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The objective of this study was to evaluate the effect of input vectors in an artificial neural network 
(ANN) and determine their best combination to estimate the individual dry biomass of native bracatinga. 
The dataset consisted of 178 trees of Mimosa scabrella Benth. (bracatinga) from the Metropolitan 
Region of Curitiba. The ANN used was a Multi-Layer Perceptron; the learning algorithm was the 
Levenberg-Marquardt, consisting of an occult layer where 50% of the data were used for training, 25% 
for cross-validation and the other 25% for the test. The input vectors were all the variables collected in 
the field, such as: diameter at breast height (dbh), total height (ht), crown height (hc), stem height (hf), 
crown diameter (dc) and age (i). The treatment 1 consisted of all the vectors; after the MLP trained, the 
Garson algorithm was executed for obtaining relative contribution of each vector; the less important 
vector was deleted and the MPL was retrained (treatment 2) and so on until only one vector was left. 
Based on the coefficient of determination and root mean square error, treatment 3 provided the best 
performance (i, hc, ht and dbh), followed by treatment 6 (dbh). The method of selecting attributes by the 
Garson algorithm was remarkable and provided the definition of essential vectors, allowing minimal 
costs and optimizing the performance of the MLP. 
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INTRODUCTION 
 
Studies on forest biomass are done with various 
objectives, among which it is possibility to highlight the 
quantification of nutrient cycling, the quantification for 
energetic ends and as information base for studies on 
carbon sink (Trautenmüller, 2015). Sanquetta (2002) 
affirms that in researches focused on the carbon  fixation, 

the biomass is one of the most relevant factors, and for 
this reason, it must be determined and estimated 
precisely, or else there will not be consistency in the 
quantification of the carbon fixed in forest ecosystems.  

According to Sanquetta et al. (2015), though biomass is 
important for the quantification of carbon in the plants,  its 
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direct determination is complex, expensive and 
destructive. For this reason, the quantification may be 
performed in an indirect way, which consists of estimates 
generally made by mathematical relations, as reasons or 
regressions, with data coming from forest inventory. The 
direct quantification may also be performed with data 
from a remote sensing in a geographic information 
system (Silveira et al., 2008). 

However, when used in natural forests, the use of the 
referred techniques becomes more complex due to the 
great floristic, physiognomic and phenological diversity of 
this forest type, and so may present limitations 
(Sanquetta et al., 2015). Besides, a single equation may 
not be able to reproduce a large variation regarding 
natural forests, in addition to the need of this technique to 
attend to some prerequisites as additivity and linearity, 
residue independence, homoscedasticity and residue 
normality (Osborne and Waters, 2002). 

In contrast, some machine learning techniques have 
presented themselves as promising alternatives to 
conventional statistical methods. Among these 
techniques, the artificial neural networks (ANN) have 
been used successfully in the forest sector in estimating 
dendrometric variables, such as height (Ferreira et al., 
2014; Binoti et al., 2013), volume (Binoti et al., 2014; 
Cordeiro et al., 2015), thinning (Martins et al., 2016; 
Mendonça et al., 2015) and growth and production 
(Castro et al., 2013).  

However, this technique presents some difficulties in 
understanding how they reach such estimates, and for 
this reason are named as black box system, for it is not 
possible to know what are the intermediate relations 
between the input and output variables, knowing only that 
this relation consists of adjusting synaptic weights.  

There are techniques commonly utilized that seek to 
clarify how the ANN reaches such estimates, for 
example: the neural interpretation diagram technique 
(Gozlan et al., 1999), sensitivity analysis (Olden and 
Jakson, 2002) and the Garson algorithm (Garson, 1991). 
From these, the Garson algorithm has proven to be 
quicker and more decisive to be strictly quantitative 
(Kalteh, 2008). 

It is necessary for the acquisition of some answers in 
the forest sector, the measurement of dendrometric 
variables with some level of difficulty in obtainment, it is 
of utmost importance to determine which are the input 
vectors and their effects, as well as identify the best 
combination of variables that produce the most accurate 
response. In this sense, the Garson algorithm is 
highlighted; it consists of considering the variation of 
absolute values of synaptic weights between the vectors 
of the input layer and the output layer, with the objective 
of determining the relative relevance of each vector of the 
input layer (Garson, 1991). 

Thus, the objective of the present research was to 
evaluate the contribution of input vectors of an ANN to 
estimate the individual aboveground biomass  of  Mimosa  

 
 
 
 
scabrella Benth. using the Garson (1991) algorithm  and 
determine the best set of input vectors. 
 
