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Terminal velocity (TV) is one of the important aerodynamic properties of materials, including seeds of 
agricultural crops that are necessary to design of pneumatic conveying systems, fluidized bed dryer 
and cleaning the product from foreign materials. Prior attempts to predict TV utilized various physical 
and empirical models with various degrees of success. In this study, supervised artificial neural 
networks (ANN) were used for predicting TV. Experimentally, the TV of rice, chickpea, and lentil seeds 
were obtained as a function of moisture content and seed size. TV was significantly influenced by seed 
type, moisture content and seed size. Using a combination of input variables, a database of 54 patterns 
was obtained for training, verification and testing of ANN models. The results obtained from this study 
showed that the ANN models learned the relationship between the three input factors (seed type, 
moisture content and seed size) and output (TV) successfully, and described the TV of seeds with 
different shapes extremely well. The best 4-layer ANN model produced a correlation coefficient of 0.997 
between the actual and predicted TV. The ANN models compared to mathematical models were able to 
learn the relationship between dependent and independent variables through the data itself without 
producing a formula. These benefits significantly reduce the complexity of modeling for TV. 
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INTRODUCTION 
 
Agricultural engineers have used compressed air for 
separation and handling of various materials for many 
years. Knowledge about aerodynamic properties of 
agricultural materials is useful for agricultural machine 
and system design. One of these properties is terminal 
velocity (TV) of agricultural seeds as in addition to plant 
species, influenced by additional variables such as seed 
moisture (Behroozi-lar et al., 2003). 

Several mathematical models have been developed for 
prediction of TV. These models are account for particle 
size, surface properties of the particle, density and shape 
factor. Whereas TV of agricultural seeds in addition to 
these factors is dependent on the other factors such as 
moisture content of seeds, crop  variety,  air  temperature  
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and relative humidity. Also, these models are defined 
only for some of the particular shapes of seeds (sphere, 
flat …). Therefore prediction the TV of agricultural seeds 
with these amounts of variables by using traditional 
mathematical models is very difficult. 

ANN models, compared to mathematical models, are 
able to learn the relationship between dependent and 
independent variables through the data itself without the 
need to develop specific functions between them (Mittal 
et al., 2000). Learning is a data-driven, self-adaptive 
process by which experience arising from exposure to 
measurements of empirical phenomena is converted to 
knowledge, embodied in internal parameter weights of 
the network (Seyhan et al., 2005). It eliminates the 
difficulty of extracting the parameters in a statistical 
model. A properly trained neural network can be viewed 
as a function that fits the input/output data. ANN models 
often are used when the relationship between parameters  
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is unknown or very complex. ANN is also useful in 
nonlinear, multivariable and nonparametric modeling, 
therefore, ANN has recently been utilized in modeling the 
physical and mechanical properties of numerous 
agricultural materials (Khazaei et al., 2005). 

Although it has been shown theoretically that the ANN 
has a universal functional approximating capability and 
can approximate any nonlinear function with arbitrary 
accuracy, no universal guideline exists in choosing the 
appropriate model structure for practical applications. 
Thus, a trial-and-error approach is often adopted to find 
the best model. Typically a large number of neural 
network architectures are considered. The one with the 
best performance in interpolation capability is chosen as 
the most suitable (Park et al., 2003). 

In the past few years there has been an increasing 
interest in ANN modeling in different fields of agriculture, 
particularly for some areas where conventional statistical 
modeling failed. The prediction by a well-trained ANN is 
normally faster than the statistical models. In addition, it 
is possible to add or remove input and output variables in 
the ANN. The applications of the ANN in agriculture 
includes the prediction of crop yield, seeding dates, 
biomass production, physical and physiological damage 
to seeds, organic matter content in soils,  estimation of 
sugar content in fruits, characterize crop varieties, soil 
moisture estimation (Cerrato et la, 1990; Chen et al., 
1999; Liu et al., 2001; O’Neal et al., 2002; Ingleby et al., 
2001; Drummond et al., 2004; Marini et al., 2004; Jiang  
et al., 2004; Kaul et al., 2005; Park et al., 2005; Saberali 
et al., 2007; Khazaei et al., 2008). 

