectroradiometer 
is 25°. The light source consists of a Lowell pro-lam interior light 
source assemble/128930 with Lowell pro-lam 14.5 V bulb/128690 
tungsten halogen bulb that could be used both in visible and near 
infrared region (325 to 1075 nm). The transmission mode was 
applied for this experiment. The light source was placed at a height 
of approximately 300 mm above the sample. The space between the 
light source and sample was depended on the energy of light source 
and what kind of sample was detected. The energy of light source 
could be adjusted according to the standard curve of 
spectroradiometer. Some adjustments of light source energy and 
space had been done before 300 mm was settled. The probe was 
under the sample, and the distance between the sample and probe 
was 50 mm and this value was settled by the spectroradiometer. 
Fruit vinegar sample was placed in a cuvette with a 2 mm light path 
length. The transmission spectra were measured from 325 to 1075 
nm at 1.5 nm intervals with an average reading of 30 scans for each 
spectrum. For each sample, three transmission spectra were 
scanned and the average spectrum of these three transmission 
spectra was used as the spectra data of this sample. All spectral 
data were stored in a personal computer and processed using the 
RS3 software for Windows (Analytical Spectral Devices, Boulder, 
USA) designed with a graphical user interface. 

The reference value of SSC was measured by an Abbebenchtop 
refractometer (Model: WAY-2S, Shanghai Precision & Scientific 
Instrument Co. Ltd., Shanghai, China). The refractive index 
accuracy is ±0.0002 and the °Brix (%) range is 0 to 95% with 
temperature correction. The pH was measured using a pH meter 
(Model: PHS-4CT, Shanghai Dapu Instrument Co. Ltd., Shanghai, 
China), with the accuracy of 0.001 pH units. 
 
 
Preprocessing methods 
 
In this study, calibration models with different preprocessing 
methods were compared to achieve the best prediction performance. 
Firstly, the transmission spectra were transformed into ASCII format 
by using the ASD ViewSpecPro software (Analytical Spectral 
Devices, Boulder, USA). Three transmission spectra for each 
sample were averaged into one spectrum and then the averaged 
spectrum was transformed into absorbance spectrum by log (1/T).  



 

      

  

 
 
 
 
The preprocessing was implemented by “The Unscrambler V 9.6” 
(CAMO Process AS, OSLO, Norway). Secondly, the raw spectra 
and some preprocessed spectra were obtained for the development 
of calibration models. The preprocessing methods included 
smoothing way of Savitzky-Golay (SG) (Gorry, 1990), standard 
normal variate (SNV) (Barnes et al., 1989), 1st-derivertive (D1) and 
2nd-derivertive (D2) (Chu et al., 2004). Thirdly, the first and last 75 
nm was removed from the spectral data, and only the region of 
wavelengths (400 to 1000 nm) was used for calibrations and 
validations to avoid low signal-to-noise ratio. 
 
 
Partial least squares analysis 
 
Partial least squares (PLS) analysis is a widely utilized 
multi-analysis and regression method for the spectroscopy analysis. 
PLS analysis can be applied to develop a calibration model to 
progress the prediction of chemical components of fruit vinegars. 
PLS considers simultaneously the spectra data matrix X and the 
target chemical component matrix Y (Cen et al., 2006). PLS uses 
the chemical concentration information during the decomposition 
process, so the spectra containing higher constituent concentrations 
can be weighted more heavily than those with low concentrations. In 
the development of PLS model, full cross-validation was used to 
validate the quality and to prevent overfitting of calibration model. 
Hence, PLS models could be developed for the determination of 
SSC and pH of fruit vinegars. In this paper, PLS analysis was also 
used as a way to extract the latent variables (LVs) of the spectral 
data. The LVs could be used as new eigenvectors to present the 
important information of the original spectra, reduce the 
dimensionality and compress the original spectra data. The 
explained variance of LVs could explain the variance of the original 
spectra data to the chemical constituents. According to the 
explained variance, certain PLS factors could be selected as the 
inputs of least squares-support vector machine (LS-SVM) to develop 
the calibration models. Then, LS-SVM models could be applied for 
the quality assessment of fruit vinegars. 

The predictive capability of models was evaluated by the following 
standards: correlation coefficient (r), root mean square error of 
calibration (RMSEC) or prediction (RMSEP), bias, slope and offset. 
The values of correlation coefficient and RMSEP were the main 
evaluation indices in this paper. The slope and bias should be taken 
into consideration for distinguishing systematic errors and studying 
the correlation between the reference and VIS/NIR models. 
Generally, a good model should have high correlation coefficients, 
low RMSEC, RMSEP and bias values, and the slope values should 
be closely to the value 1. 
 
