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Genotype by environment (G×E) interaction is associated with the differential performance of 
genotypes tested at different locations and in different years, and influences selection and 
recommendation of cultivars. Wheat genotypes were evaluated in six environments to determine the 
G×E interactions and stability of the genotypes. Additive main effects and multiplicative interactions 
(AMMI) was conducted for grain yield of both year and it showed that grain yield variation due to 
environments, genotypes and (G×E) were highly significant (p <0.01). Stability for grain yield was 
determined using genotype plus genotype by environment interaction (GGE) biplot analysis. The first 
two principal components (PC1 and PC2) were used to create a 2-dimensional GGE biplot. Which-won-
where pattern was based on six locations in the first and five locations in the second year for all the 20 
genotypes. The resulting pattern is one realization among many possible outcomes, and its 
repeatability in the second was different and a future year is quite unknown. A repeatability of which-
won-where pattern over years is the necessary and sufficient condition for mega-environment 
delineations and genotype recommendation. 
 
Key words: Additive main effects and multiplicative interactions (AMMI), genotype×environment (G×E) 
interactions, wheat, stability.  

 

 
INTRODUCTION 
 
The increase in population and the subsequent rise in 
demand for agricultural produce are expected to be 
greater in regions where production is already 
insufficient, in particular in Sub-Saharan Africa. The 
necessity and demand to increase agricultural production 
represents a huge challenge to local farming systems 
given it must come mainly from increased yield per unit 
area in addition to the limited extension of cultivated  land 
 

in the country. To meet this requirement various crop  
improvement programmes have been initiated by the 
Ethiopian Institute of Agricultural Research (EIAR). Under 
any crop improvement programme a sample of promising 
genotypes are performance tested each year at a number 
of sites, representing major crop growing areas with the a 
view to identify genotypes which possess the dual 
qualities   of   high  yield  capacity  and  low  sensitivity  to 
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adverse change in environmental condition. One of the 
important focuses in the current paper is to assess the 
performance of improved genotypes in multi environment 
(multi-location, multi-year or both) trials. Multi-
Environment Yield Trials (MEYT) are conducted for 
different crops throughout the world (Yan and Rajcan, 
2002; Dehghani et al., 2006) not only to identify high 
yielding cultivars but also to identify sites that best 
represent the target environment (Yan, 1999; Yan et al., 
2000, 2001). As usual in MEYT, a number of genotypes 
are tested over a number of sites and years to see 
adaptation of the crop. But, it is often difficult to determine 
the pattern of genotypic responses across environments 
without the use of appropriate analytical and statistical 
tools such as additive main effects and multiplicative 
interactions (AMMI) and Genotype main effect and 
Genotype×Environment interaction (GGE) biplot (Gauch, 
1992; Gauch and Zobbel, 1996; Yan et al., 2000; Yan, 
Tinker, 2006) for graphical display of data.  

The measured yield of each cultivar in each test 
environment is a result of genotype main effect (G), and 
environment main effect (E) and genotype by 
environment (G×E) interaction (Yan and Kang, 2003). 
Though, E mostly accounts for about 80% of the total 
yield variation; it is only G and G×E interaction that are 
relevant to cultivar evaluation and mega environment 
classification (Rao et al., 2005; Yan et al., 2000; Yan, 
2002; Yan and Rajcan 2002; Kaya et al., 2006). AMMI 
and GGE models are singular value decomposition 
(SVD) based statistical methods often applied to yield 
trial studies for visualizing the data. The methods helps in 
understanding complex genotype by environment(G×E) 
interactions, determining which genotype has been in 
which environments, and also helping in grouping 
environments with the same winner (or similar winners) 
into mega-environments.  

Wheat is the most important cereal crop in Ethiopia and 
represents nearly 14% of grain crop production. It covers 
71,786.86 ha of cropped land area with average 
productivity of 9.86 qut/ha but it is less than half of the 
world average yield (ECSA, 2011). Understanding 
genotype by environment interaction (GEI) helps plant 
breeders to design better breeding strategies. Therefore, 
the objectives of this study are to evaluate the yield 
performance and stability of genotypes in relation to 
environment (location) on year to year basis. Secondly 
the study will examine the possible existence of different 
mega environments and the wining genotype for each 
mega environments.  
 