The objectives of this research were to (I) build and 
evaluate the performance of ANN to predict the TV of 
three agricultural seeds as a function of seed type, size 
and moisture content, (II) comparison between ANN and 
mathematical models to predict the TV of agricultural 
crop seeds. 

 
 
MATERIALS AND METHODS 
 
Dataset and measurement method 

 
Among effective factors on TV of agricultural seeds three factors 
were selected. For measuring TV a completely randomized design 
in factorial experiment was used for each experiment. The 
treatments were shape of seeds (cylindrical, spherical and flat), 
moisture content at six levels and dimensions of seeds at three 
levels with six replicates in each. 

 
 
Sample preparation 

 
Iranian varieties of chickpea, lentil and rice (spherical, flat and 
cylindrical shape respectively) were selected crops. The seeds 
were manually cleaned to remove all foreign matters such as dust 
and broken seeds. Three dimensions (a, b, c) of seeds were 
measured by micrometer with  0.02 mm  accuracy. Then  geometric  

 

 
 
 
mean diameter of seeds was calculated from equation (1) 
(Storshine et al., 1998):  

 

3gmd abc=                                                             (1) 

 
Where gmd is geometric mean diameters of seeds (mm), a, b and c 
are large, middle and small diameter of seeds (mm), respectively. 
Then according to gmd, the seeds were divided into three dimen-
sional groups (Table 1). Rice and lentil were divided according to 
length and mean diameter, respectively, because of their shapes. 
Six moisture levels were selected ranging from initial moisture 
content of seeds to 25% w.b (Table 2). The initial moisture content 
of seeds was determined by using oven method. The necessary 
time and temperature of oven for drying rice, chickpea and lentil 
were 135, 105 and 135°C, respectively for 24 h (Chung, 2006; 
Esref et al., 2008; tang et al., 1991). 

To obtain samples with higher moisture contents (Table 2), a 
calculated quantity of distilled water was added to the samples. The 
quantity of distilled water was calculated from the following 
equation: 
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Where W2 is the mass of distilled water added (kg), W1 is the initial 
sample mass (kg), M1 and M2 are the initial and desired moisture 
content of sample (w.b. %), respectively. 

Then the samples were placed in sealed plastic bags and kept at 
4°C in the refrigerator for at least 48 h to enable the moisture to 
distribute uniformly throughout the sample. Before starting a test, 
the required quantity of seeds was taken out of the refrigerator and 
allowed to warm up to room temperature (Deshpande et al., 1993; 
Carman, 1996; Dursun et al., 2005). 
 
 
Terminal velocity measurement  

 
To measure the terminal velocity of the samples, a vertical air 
column was designed and constructed based on the standard 
methods (Tabak et al., 1998). It was contained of the electrical 
motor, centrifugal fan, air chamber, wind tunnel and electrically TV 
measurement system (Figure 1). 

The sample was placed in the wind tunnel and air speed was 
gradually increased until the seed was floated, and air speed was 
measured and mean of six replications was reported as seed TV. 

 
 
Mathematical models development 

 
The dimensional analysis method was applied to obtain the 
mathematical models of predicting TV. For the conditions of this 
research the general equation (3) can be assumed: 
 

( , , , ) 0f V d g M =                                           (3) 

 
Where V is terminal velocity (LT

-1
), d is diameter (L), g is gravity 

acceleration (LT
-2

) and M is moisture content (dimensionless). The 

selected dimensionless parameters were 
1 /V dgΠ =  

and
2

MΠ = , so the general equation containing dimensionless 

parameters is: 
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Table 1. Range of sizes (mm) in every dimensional group. 