 

MATERIALS AND METHODS 
 
Data collection 
 
In this study, data from native bracatinga trees of the Metropolitan 
Region of Curitiba were used. The total data set was 178 trees, 
which were sampled seeking representation in the age classes and 
diameters. The methodology was obtaining biomass according to 
Sanquetta (2002). More details may be obtained in Urbano (2007). 

The measured variables were: age (years), crown diameter (m), 
crown height (m), stem height (m), total height (m) and diameter of 
breast height (cm) collected at 1.3 m from the ground. With the 
objective to verify the correlation between the input variables, the 
analysis of linear correlation of Pearson was performed between 
these and output variables, in this case, the total individual 
aboveground dry biomass (kg). 
 
 
Artificial neural network used  
 

The ANN used was the multi-layer perceptron (MLP) applied to the 
Matlab 2014a software in the Neural Network Toolbox. The learning 
algorithm used was the Levenberg-Marquardt backpropagation due 
to its quickness and stable convergence, being basically an 
integration of classic methods of Error Back Propagation and 
Gauss-Newton (Hagan and Menhaj, 1994). A learning rate of 0.01 
was adopted; this represents how much of the error is 
backpropagated. 

A tangent hyperbolic sigmoidal activation function, which 
compresses the answer to a known interval, from -1 to 1 was used. 
The activation functions to prevent the saturation and attenuation of 
the input signal (Haykin, 2001). 

The MLP constituted of a hidden layer, in which, according to 
Atkinson and Tatnal (1997), generally is sufficient. In the hidden 
layer, the number of neurons (units of signal processing between 
the input layer and the output layer) varied ±5 with the satisfactory 
number of neurons, which, according to Heath (2010), corresponds 
to a relation of 10 times more training samples (Equation 1) than 
weights or the also named synaptic weights (Equation 2), which 
concentrates the knowledge of the network through the weighting of 
the connection between the neurons of the input layer and the 
hidden layer. Ten initializations of synaptic weights were also 
evaluated. 
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Where, Neurons: number of satisfactory neurons; Train_samples: 
number of training samples; O: number of output vectors; I: number 
of input vectors; Reason: reason of about 10 times more training 
samples than the number of hidden layer weights. 

For each combination of input vectors (treatments), many 
configurations of the MLP were evaluated (initialization of weights 
and number of neurons of the hidden layer), and the best 
performance configuration was selected from the determination 
coefficient (R²) in the testing phase. The total dataset was 
subdivided in three parts, constituting 50, 25 and 25% of training, 
cross validation and the testing statistics calculation, respectively. 
The training consists of the process in which the input value is 
presented  as  the  ANN  and  the   corresponding   answer   (output 



 
 
 
 
vector), adjusting the weights and connections to obtain the 
expected output. After the MLP was trained, the individual 
aboveground dry biomass (ba) for the whole dataset was obtained. 
The cross validation technique was used as the criterion to stop 
training and to avoid overfitting of the MLP, being done in a distinct 
dataset. The goal is to build a MLP in a manner that the same may 
simulate, for a distinct dataset (testing), the answer variable and 
obtain good performance in this phase to be considered well 
trained. The MLP input vectors were the dendrometric variables: 
Age (i), crown diameter (dc), crown height (hc), stem height (hf) and 
total height (ht) and diameter at breast height (dbh). These were 
standardized to the same scale to improve convergence (FU, 
1994). The MLP output vector was configured to correspond to the 
individual dry aboveground biomass (ba). 
 
 
Relative contribution of vectors 
 
For the synaptic weight that presented the largest R² for treatment 1 
(all vectors), the relative contribution of each input vector was 
calculated through the Garson algorithm (1991) (Equation 3). The 
vector with the lowest relative contribution was removed from the 
configuration of the next treatment, and this process was repeated 
until only one value remained. 
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Where, CRik represents the influence percentage of each input 

vector i on the output vector k; 


N

r

rjw
1

is the sum of the weights 

connecting the input layer i and the j neuron; N corresponds to the 
total of input vectors; L corresponds to the total of neurons of the 
hidden layer, Vjk corresponds to the weights of the connection 
between the j neuron and the k input vector. 

The relative contribution of Garson seeks to determine the best 
combination of input vectors, based on the selection of attributes, 
optimizing the adjustment process. 
 