 
MATERIALS AND METHODS  
 
Description of the data  
 
The data used in the current paper are from a study carried out 
between 2004 and 2005 in six different research stations in 
Ethiopia. The locations consist of loc1 (Kulumsa),loc2(Adet), loc3 
(Bekoji), loc4 (Sinana), loc5 (Holeta) and  loc6  (DeberZeit).  Twenty 

 
 
 
 
bread wheat genotypes were evaluated in each of the above 
locations (environments) in a randomized complete block design 
with four replications. These Twenty genotypes are coded from G1-
G20.  
 
 

The model  
 

In terms of effects, the basic model for a multi-environment trial can 
be written as  
 

                                                  (1) 
 

Where 𝑌𝑖𝑗𝑙  is the measured yield value of the i
th 

genotype in the j
th 

environment and l
th 

replicate, 𝜇 is the grand mean,  𝛼 𝑖  is the main 
effect of the i

th
 genotype, 𝛽𝑗  is the main effect of j

th
environment, 𝛾𝑖𝑗 is 

interaction between i
th 

genotype and j
th

 

environment and 𝜖𝑖𝑗𝑙 is 

random error. Were we assume that 𝜖𝑖𝑗𝑙  ~indep N(0,δ
j 

2

). The 

ranges of indices are i=1, 2,...,20j =1, 2,..., 6 l =1, 2, 3, 4. Thus the 
cell mean for the model is  
 

                        (2) 
 

In GGE biplots genotype plus genotype × environment (G + GE) 
interaction are studied together and to achieve this G+GE effect is 
separated out from the observed mean and eventually the model 
becomes (omitting the random error)  
 

                                    (3) 
 

However in the case of the AMMI model, the effect of genotypes is 
also separated out only genotype × environment (GE) interaction is 
studied for biplot, and eventually the model becomes  
 

                                      (4) 
 

The mathematical expressions for partitioning of G+GE for GGE 
biplots and GE for AMMI models are similar except a difference in 
model formulation. The G+GE for GGE and GE for AMMI effects 
are partitioned into multiplicative terms by using the singular value 
decomposition (SVD) as  
 

 
 

and 
 

             (7) 
 

respectively, where 𝜆1 (𝜆∗1) and 𝜆2 (𝜆∗2) are the singular values 
(SV) for the first and second principal component (PC1 and PC2), 

𝜉 ′
𝑖1

(𝜉 ′∗
𝑖1

) and𝜉 ′
𝑖2

 (𝜉 ′∗
𝑖2

) are eigenvectors of genotype i for PC1 and 

PC2, 𝜂𝑗1 (𝜂∗
𝑗1

) and 𝜂𝑗2 (𝜂∗
𝑗2

) are eigenvectors of environment j for 

PC1 and PC2 and 𝛾𝑖𝑗 (𝛾𝑖𝑗
∗) is the residual not explained by PC1 and 

PC2 for genotype i in environment j. The PC1 and PC2 
eigenvectors cannot be plotted directly to construct a meaningful 
biplot before the singular values are partitioned into the genotype 
and environment eigenvectors. To generate a biplot that can be 
used in visual analysis of MEYT data, the SVs have to be 
partitioned into the genotype and environment eigenvectors so that 
Equation (5) can be written in the form of  
 

                                                                                                       (6)  
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Table 1. ANOVA table for AMMI model. 
 

Source 
Year 2004 Year 2005 

df SS MS F F-prob df SS MS F F-prob 

Total 479 54590 114 
  

399 27188 68.1 
  

Treatments 119 41599 349.6 10.2 0 99 19806 200.1 9.93 0 

Genotypes 19 1187 62.5 1.82 0.01944 19 2779 146.3 7.26 0 

Environments 5 35212 7042.4 99.8 0 4 13988 3497.1 31.97 0 

Block 18 1270 70.6 2.06 0.00706 15 1641 109.4 5.43 0 

Interactions 95 5200 54.7 1.6 0.00134 76 3038 40 1.98 0.00003 

IPCA 23 2035 88.5 2.58 0.00012 22 1459 66.3 3.29 0 

IPCA 21 1588 75.6 2.21 0.00193 20 897 44.9 2.23 0.00227 

Residuals 51 1577 30.9 0.9 0.66493 34 682 20.1 1 0.47979 

Error 342 11721 34.3 
  

285 5742 20.1 
   

The block source of variation refers to blocks within environments.  
 