 

 Group 1 Group 2 Group 3 

Chickpea 6.4 - 6.6 7.1 - 7.5 8.2 - 8.6 

Lentil 5.4 - 5.8 6.2 - 6.6 6.9 - 7.3 

Rice 8.7 - 9.4 9.8 - 10.5 10.8 - 11.5 

 
 
 

Table 2. Six moisture content levels of seeds (%). 

 

 1 2 3 4 5 6 

Chickpea 6.37 10 13.5 17 21 25 

Lentil 9.02 12.5 16 19 22 25 

Rice 10.12 13 16 19 22 25 

 
 
 
 

 
 
Figure 1. Applied vertical air column for measuring TV. 
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Artificial neural networks  
 
In this study a feed forward artificial neural network model was 
developed to model correlation between terminal velocity and  three 

variables: seed type, seed size and moisture content of seeds. This 
type of neural network is mainly used for the estimation of functions 
and classification of patterns. The multilayer perceptron networks 
(MLP) are the most commonly used feed forward ANNs. Back 
Propagation (BP) training algorithm usually is used for MLP network 
training (Menhaj, 1998). In this study the multilayer perceptron ANN 
with back propagation (BP) algorithm was selected to develop TV 
prediction. 

There were a total  of  54  patterns,  each  with  four  components    
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Table 3. Three samples of patterns used in artificial neural networks modeling. 

 

Pattern no Seed type Seed size (mm) Moisture content (%) TV (m/s) 

1 Chickpea (1) 6.5 6.37 11.13 

2 Lentil (2) 5.6 9.02 5.08 

3 Rice (3) 11.15 22 4.92 

 
 
 
(x1, x2, x3, y), three of which were the input variables whereas the y 
was the output variable. Table 3 shows three of these patterns. 

Supervised ANNs are similar to conventional statistical models in 
the sense that model parameters (e.g. connection weights) are 
adjusted in the model calibration phase (training) so as to minimize 
the error between model outputs and the corresponding measured 
values for a particular data set (the training set). ANNs perform well 
when they do not extrapolate beyond the range of the data used for 
calibration. Therefore, the purpose of ANNs is to non-linearly 
interpolate (generalize) in high-dimensional space between the data 
used for calibration. Unlike conventional statistical models, ANN 
models generally have a large number of model parameters 
(connection weights) and can therefore overfit the training data 
(leading to memorization rather than generalization). Conse-
quently, a separate verification set is needed to ensure that the 
model can generalize within the range of the data used for 
calibration. It is common practice that the data are divided into three 
sets: training, testing and verification. The training set is used to 
adjust the connection weights, whereas the testing set is used to 
check the performance of the model and the verification set is used 
to determine when to stop training to avoid over-fitting (Shahin et 
al., 2008). 

The 54 patterns used in this study randomly were divided into 
training, verification and testing datasets: 30, 12 and 12 patterns for 
train, verification and test, respectively (Shahin et al., 2008). The 
variables of these datasets could not be trained by ANN in their 
original form due to the wide range of values among them. To 
become feasible input neurons and to achieve fast convergence to 
minimal RMSE, all the datasets were normalized between 0.05 and 
0.95 by using the following formula (Khazaei et al., 2005):  
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Where 
t

X  is the normalized data for
i

X , 
max

X and 
min

X are 

maximum and minimum of data before normalizing. As a result of 
normalization, all variables acquired the same significance during 
the learning process. 

The input and target output pairs were applied to train the 
weights of the networks. Training process by these networks is 
iterative process that includes up-dating of weights between the 
different layers. During training process the weights gradually 
proceed to stability. So, it would be minimized error between target 
and predicted values. 

