
 
Vol. 11(45), pp. 4627-4638, 10 November, 2016 

DOI: 10.5897/AJAR2016.10835  

Article  Number: F1B0BD161604 

ISSN 1991-637X 

Copyright ©2016 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/AJAR 

African Journal of Agricultural  

Research 

 
 
 
 

Full Length Research Paper 

 

Technical efficiency among irrigated and non-irrigated 
olive orchards in Tunisia 

 

Hajime Kamiyama1*, Kenichi Kashiwagi2 and Mohamed Kefi2 

 
1
Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki  

305-8572, Japan. 
2
Laboratory of Natural Water Treatment, Water Research and Technologies Centre of Borj-Cedria (CERTE), Tunisia. 

 
Received 23 January, 2016; Accepted 25 October, 2016 

 

Tunisia olive production fluctuates yearly because it is highly dependent on annual precipitation, and 
growers need to enhance productivity and efficiency by introducing irrigation. Investigating how 
irrigation affects the technical efficiency of olive production may contribute to improvement in 
productivity. This study employs the Data Envelopment Analysis (DEA) and Stochastic Frontier 
Analysis (SFA) methods to estimate non-parametric and parametric frontiers for a sample of Tunisian 
olive orchards. It identifies factors which determine variations in technical and scale efficiencies among 
orchards. The DEA results show that average output-oriented technical efficiency under constant 
returns to scale (CRS) and variable returns to scale (VRS) is 8.9 and 17.8%, respectively. The SFA 
results show that average technical efficiency of the half-normal model with constant returns to scale is 
estimated at 81.2%, indicating Tunisian olive growers can raise output by an average of 18.8% by 
improving technology and using fewer inputs. Average technical efficiency in irrigated orchards under 
the DEA approach was higher than in irrigated ones while irrigated orchards under the SFA approach 
was less technically efficient than non-irrigated ones. However, the test results of mean difference 
indicate that average VRS technical and scale efficiencies in irrigated orchards under the DEA approach 
were not significantly higher than in non-irrigated ones. On the other hand, technical rather than scale 
inefficiency is the major source of overall inefficiency in irrigated orchards because room for 
improvement in technical efficiency was larger than in scale efficiency. These results suggest that 
Tunisian olive growers should raise output and efficiency by introducing more advanced technologies 
for improving the performance of irrigation systems. 
 
Key words: Olive orchards, technical efficiency, scale efficiency, irrigation, Tunisia. 

 
 
INTRODUCTION 
 
In Tunisia olives are vital to the domestic economy and 
financial resources, especially in impoverished rural 

areas, accounting for 15.7% of Tunisia’s agricultural 
production in 2013 (NIS, 2016). Also, promoting exports
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Figure 1. Map of study areas. 

 
 
 
of olive oil is central to Tunisia’s national development 
strategy following the Euro-Mediterranean Partnership 
eliminated export quotas, tariffs and trade barriers on 
agricultural commodities. According to Food and 
Agriculture Organization of the United Nations (FAO) 
statistics, the export of olive oil occupies 19.7% of the 
country’s agricultural exports in 2013. Therefore, 
enhancing productivity and technical efficiency has 
become a primary challenge for Tunisia’s olive growers. 
Tunisian olive production fluctuates yearly because it is 
highly dependent on annual precipitation. To stabilize and 
increase production, the Tunisian government 
encourages olive growers to introduce irrigation and to 
increase the proportion of their orchards under irrigation. 
Given the country’s limited water resources, investigating 
how irrigation affects the technical efficiency of olive 
production may contribute to improvement in productivity. 

Limited studies have investigated productivity in olive-
growing farms. Tzouvelekas et al. (1999) and 
Tzouvelekas et al. (2001) estimated technical efficiency 
among Greek olive growers, and Artukoglu et al. (2010) 
carried out the same for Turkey. Lachaal et al. (2005), 
Chemak (2012) and Kashiwagi et al. (2013) analysed the 
productivity and technical efficiency of Tunisian olive 
orchards. Most of the previous studies have investigated 
technical efficiency, while the effects of unconventional 
inputs (e.g., irrigation) and conventional ones (e.g., land, 
labour and capital) as factors to improve technical 
efficiency have not been well examined in the previous 

studies. 
The objective of this study is to investigate how the 

introduction of irrigation affects the productivity and 
technical and scale efficiencies of Tunisian olive 
production by estimating non-parametric and parametric 
frontiers for a sample of olive orchards, located in four 
governorates in Tunisia; to quantify the technical 
efficiency of irrigated and non-irrigated orchards using 
Data Envelopment Analysis (DEA) and Stochastic 
Frontier Analysis (SFA) methods; to identify factors which 
determine variations in technical and scale efficiencies 
among orchards; and to compare the results from the 
DEA and SFA approaches to estimate non-parametric 
and parametric frontiers for a sample of Tunisian olive 
orchards. Our study contributes to the literature on the 
productivity and technical efficiency of olive orchards in 
Tunisia, the effect of irrigation on productivity and 
production efficiency and the methods to estimate 
production function frontiers for olive orchards. 
 