 
Least squares-support vector machine 
 

Least squares-support vector machine (LS-SVM) is a 
state-of-the-art learning algorithm and has a good theoretical 
foundation in statistical learning method. LS-SVM is capable of 
dealing with linear and nonlinear multivariate analysis and resolving 
these problems in a relatively fast way (Vapnik, 1995; Suykens and 
Vandewalle, 1999; Suykens et al., 2002). Moreover, SVM is capable 
of learning in high-dimensional feature space with fewer training 
data. It employs a set of linear equations instead of quadratic 
programming (QP) problems to obtain the support vectors (SVs). 
SVM embodies the structural risk minimization (SRM) principle 
instead of traditional empirical risk minimization (ERM) principle  to  
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avoid overfitting problems. The details of LS-SVM algorithm could 
be found in the literatures (Vapnik, 1995; Guo et al., 2006; Chen et 
al., 2007). The LS-SVM regression model can be expressed as: 
 

1

( ) ( , )
n

i i

i

y x K x x b


 
      (1) 

 
Where K(x, xi) is the kernel function, xi is the input vector, αi is 
Lagrange multipliers called support value, b is the bias term. All the 
calculations were performed using MATLAB 7.0 (The Math Works, 
Natick, USA). The free LS-SVM toolbox (LS-SVM v 1.5, Suykens, 
Leuven, Belgium) was applied with MATLAB 7.0 to develop the 
calibration models. 
 
 
RESULTS AND DISCUSSION 

 
Spectral features and statistics of SSC and pH 
 
Figure 1a shows part of raw absorbance spectra of five 
varieties of fruit vinegars. Figure 1b to d shows the 
preprocessed absorbance spectra with combination of SG 
and SNV, combination of SG, SNV and D1, and 
combination of SG, SNV and D2, respectively. The trends 
of the spectral curves were quite similar and there were 
no obvious peaks or valleys in the visible and near 
infrared spectral region. Table 1 shows the statistics of 
SSC and pH of fruit vinegar samples. A relatively wide 
range of SSC and pH were covered in the calibration and 
validation sets due to different varieties of fruit vinegars. 
This wide range of SSC and pH was helpful for the 
development of calibration models. 
 
 
PLS models and selection of latent variables 

 
After the transform of the transmission spectra into 
absorbance spectral data, the PLS models with different 
preprocessing methods were developed for the 
determination of SSC and pH of fruit vinegars. Four kinds 
of preprocessing combinations were applied including no 
preprocessing, combination of SG with 3 segments and 
SNV, combination of SG, SNV and 1st-derivertive, and 
combination of SG, SNV and 2nd-derivertive. Twenty 
latent variables were calculated for each kind of 
preprocessing methods and the optimal numbers of latent 
variables were different by different preprocessing models. 
After the computation, different calibration models were 
developed for the determination of SSC and pH of fruit 
vinegars. The performance of the models was validated 
by 75 samples in validation set. The prediction results for 
calibration and validation sets by different PLS models are 
shown in Table 2. The results indicated  that  the  PLS 
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Figure 1. Part of raw absorbance spectra (a), preprocessed spectra with SG and SNV (b), SG, SNV and 
1st-derivertive (c) and SG, SNV and 2nd-derivertive of fruit vinegars (d). 

 
 
 

Table 1. The statistics of SSC and pH of fruit vinegars in calibration and validation sets. 
 

Constituent Data set Sample no. Range Mean Standard deviation 

SSC (°Brix) 

Calibration 225 40.0-49.6 44.0 3.277 

Validation 75 40.3-49.5 44.0 3.296 

All samples 300 40.0-49.6 44.0 3.276 

      

pH (pH units) 

Calibration 225 2.896-3.735 3.520 0.313 

Validation 75 2.898-3.733 3.520 0.313 

All samples 300 2.896-3.735 3.520 0.312 

 
 
models with raw spectra achieved the optimal 
performance for both SSC and pH. The correlation 
coefficient (r), RMSEP and bias for validation set were 
0.966, 0.849 and 0.044 for SSC, whereas 0.974, 0.073 
and 0.004 for pH, respectively. The reason for the better 
performance of raw spectra than those of SG, SNV, 1st 
and 2nd-derivertives spectra was that the noise of the raw 

spectra was enlarged by these preprocessing methods. 
This could be seen in Figure 1. Many noises are shown at 
the beginning and the end of the spectra in Figure 1c and 
d. 