 
 

Where 𝑔′
𝑖𝑙

 and𝑒′𝑙𝑗   are called PCl scores for genotype i and 

environment j, respectively. In a biplot, genotype i is displayed as a 

point defined by all 𝑔′
𝑖𝑙

values, and environment j is displayed as a 

point defined by all 𝑒′𝑙𝑗  values (l = 1 and 2 for a two-dimensional 

biplot). Singular-value partitioning is implemented by  
 

𝑔′
𝑖𝑙

 =  𝜆𝑙
𝑓𝑖𝜉𝑖𝑙  𝑎𝑛𝑑 𝑒′𝑙𝑗   =  𝜆𝑙

1−𝑓𝑖𝜂𝑙𝑗                                                    (7) 

 
where 𝑓𝑖  is the partition factor for PCl. Theoretically, 𝑓𝑖  can be 
anything between 0 and 1 although 0.5 is so far the most commonly 
used partition factor (Yan, 2002). In this paper we have use a value 
of 0.5 to give equal importance to both genotype and environment. 

 
 
RESULTS AND DISCUSSION  
 
The AMMI analysis of variance of grain yield (Table 1) 
showed significant effects of genotype, environment 
(location) and genotype by environment interaction. 
Location explained 84.65% of the total (G + E + GE) 
variation of year 2004 and 70.63% for year 2005, 
whereas the genotype by environment interaction and 
genotype captured 12.5 and 0.0029% of year 2004 and 
15.34 and 14.03% for year 2005, respectively. The 
magnitude of genotype by environment interaction as 
compared to genotype suggested a possible existence of 
different mega environments in year 2004. The 
partitioning of GGE sum of squares through the GGE 
biplot analysis showed that PC1 and PC2 accounted 
43.21 and 26.43% of GGE sum of squares of year 2004 
and 58.01 and 22.14% for year 2005, respectively. The 
two principal components explained a total of 69.6 and 
80.16% variation in the two years respectively. 
Nonetheless agricultural biplot literature provides no 
guidance concerning how much of the total variability 
accounted for by the first two principal components are 
considered adequate (Sabaghnia et al., 2012b; Yang et 
al., 2009). This result revealed that there was a 
differential yield performance among wheat genotypes 
across testing environment (location) due to the presence 

of genotype by environment interaction.  
 
 
Graphical statistical methods based on GGE biplot 
analysis  
 
Relationship among test environments  
 
GGE biplot, which was based on environment focussed 
scaling, was used to estimate the pattern of environments 
(locations) as shown in Figure 1. Environment PC1 score 
had both negative and positive scores indicating that 
there was a difference in rankings of yield performance 
among genotypes across environments leading to cross-
over G ×E interactions.  

Like PC1, the environment PC2 scores had both 
positive and negative values. This gave rise to crossover, 
leading to inconsistent genotype yield performance 
across environment (locations). To visualize the 
relationship between environments, lines are drawn to 
connect the test environments to the biplot origin known 
as environment vectors. The cosine of the angle between 
two environments is used to approximate the correlation 
between them as described and used in Dehghani et al. 
(2009, 2010), Kaya et al. (2006), Yan and Tinker (2006).b 
For example locations 2,3 and 6 were positively 
correlated (an acute angle), location 1 and 5 were 
negatively correlated (an obtuse angle), and location 1 
and 4 were not correlated (a right angle) in year 
2004.The presence of wide obtuse angle (that is, strong 
negative correlations) among test environments is an 
indication of high cross over GEI (Yan and Tinker, 2006).  