 
Statistical analysis 
 
The performance at the different treatments of the MLP was 
calculated by the adjustment statistics and model selection, which 
is the determination coefficient (R²) (Equation 4) and the root of the 
mean quadratic error in percentage (RMSE) (Equation 5), in 
addition to the graphical analysis of residue dispersion. 
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Where, baobsi: observed aboveground biomass (kg); basimi: 

simulated aboveground biomass (kg); 



ba : average aboveground 

biomass observed (kg); bamín: minimum observed value of 
aboveground biomass (kg); bamáx: maximum observed value of 
aboveground biomass (kg); n: number of observations. 
 
 

RESULTS AND DISCUSSION 
 

As shown in Table 1, the bracatinga have an age range 
varying from 4 to 17 years. The lowest variability was 
found in total height (CV = 20.01%) and the highest for 
the individual dry aboveground biomass (CV = 108.13%). 
Since treatment is done with native bracatinga trees, the 
high data variability was already expected. 

The Pearson linear correlation (r) between the input 
and output variables was calculated with the objective to 
determine the existing relations between them (Table 2). 
The vector corresponding to the dbh was the variable 
correlating to ba (r = 0.954), followed by dc (r = 0.794) 
and i (r = 0.751), with a strong positive correlation, 
indicating that the higher the dbh, dc, and the older the 
tree is, the more individual dry aboveground biomass is 
produced by it. 

Table 3 shows the input vectors, the architecture and 
the adjustment statistics for training and testing for each 
treatment. The number of neurons in the hidden layer 
ranged from 3 (treatment 5) to 6 (treatment 3), 
representing a low number of neurons needed to 
estimate the individual dry aboveground biomass of 
bracatinga. 

The adjustment statistics for the training phase resulted 
in R² varying from 0.948 (treatment 2) to 0.962 (treatment 
4), and the RMSE varying from 5.281 (treatment 2) to 
4.343% (treatment 5). It should be noted that the RMSE 
for the testing tends to decrease from treatment 1, which 
contains all possible vectors, until treatment 3, due to the 
removal of less relevant vectors according to their relative 
contribution. Since this treatment (3) was the one with the 
best performance of adjustment statistics (R² = 0.934 e 
RMSE = 8.304%), demonstrating the importance of the 
Garson algorithm in the selection of attributes and the 
ideal composition of the input vectors to estimate 
dendrometric variables.  

Having determined the treatment with the best input 
vectors, the removal of less relevant vectors from 
following treatments resulted in the decrease of model 
adjustment statistics, with the exception of treatment 6 
that was classified as the second best performance (R² = 
0.919, RMSE = 9.388%). 

The relative contribution of each vector at the 
treatments may be observed in Figure 1, which served as 
base for the composition of input vectors of each 
treatment. Treatment 1 was composed of all input 
vectors, in which, by the relative contribution, the least 
important vector, in this case hf, was removed from the 
composition of treatment 2; followed by the removal of 
the dc vector from the  composition  of  treatment  3,  and 
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Table 1. Descriptive statistics of the input and output vectors to estimate the individual aboveground biomass of 
Mimosa scabrella Benth. in the Metropolitan Region of Curitiba. 
 

Variables i (years) dc (m) hc (m) hf (m) ht (m) dbh (cm) ba (kg) 

Minimum 4 0.55 1.70 2.56 9.15 4.80 6.90 

Average 9 3.11 5.16 8.95 14.11 13.64 101.32 

Maximum 17 8.85 12.00 15.45 21.80 35.00 586.90 

CV% 31,31 55.48 39.43 27.74 20.01 46.61 108.13 
 

CV%: Coefficient of variation. 
 
 
 

Table 2. Pearson linear correlation (r) between the input and output vectors to estimate the individual dry aboveground 
biomass for the Mimosa scabrella Benth. in the Metropolitan Region of Curitiba. 
 

Variables i (years) dc (m) hc (m) hf (m) ht (m) dbh (cm) ba (kg) 

i (years) 1.000 - - - - - - 

dc (m) 0.700 1.000 - - - - - 

hc (m) 0.386 0.586 1.000 - - - - 

hf (m) 0.332 0.286 -0.231 1.000 - - - 

ht (m) 0.570 0.674 0.517 0.713 1.000 - - 

dbh (cm) 0.759 0.836 0.588 0.339 0.722 1.000 - 

ba (kg) 0.751 0.794 0.573 0.281 0.660 0.954 1.000 
 
 
 

Table 3. Performance of the MLP with regards to the different combinations of input vectors, chosen based on 
the attribute selection described by the Garson algorithm (1991). 
 