The preprocessed spectra enhanced no features of the 
raw spectra. This situation was consistent with the 
literature for the vintage year determination of rice  wine 
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Table 2. Prediction results of SSC and pH by PLS models with different preprocessing methods. 
 

Preprocessing LVs 
f
 r 

g
 RMSEC/RMSEP 

h
 Bias Slope Offset 

Calibration-SSC (°Brix)      

None 
a
 7 0.976 0.716 -3.4×10

-8
 0.952 2.109 

SG 
b
, SNV 

c
 6 0.956 0.957 -1.0×10

-7
 0.914 3.769 

SG, SNV, D1 
d
 6 0.968 0.817 -1.1×10

-7
 0.938 2.746 

SG, SNV, D2 
e
 3 0.952 1.003 -2.0×10

-7
 0.906 4.143 

       

Validation-SSC (°Brix)      

None 7 0.966 0.849 0.044 0.921 3.507 

SG, SNV 6 0.948 1.043 -0.006 0.915 3.756 

SG, SNV, D1 6 0.942 1.115 0.019 0.944 2.472 

SG, SNV, D2 3 0.950 1.023 -0.010 0.875 5.489 

       

Calibration-pH (pH units)      

None 6 0.978 0.065 3.5×10
-8

 0.956 0.155 

SG, SNV 8 0.967 0.799 2.0×10
-8

 0.934 0.231 

SG, SNV, D1 9 0.964 0.083 6.4×10
-9

 0.929 0.249 

SG, SNV, D2 6 0.931 0.114 5.5×10
-8

 0.866 0.471 

       

Validation-pH (pH units)      

None 6 0.974 0.073 0.004 0.898 0.362 

SG, SNV 8 0.956 0.092 0.008 0.911 0.321 

SG, SNV, D1 9 0.894 0.140 -0.006 0.826 0.607 

SG, SNV, D2 6 0.851 0.167 0.004 0.814 0.658 
 
a 
None: no preprocessing; 

b 
SG: smoothing way of Savitzky-Golay; 

c 
SNV: standard normal variate; 

d 
D1: 1st-derivertive; 

e 
D2: 2nd-derivertive; 

f 

LVs: latent variables; 
g 
r: correlation coefficient; 

h
 RMSEC/RMSEP: root mean square error of calibration or prediction. 

 
 
 
(Yu et al., 2007). The scatter plots of predicted versus 
reference values in validation set are shown in Figure 2a 
for SSC and Figure 2b for pH. The solid line was the fitting 
line corresponding to the ideal unity correlation between 
the predicted and reference values. In Figure 2, there 
were only four levels corresponding to the five different 
varieties of fruit vinegars. The reason could be explained 
as follows. The mean values of SSC were 46.1, 40.7, 43.1, 
49.3 and 41.1 °Brix for aloe, apple, lemon, peach and 
plum vinegars, respectively. The SSC of apple and plum 
were quite similar and this small difference could not be 
distinguished in Figure 2a. Hence, the samples of apple 
and plum were mixed together and only four levels are 
shown in Figure 2a, but actually these four levels of SSC 
were corresponding to five different varieties of fruit 
vinegars. For the similar reason in Figure 2b, the mean 
values of pH were 3.727, 3.613, 2.902, 3.681 and 3.678 
pH units for aloe, apple, lemon, peach and plum vinegars, 
respectively. The pH values of peach and plum were quite 
similar and the samples were mixed together in Figure 2b, 

but actually these four levels of pH were corresponding to 
five different varieties of fruit vinegars. During the analysis 
of PLS, twenty LVs were calculated for SSC and pH of 
300 samples and certain LVs would be selected as input 
data set of the least squares-support vector machine 
(LS-SVM). Although, the whole spectral wavelength 
region (400 to 1000 nm) could be applied as the inputs, 
the training time using LS-SVM increased with the square 
of the number of training samples and linearly with the 
number of variables (dimension of spectra) (Chauchard et 
al., 2004). 

In order to reduce the computational time, certain 
selected latent variables were used as the inputs data 
according to their explained variance by PLS analysis. 
The LVs could explain most of the spectral variances and 
represent the main information of the raw spectra to the 
chemical constituents. The explained variance of certain 
LVs for SSC and pH are shown in Tables 3 and 4. It 
indicated that the first seven LVs could explain 93.4% of 
the total variance for SSC, the next LV  only  contributed  
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Figure 2. Predicted versus reference values of SSC (a) and pH (b) by PLS models with 
raw spectral data. 
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Table 3. The explained variance of certain latent variables by PLS analysis. 
 