The distance between two environments measures 
their dissimilarity in discriminating the genotype, thus the 
six locations in (Figure 1a) fell into 4 apparent groups 
where locations 2,3 and 6 form the first group while 
lactations 1,4 and 5 each of them separately form their 
own group. The presence of close associations among 
some test locations in year 2004, suggest that  the  same  
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Figure 1. Scatter plot of environments (a) year 1 (b) year 2. 
 
 
 

 
 

Figure 2. GGE biplot based on environment-focused scaling for comparison of the environment with ideal environment (a) year 
1 (b) year 2.  

 
 
 

information about genotypes could be obtained from 
fewer test locations, and hence the potential to reduce 
test cost (Choukan, 2010; Tukamuhabwa et al., 2012). If 
two test locations are closely correlated consistently 
across years, one of them can be drooped without loss of 
much in-formation about the genotypes. However, in 
reality the correlation consistency between the test 
locations vary from year to year as it shown in Figure 1. 
Clearly Figure 1a and Figure 2b show differing genotype 
and environment structure. However it should be noted 
that data in 2005 had only five of the location in 2004. 

Discriminating ability and representativeness of the 
test environment  
 
GGE biplot discriminating ability and representativeness 
is an important measure of the testing environments. The 
concentric circles on the biplot as shown in Figure 2 help 
to visualize the length of the environment vectors, which 
is proportional to the standard deviation within the 
respective environments and is a measure of the 
discriminatory ability of the environments. Therefore, 
among   the   six  environments,  E1  and  E4 were   most  

 

 
                                         (a)                                                                                         (b) 
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Figure 3. GGE biplot based on genotype-focused scaling for comparison of the genotype with ideal genotype (a) year 1 (b) year 2.  
 
 
 

discriminating (informative) and E5 least discriminating in 
year 1; whereas in year 2 (Figure 2) E5 and E4 are most 
discriminating and E2 was least-discriminating. Test 
environments that are consistently non-discriminating 
(non-informative) provide little information on the 
genotypes and, therefore, should not be used as test 
environments. The average environment (represented by 
the small circle at the end of the arrow) has the average 
coordinates of all test environments, and Average-
Environment Axis (AEA) or Average-Tester-Axis (ATA) 
(Yan, 2002) is the line that passes through the average 
environment and the biplot origin. A test environment that 
has a smaller angle with the AEA is more representative 
of other test environments. Thus, E1 and E4 are most 
representative whereas E5 and E3 least representative in 
their respective year. Test environments (locations) that 
are both discriminating and representative (e.g., E1) are 
good test environments for selecting generally adaptable 
genotypes. Discriminating but non-representative test 
environments like E3 are useful for selecting specifically 
adapt-able genotypes if the target environments can be 
divided into mega-environments or they are useful for 
culling unstable genotypes if the target environment is a 
single mega-environment.  
 
 
Ranking genotypes relative to the ideal genotype  
 
An ideal genotype should have the highest mean 
performance and be absolutely stable  (that  is,  performs 

the best in all environments). Such an ideal genotype is 
defined by having the greatest vector length of the high 
yielding genotypes and with zero GEI, as represented by 
an arrow pointing to it (Figure 3). Although such an ideal 
genotype may not exist in reality, it can be used as a 
reference for genotype evaluation (Yan and Tinker, 
2006). A genotype is more desirable if it is located closer 
to the ideal genotype. Thus, using the ideal genotype as 
the centre, concentric circles were drawn to help visualize 
the distance between each genotype and the ideal 
genotype. Because the units of both PC1 and PC2 for the 
genotypes are the original unit of yield in the genotype-
focused scaling (Figure 3), the units of the AEC abscissa 
(mean yield) and ordinate (stability) should also be in the 
original unit of yield. The unit of the distance between 
genotypes and the ideal genotype, in turn, will be in the 
original unit of yield as well. Therefore, the ranking based 
on the genotype-focused scaling assumes that stability 
and mean yield are equally important (Farshadfar et al., 
2012; Yan, 2002). Figure 3 revealed that G5, which fell 
into the centre of concentric circles, was the ideal 
genotype in terms of higher yielding ability and stability, 
compared with the rest of the genotypes. In addition, G6 
and G14, located on the next consecutive concentric 
circle, may be regarded as desirable genotypes.  
 