The training and prediction abilities of ANN models were 
considered using the root mean square error (RMSE), coefficient of 
determination (R

2
), and T static’s (Khazaei et al., 2008). 
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Where 
m

X  and 
P

X are measured and predicted data 

respectively, n  is the number of data and X is mean of output 

data.  
Various ANN structures were investigated, including three and 

four layers with different number of neurons in each hidden layers, 
different values of learning coefficient and momentum, different 
learning coefficients and transfer functions. Once a given neural 
network was trained by using the appropriate training dataset, its 
performance was evaluated using the testing dataset. The best 
ANN structure and optimum values of network parameters were 
obtained on the basis of lowest error on training and test sets of 
data, by trial and error. 

The neural network professional ii/plus simulator, version 5.23, 
mstat-c and excel softwares were used in this study. 

 
 
RESULTS AND DISCUSSION 
 
The terminal velocities (TV) of rice, chickpea, and lentil 
seeds were obtained as a function of moisture content (at 
six levels) and seed size (at three levels). TV of rice, 
chickpea, and lentil seeds varied within the 4.25 - 5.01, 
11.13 - 15.08, and 5.08 - 6.41 m/s, respectively. TV was 
influenced significantly by seed type, moisture content 
and seed size. The regression equations of terminal 
velocity and their R

2
 values are listed in Table 4. 

 
 
Mathematical models  
 
Equations (5 - 7) show the results of applied dimensional 
analysis method to obtain the mathematical models for 
chickpea, lentil and rice respectively. Figures 2 to 4 show 
the coefficient of determination (R

2
) for mathematical 

models. 
 

1
22( . ) (24.67 12.86 44.75)TV d g M M= + +                         (5) 

 

1
22( . ) (80.15 0.033 20.46)TV d g M M= − +                    (6) 

 

1
22( . ) ( 9.85 16.25 12.11)TV d g M M= − + +                    (7) 
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Table 4. Regression equations of terminal velocity. 

 

Seed type Seed size (mm) Equation R
2 

 

Chick-pea 

 

6.5 

7.3 

8.4 

TV = 0.03384MC + 10.92 

TV = 0.0444MC + 11.819 

TV = 0.0861MC + 12.988 

0.961 

0.91 

0.962 

 

Lentil 

 

5.6 

6.4 

7.1 

TV = 0.064MC + 4.4899 

TV = 0.0719MC + 4.5373 

TV = 0.0676MC + 4.7102 

0.986 

0.982 

0.984 

 

Rice 

 

9.05 

10.15 

11.15 

TV = 0.0366MC + 3.8485 

TV = 0.0408MC +3.8678 

TV = 0.0434MC + 3.9585 

0.967 

0.931 

0.966 

 
 
 

 
 
Figure 2. Correlation between the actual and predicted TV data of pea by 
mathematical model.  

 
 
 

 
 
Figure 3. Correlation between the actual and predicted TV data of lentil by mathematical model.
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Figure 4. Correlation between the actual and predicted TV data of rice by mathematical model. 

 
 
 

 
 
Figure 5. Training RMSE of ANN as a function of the number of neurons in 

the first and second hidden layers. 
 
 
 

Where M is the moisture content, d is size of seed (mm) 

and g is the gravitational acceleration (m/s
2
). 

 

 

Artificial neural networks model 
 

Preliminary trails indicated that two hidden layer networks 
performed better results than one hidden layer ANN to 
learn and predict the correlation between input and 
output parameters. 

To determine the optimal number of neurons in hidden 
layers, training was used for 3-n1-n2-1 architectures. The 
number of neurons in the first hidden layer (n1) was 
studied from 1 - 10 and from 0 - 10 for second hidden 

layer (n2). Figure 5 shows the training performance of 
ANN as a function of the number of neurons in the first 
and second hidden layers. Results show that among the 
various structures, the best training performance to 
predict TV was belong to the 3-4-4-1 structure. Figure 6 
illustrated this structure. 

On the basis of the lowest error on training and test 
sets of data, by trial and error, the best transfer function 
and learning rule (Figure 7) for predicting TV were 
sinusoidal and delta rule. 