Parameter SSC pH 

Latent variable 5 6 7 8 5 6 7 8 

Explained variance (%) 90.6 92.2 93.4 93.9 92.3 94.1 94.9 / 
 
 

Table 4. Prediction results of SSC and pH by LS-SVM models with different latent variables. 
 

LVs 
a
 (γ, σ

2
) 

b
 r 

c
 RMSEC/RMSEP 

d
 Bias Slope Offset 

Calibration-SSC (°Brix)     

6 (195.1, 4.2) 0.999 0.096 8.0×10
-8

 0.997 0.121 

7 (70.7, 6.6) 0.999 0.169 -3.8×10
-9

 0.993 0.308 

8 (130.1,7.7) 0.999 0.111 -7.9×10
-9

 0.996 0.171 

       

Validation-SSC (°Brix)     

6 (195.1, 4.2) 0.977 0.708 -0.061 0.948 2.229 

7 (70.7, 6.6) 0.980 0.667 -0.043 0.928 3.132 

8 (130.1,7.7) 0.973 0.772 -0.133 0.931 2.930 

       

Calibration-pH (pH units)     

5 (376.6, 19.3) 0.995 0.030 -4.1×10
-9

 0.986 0.050 

6 (273.4, 10.9) 0.999 0.014 2.1×10
-9

 0.996 0.015 

7 (337.9, 21.3) 0.998 0.017 -9.9×10
-11

 0.994 0.020 

       

Validation-pH (pH units)     

5 (376.6, 19.3) 0.987 0.050 0.004 0.976 0.088 

6 (273.4, 10.9) 0.992 0.040 -0.006 0.987 0.040 

7 (337.9, 21.3) 0.990 0.043 -0.001 0.968 0.112 
 
a 
LVs: latent variables; 

b 
(γ, σ

2
): the parameters of LS-SVM regression models; 

c 
r: correlation coefficient; 

d 
RMSEC/RMSEP: root 

mean square error of calibration or prediction. 
 
 
 
0.5% of total variance which was less than 1% and 
contributed not so much as the first seven LVs. In order to 
obtain the optimal number of LVs for SSC, different LVs (6, 
7 and 8 LVs) were used as the inputs of LS-SVM for 
comparison. For the same explanation, the seventh LV 
explained an additional 0.8% of the total variance, and 
LVs (5, 6 and 7 LVs) were applied as the inputs of 
LS-SVM for the pH prediction. Therefore, the optimal 
number of LVs for LS-SVM calibration could be achieved 
by the comparison of prediction performance and the 
computational time could be reduced by LS-SVM models. 
 
 
LS-SVM models 
 
Before the application of LS-SVM, three crucial problems 
were required to solve, including the optimal input data 
set, proper kernel function and the optimal LS-SVM 

parameters. The optimal inputs had been settled by using 
the aforementioned LVs. The commonly used kernel 
functions were linear, polynomial, radial basis function 
(RBF) kernel and multi-layer perceptron (MLP). Currently, 
there was no systematic methodology for the selection of 
kernel function. However, compared with the 
aforementioned kernel functions, RBF kernel as a 
nonlinear function was a more compacted supported 
kernel and able to reduce the computational complexity of 
the training procedure. Simultaneously, RBF kernel could 
handle the nonlinear relationships between the spectra 
and target attributes and give a good performance under 
general smoothness assumptions (Wang et al., 2003). 
Thus, RBF kernel was recommended as the kernel 
function of LS-SVM in this paper. There were two 
significant parameters to be decided in the LS-SVM 
model. The regularization parameter gam (γ) determined 
the tradeoff between minimizing the training  error  and 
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(b) 
 

 
 

Figure 3. Predicted versus reference values of SSC (a) and pH (b) 
by LS-SVM models. 

 
 
 
minimizing model complexity. The parameter sig

2
 (σ

2
) of 

RBF kernel function was the bandwidth and implicitly 
defines the nonlinear mapping from input space to some 
high dimensional feature space. In order to obtain the 
optimal combination of (γ, σ

2
), a two-step grid search 

technique was employed with leave-one-out cross 
validation to avoid overfitting problems. The ranges of γ 
and σ

2
 within (10

-3 
to 10

3
) were set based on experience 

and previous researches (Guo et al., 2006; Chen et al., 
2007; Belousov et al., 2002). Grid search tries values of 
each parameter across the specified search range  using 

 
 
 
 
geometric steps. 