 

MATERIALS AND METHODS 
 
Study area and sample size 
 
Our survey was conducted in Beja, Nabeul, Sousse and Kairouan 
Governorates during the period from March to December 2011 
(Figure 1). Beja Governorate in North-western Tunisia covers 3,740 
km2 and has a population of 303,032. Nabeul Governorate in north-
eastern Tunisia covers 2,788 km2 and has a population of 787,920. 
Sousse Governorate in eastern Tunisia is 2,669 km2 with a 
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Table 1. Frequency distribution by governorate and by hectares under olive cultivation. 
 

Governorates 
Number of orchards (Total: 118) 

≤ 5 ha 5 ha < area ≤ 10 ha > 10 ha Percentage 

Sousse 13 10 3 22.0 

Nabeul 14 2 1 14.4 

Kairouan 13 18 9 33.9 

Beja 10 3 22 29.7 

Percentage 42.3 28.0 29.7 100 
 
 
 

Table 2. Statistics for olive orchards of the study area. 
 

Variable Mean Minimum Maximum 
Coefficient 
of variation 

Y: Olive production (TND) 27,887.54 600.0 920.0 3.21 

L: Labour costs (TND) 4,476.30 120.0 29,200.0 1.05 

A: Total area of production (ha) 15.50 0.4 230.0 1.86 

Mi: Intermediate costs (TND) 3,194.13 70.0 133,960.0 4.01 

DI : Dummy of irrigation (1: irrigated, 0: non-irrigated) 0.61 0.0 1.0 0.78 

DS: Regional dummy (1: Sousse governorate, 0: otherwise) 0.22 0.0 1.0 1.88 

DK: Regional dummy (1: Kairouan governorate, 0: otherwise) 0.33 0.0 1.0 1.40 

DB: Regional dummy (1: Beja governorate, 0: otherwise) 0.29 0.0 1.0 1.54 

MAC: Stock of capital inputs (TND) 1,945.24 36.0 10,486.9 1.24 

AGE: Owner’s age (year) 56.77 30.0 87.0 0.22 

EDU: Level of education of owner (1: illiterate, 2: qur’anic education, 

3: primary, 4: secondary, 5: university) 
3.17 1.0 5.0 0.38 

EMP: Share of employed labour to total labour (%) 81.05 0.0 100.0 0.33 

IRR: Share of irrigated area to total (%) 49.75 0.0 100.0 0.89 

DOF: Dummy of off-orchard (1: engage in off- orchard, 0: otherwise) 0.32 0.0 1.0 1.45 
 
 
 

population of 674,971. Kairouan Governorate in central Tunisia 
comprises 6,712 km2 and 570,559 people. We selected olive 
orchards randomly directed questionnaires to their growers. Of the 
167 responses collected, we have chosen 118 from 17 
administrative divisions within four governorates. Table 1 shows the 
frequency distribution of the 118 orchards by governorate and by 
hectares under olive cultivation. As indicated in Table 1, 42.3% of 
orchards (50 orchards) are 5 ha or smaller, 28.0% (33 orchards) are 
5 to 10 ha and 29.7% (35 orchards) exceed 10 ha. Summary 
statistics are presented in Table 2. 

We defined one output and three input variables to estimate 
efficiency scores in the DEA approach and Cobb-Douglas 
stochastic frontier production in the SFA approach. The output 
variable (Yi) is olive production denominated in Tunisian dinars. The 
three input variables are labour costs in Tunisian dinars (Li), 
production area in hectares (Ai) and intermediate costs in Tunisian 
dinars (Mi). The SFA approach includes four dummy variables in 
terms of irrigation and region. The irrigation dummy (DIi) has a value 
of 1 if the orchard had introduced irrigation and 0 otherwise. The 
Sousse dummy (DSi), Kairouan dummy and Beja dummy (DBi) take 
1 for orchards located in those respective governorates and 0 
otherwise. 
 
 
Model: DEA approach 
 
The DEA approach measures relative efficiency. Proposed by 
Farrell (1957) and expanded by others, DEA mathematical 

programming allows researchers to construct a non-parametric 
piecewise frontier that includes input and output data. These data 
indicate which costs are minimized to calculate efficiency scores for 
each observation. As it is used here, the technique creates a 
frontier set of efficient olive orchards and compares it with inefficient 
orchards to produce efficiency indices. Olive orchards are given 
between 0 and 1, with completely efficient orchards scoring 1. 