The results obtained from this research showed that 
the network parameters including learning coefficient and 
momentum values affected the ANN performances 
significantly but the choice of suitable learning  coefficient  
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Figure 6. The topology of four layers, feed-forward back-propagation ANN for predicting TV based on three 

input variable. 
 
 
 

 
 
Figure 7. Comparison of training and test RMSE for several transfer functions(a) and learning rules (b). 

 
 
 

and momentum is an important problem. The values of 
0.5 for learning coefficient and 0.1 for momentum were 
desirable (Figure 8), so that the achieved result was as 
precise as possible. 

For 3-4-4-1 structure the number of epochs was 
increased from 4 x 10

2
 - 4 x 10

4
 and the amount of RMSE 

was calculated for train and verification datasets. As 
Figure 9 shows the error on training data generally 
decreases with increasing number of epochs, with an  
initial large drop in error that slows down as the network 
begins to learn the patterns representing the training data 
set. A well-trained ANN model is the key to design and 
analysis of the input and output relations. However, if 
training is allowed to continue beyond the point at which 
the error reaches the global minima, overfitting (or 
overtraining) may arise, where memorization of the 

training data occurs (Khazaei et al., 2008). Because of 
this overfitting, if a network performance is monitored by 
training data alone, the network will perform with little 
error on the training data but will not be able to generalize 
well for testing data. In several neural network 
applications, this has been handled by monitoring 
verification set performance during training and picking 
the network where performance on the verification set 
was optimal. In this study for the epochs in the range of 
11 x 10

3
 - 4 x 10

3
, the errors on both training and 

verification sets were in the acceptable range (Figure 9). 
The number of epochs was limited to 17 x 10

3
. 

Table 5 shows the best structure and optimum 
parameters used to predict TV and Figure 10 shows its 
performance. As Figure 10 shows the linear adjustment 
between the actual and  predicted  values  gives  a  slope  
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Figure 8. The effect of learning coefficient and momentum values on training 
performance of the ANN model. 

 
 
 

 
 
Figure 9. The training and verification RMSE as a function of the number of epochs. 

 
 
 

Table 5. The best structure and optimum parameters used to predict TV. 

 

Multi layer perceptron ANN with back-propagation algorithm 

Structure Learning rule Transfer function Learning coefficient Momentum Epoch 

3-4-4-1 Delta rule sinusoidal 0.5 0.1 17*10
3
 

 
 
 

equal to 0.9903 (y = 0.9903x + 0.0005). The resulting 
coefficient of determination (R

2
) was 0.9968 for the 

regression between actual and predicted values. The 
ANN model was able to predict TV data with training and 
test RMSE of 0.018747 and .0128, respectively. Also the 
T coefficient and R

2 
value of model were 0.9966 and 

0.9968, respectively. 

Conclusion  
 
The results obtained from this study show that the ANN 
models learned the relationship between the three input 
factors (seed type, moisture content and seed size) and 
terminal velocity as output successfully. ANN models 
compared to mathematical models were able to learn  the
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Figure 10. Correlation between the actual and predicted TV data by the ANN model. 

 
 
 
relationship between dependent and independent varia-
bles through the data directly without producing a 
formula; therefore, ANN eliminates the difficulty of 
extracting the parameters for a mechanistic model. 

The results also showed that one ANN model can be 
used to predict terminal velocity of several seeds with 
different shapes, whereas empirical models for predicting 
TV of every seed at least one model is needed. Also the 
accuracy of the ANN model is very better than 
mathematical models. 

The number of patterns in the training dataset in this 
research was not very much (30 patterns) nevertheless 
the ANN models were able to successfully predict TV 
(acceptable values for RMSE, R

2
 and T), whereas the 

empirical models need a large amount of data for reliable 
training results and to validate trained models. 

If new data for TV are available, the ANN models can 
easily relearn the relationship between them. The higher 
performance, higher prediction accuracy, and ability to 
relearn are important to create a powerful model. 
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