The first step grid search was for a crude search with a 
large step size and the second step for the specified 
search with a small step size. After the process of grid 
search, the optimal combination of (γ, σ

2
) would be 

achieved for the LS-SVM models. The aforementioned 
LVs were used as the input matrix to develop LS-SVM 
model for the prediction of SSC and pH. The performance 
was validated by 75 samples in the validation set. 
Different optimal combinations of (γ, σ

2
) were obtained for 

the prediction of SSC and pH. The prediction results are 
shown in Table 4. After comparison of prediction 
performance for both calibration and validation sets by 
aforementioned evaluation standards, the best LS-SVM 
models were achieved by 7 LVs for SSC and 6 LVs for 
pH. This was consistent with the numbers of LVs used in 
PLS models. The correlation coefficient (r), RMSEP and 
bias for validation set were 0.980, 0.667 and -0.043 for 
SSC, whereas 0.992, 0.040 and -0.006 for pH, 
respectively. The results indicated that LS-SVM models 
outperformed PLS models. The reason might be that 
there were some latent nonlinear useful information in the 
spectral data, and PLS only dealt with the linear 
relationships between the spectra data and chemical 
compositions. However, LS-SVM with RBF kernel could 
make use of the nonlinear information of spectra data to 
build the regression model. The results were in 
agreement with the literature described that LS-SVM was 
better than PLS models (Liu and He, 2007a; Thissen et 
al., 2004). The scatter plots of predicted versus reference 
values in validation set are shown in Figure 3a for SSC 
and Figure 3b for pH. Compared with Figure 2, the 
samples were distributed more closely to the fitting line. 

The results indicated that the LS-SVM regression 
method was better than PLS regression method, and 
LS-SVM had a better capability for the prediction of SSC 
and pH of fruit vinegars. Simultaneously, the prediction 
results by LS-SVM were also better than those described 
similar studies. Liu et al. (2007b) determined the SSC (r = 
0.95) and pH (r = 0.94) of rice wines using VIS/NIR 
spectroscopy and PLS analysis. Urbano-Cuadrado et al. 
(2004) predicted reducing sugars (r = 0.844), pH (r = 
0.905) and other parameters in different types of wines by 
using NIR reflectance spectroscopy and PLS regression 
method. Shao et al. (2007) predicted the acidity of 
bayberry juice (r = 0.945) using VIS/NIR spectroscopy 
and back propagation neural network. Liu and He (2007a) 
applied VIS/NIR spectroscopy to determine the soluble 
solids content (r = 0.959) and pH (r = 0.973) of cola 
beverage. Therefore, the results indicated that VIS/NIR 
spectroscopy combined with LS-SVM could be utilized as 
an excellent prediction method for the determination of 
SSC and pH of fruit vinegars. These  results  would  be  



 

      

  

 
 
 
 

helpful for the process monitoring during the fermentation 
of fruit vinegars. 
 
 
Conclusion 
 
VIS/NIR spectroscopy combined with LS-SVM regression 
method was successfully utilized for the determination of 
SSC and pH of fruit vinegars. The PLS models were 
developed for the determination of SSC and pH with 
different preprocessing methods including no treatment of 
raw spectra, combination of SG and SNV, combination of 
SG, SNV and 1st-derivertive, and combination of SG, 
SNV and 2nd-derivertive. The optimal prediction 
performance was achieved by raw spectral data with 7 
LVs for SSC and 6 LVs for pH. Simultaneously, certain 
LVs were selected as the inputs of LS-SVM models 
according to the values of explained variance. Different 
LS-SVM models were developed with RBF kernel function 
and a two-step grid search techniques. The prediction 
results indicated that LS-SVM models outperformed PLS 
models. The optimal number of LVs for LS-SVM was 7 for 
SSC and 6 for pH, and this was consistent with PLS 
models. The correlation coefficient, RMSEP and bias for 
validation set were 0.980, 0.667 and -0.043 for SSC, 
whereas 0.992, 0.040 and -0.006 for pH, respectively. 

The overall results indicated that VIS/NIR spectroscopy 
combined with LS-SVM method could be applied as an 
alternative way for the determination of SSC and pH of 
fruit vinegars. The results might be useful for the process 
and online monitoring of vinegar fermentation. 
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