 
Mean performance and stability of the genotypes  
 
Yield   performance   and   stability   of   genotypes   were 
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Figure 4. GGE biplot based on environment-focused scaling for mean performance and stability of the genotypes (a) year 1 (b) year 2. 

 
 
 

evaluated by an average environment coordination (AEC) 
method in Farshadfar et al. (2011). Within a single mega-
environment, genotypes should be evaluated on both 
mean performance and stability across environments. 
Figure 4a gives the average environment coordination 
(AEC) view of the GGE biplot. The single-arrowed line is 
the AEC abscissa, it points to higher mean yield across 
environments. Thus, G5, G18, G6 and G14 had the 
highest mean yield. The non-arrowed line is the AEC 
ordinate; it points to greater variability (poorer stability) in 
either direction. Thus, G12 and G20 ware highly unstable 
and below average yield, whereas G4 and G14 highly 
stable, were followed by G5, G6 and G3 with above 
average yield in the first year.  

The mean performance and stability of these 20 
genotypes in five locations (environment) in the second 
year of the trial shows some variation from the first year 
as it shown in Figure 4b. However G6, G5, G4 and G18 
were relatively high yielding and stabile genotypes in both 
trial years. 
 
 
Which genotype won where and mega environments 
with GGE bi-plot  
 

One of the most attractive features of a GGE biplot is its 
ability to show the which-won-where pattern of a 
genotype by environment data set (Figure 5). Many 
researchers find this use of a biplot intriguing, as it 
graphically addresses important concepts such as 
crossover GE, mega environment differentiation, specific 
adaptation, etc as discussed in Yan and Tinker (2006). 
The polygon is formed by connecting the markers of the 
genotypes that  are  further  away  from  the  biplot  origin 

such that all other genotypes are contained in the 
polygon. Genotypes located on the vertices of the 
polygon performed either the best or the poorest in one 
or more locations since they had the longest distance 
from the origin of biplot. The perpendicular lines are 
equality lines between adjacent genotypes on the 
polygon, which facilitate visual comparison of them. For 
example, the equality line between G5 and G18 in 2004 
indicates that G5 was better in E1, whereas G18 was 
better in E2, E3 and E6. An interesting feature of this 
view of a GGE biplot is that the vertex genotype(s) for 
each sector has higher (some times the highest) yield 
than the others in all environments that fall in the sector 
(Gauch et al., 2008; Yan, 2002). These six equality lines 
divide the biplot into six sectors, and the environments 
fall into four of them (Figure 5).This pattern suggest that 
the target environment may consist of four different 
mega-environments and that different cultivars should be 
selected and deployed for each.  

In which-win-where GGE biplot for the second year 
(Figure 5b), eight equality lines divide the biplot into eight 
sectors and the five locations fell into three of them. The 
mega-environment classification of these five trial 
location is different from the first year. This difference 
leads to a different wining genotype in different locations 
(environment) across a year.  
 
 
Conclusions  
 

The GGE biplotsof MEYT data allow visualizing the inter-
relationship among genotypes including the ranking of 
genotypes based on both mean performance and 
stability,   inter-relationship   among   environments,   and  

 

 

                                       (a)                                                                                    (b) 
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Figure 5. The which-won-where view of the GGE biplot to show which genotypes performed best in which environment (a) 
year 1 (b) year 2. 

 
 
 

interaction between genotypes and environments 
including the which-won-where pattern. The result of this 
study indicated that wheat yield performance was highly 
influenced by the environment effect followed by the 
magnitude of GEI and genotype. Total yield variation by 
the genotype increased from 0.0029% in first year to 
14.03% in the second year which had almost equal effect 
with the G×E interactions. These two years repeated over 
location data analysis result; which-win-where pattern, 
yield performance and stability of genotype indicate that 
repeatability pattern over years is the necessary and 
sufficient condition for mega-environment delineation and 
genotype recommendation. Decision making recommen-
dation based on one year data should be done with 
caution.  
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