S/N Input vectors Architecture 
Training Test 

R² RMSE (%) R² RMSE (%) 

1 i, dc, hc, hf, ht, dbh 6/4/1 0.959 4.533 0.914 10.309 

2 i, dc, hc, ht, dbh 5/5/1 0.948 5.281 0.903 9.525 

3 i, hc, ht, dbh 4/6/1 0.950 5.094 0.934 8.304 

4 hc, ht, dbh 3/5/1 0.962 4.393 0.917 9.475 

5 hc, dbh 2/3/1 0.961 4.343 0.919 9.436 

6 dbh 1/5/1 0.959 4.355 0.919 9.388 
 

N: Number of treatment; Architecture: represents the number of neurons in the input layer/hidden/output. 
 
 
 

successively for the remaining treatments, until only dbh 
remained in the composition of the last treatment, in other 
words, treatment 6. 

As shown in Figure 1, dbh presented the largest 
relative contribution in all treatments, and this fact may be 
explained by the largest linear correlation of this variable 
with the individual dry aboveground biomass (r = 0.954), 
and also by the efficiency of using only the dbh at the 
MLP that resulted in R² = 0.919 and RMSE of 9.388% in 
testing (treatment 6), in addition to a good graphic 
distribution of residues (Figure 2), which indicates that in 
the absence of dendrometric variables hard to obtain, for 
example, height and age, the individual dry aboveground 
biomass of native bracatinga trees may be estimated 
without substantial losses in the accuracy of the 
estimation using only dbh.  

In a general manner, treatments  tend  to  overestimate  

the individual dry aboveground biomass of trees.  
However, treatments 3 and 6 present a more 
homogenous residue distribution around the zero axis, 
confirming the superiority of these treatments in 
estimating individual dry aboveground biomass of native 
bracatinga trees of the Metropolitan Region of Curitiba, 
Paraná. 

Urbano (2007) found lower results for the estimation of 
individual dry aboveground biomass, for this same 
dataset, and when he used dbh as the input vector for 
allometric equations, the value obtained for R²aj. was 
0.909. This author found that the best estimate for 
biomass resulted from the forward method, which 
selected dbh, dbh², dbh³, dbh

-1
, ht, hc, hf and dc and 

resulted in R²aj. of 0.972.  
Other studies analyzed the effect of the composition of 

input vectors on estimating biomass (Miranda, 2015)  and   
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Figure 1. Relative contribution result of the Garson algorithm for the input vectors of MLP for each treatment. 

 
 
 

 
 

Figure 2. Residue dispersion generated from many treatments for the estimation of individual dry aboveground biomass of M. 
scabrella Benth. 



3776          Afr. J. Agric. Res. 
 
 
 
when he utilized a MLP to model the total biomass from a 
fragment of a Deciduous Seasoned Forest, found R² 
varying from 0.67 to 0.98 when employing input vectors 
dbh and the ht. Vahedi (2016) used a MLP to estimate 
the aboveground biomass in northern Iran forests, and 
used a dbh and ht input layer and found R² = 0.873 and 
RMSE of 10.16% in the testing phase. 

Other studies that used other machine learning 
techniques like the study of Sanquetta et al. (2015) that 
estimated the individual dry aboveground biomass of 
native trees of Mata Atlântica at Seropédica (RJ), when 
using variables independent of classification based on 
instance the dbh, dc, ht, hc, apparent density and basic 
density, concluded that the use of all variables provided 
more precise biomass estimates as compared to the 
reduced number, and the worst performance occurred 
with the exclusive use of dap. 
 
 

Conclusion 
 

Composition of input vectors of the MLP that provided the 
best performance included the variables, age, crown 
height, total height and the diameter at breast height. The 
use of only diameter at breast height propitiates 
consistent estimates when compared with the remaining 
estimates that used a higher number of input vectors and 
harder collection, indicating depenence on the desired 
precision and the resources available; only the dbh 
propitiates good estimates of individual dry aboveground 
biomass of native bracatinga trees of the Metropolitan 
Region of Curitiba, using the referred MLP. 

The Garson algorithm presented itself as an interesting 
tool that assists in the method of attributing selection to 
determine which input vector have higher relative 
contribution, providing a better learning of the MLP and 
selecting the variables essential for the modelling, which 
may contribute to minimizing costs of forest inventories. 
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