The DEA approach shows how one decision-making unit (DMU) 
(an olive orchard) manages relative to others in the sample and 
provides a benchmark for best practice technology from the 
experience of the sampled orchards. The DEA can estimate 
efficiency under the constant returns to scale (CRS) and variable 
returns to scale (VRS) hypothesis. The CRS assumption is 
appropriate only if all surveyed olive orchards operate at optimal 
scale. Obviously, many factors may cause olive orchards to operate 
below their optimal scale, and the CRS specification obscures the 
measures of technical and scale efficiencies in those cases. The 
DEA uses sample data to derive the efficiency frontier against 
which each orchard is assessed. No explicit functional form for 
production need to be specified. Instead, the production frontier 
includes piecewise linear segments that assign efficiency scores for 
each orchard. Here, an output-oriented model is used because an 
increase in olive production is the main objective in our study. 

The DEA considers the technological phases of production 
function. This is unitized to estimate the cost and revenue frontiers, 
convenient for decomposing production efficiency into technical and 
scale efficiencies without requiring estimates of input and output 
prices.   As  to N  DMUs  in  the  olive-growing  industry,  all  sample 



4630          Afr. J. Agric. Res. 
 
 
 
inputs and outputs are characterized by K and M, respectively. The 
efficiency of each orchard is then calculated by 
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Where xis is the amount of the ith input of the sth orchard; yis is the 
amount of the ith output of the sth orchard; v' is a vector of input 
weights [K×1]; and u' is a vector of output weights [M×1]. The 
resulting efficiency score (es, the ratio of all outputs over all inputs) 
is maximized to select optimal weights subject to: 
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Where the first inequality ensures the efficiency ratios to be at least 
one and the second inequality requires that the weights are 
positive. 
First, derived efficiency measures are based on maximizing the 
ratio of all outputs over all inputs. To avoid an infinite number of 

solutions, the constraint, 
1' isyu

 is imposed to provide the 
multiplier form of the output-oriented linear programming problem. 
And, this program of the output-oriented CRS DEA model can be 
converted into the dual problem: 
 

Maximize θs subject to 
;jss yY 
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λ ≥ 0                                                                                          (3) 
 
Where θs is a scalar of the sth olive orchard, and λ is an N×1 vector 
of constant; and X is a K×N inputs matrix, and Y is an M×N outputs 
matrix. The first constraint shows that production of the ith output by 
observation s cannot exceed any linear combination of output by all 
orchards in the sample. The second constraint includes the use of 
inputs by observation s. 1/θs is the overall technical efficiency score 
for the sth orchard that satisfies: 1/θs < 1, where a value of 1 
indicates the point on the frontier. 1/θs = 1 indicates that the orchard 
is technically efficient. 
Second, when not all orchards operate at an optimal scale, the 
CRS DEA model is extended to the VRS DEA model. Technical 
efficiency is given by 1/ϕs for the sth olive orchard. If calculated 
technical efficiency in the CRS DEA model differs from that in the 
VRS DEA model, the orchard has scale inefficiency. This means 
that scale efficiency (σs) is calculated by θs/ϕs. Hence, the use of 
VRS specification permits calculation of technical efficiency devoid 
of the scale effect. That is, it decomposes technical efficiency into 
pure technical efficiency. The CRS linear programing problem can 
be modified into the VRS linear one by adding the convexity 
constraint:   
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Where ϕs is a scalar of the sth olive orchard. This approach 
constructs convex hull intersecting planes that envelop data points 
more tightly than under CRS. For instance, scale efficiency equals 1 
if and only if the technology exhibits CRS specification. However, 
scale inefficiency may exist because of either increasing returns to 
scale (IRS) or decreasing returns to scale (DRS). In order to obtain 
these results, the solution to the VRS linear programming problem 
(4) must be restricted with the sum of the λ from 1 to N. 

Data Envelopment Analysis Program (DEAP) Software Version 
2.1 is used for measuring the technical and scale efficiencies in the 
DEA. 
 
 
Model: SFA approach 
 
A commonly used technique to parametrically estimate production 
function and to measure firm-level technical efficiency is the 
stochastic frontier method (Aigner et al., 1977; Meeusen and van 
den Broeck, 1977). This approach is frequently applied for 
agricultural farms to estimate inefficiency effects to capture the 
stochastic nature of agricultural production. A general form of 
stochastic frontier production function can be expressed as follows: 
 

,);(ln iiii uvXFY  
                                      (5) 

 
Where Yi is the output of the ith orchard; Xi is the vector of input 

quantities used by ith orchard;   is a vector of unknown parameters 
to be estimated. The term vi represents random disturbance terms, 
assumed to be an independent and identically distributed N (0, σv

2). 
The term ui is a non-negative variable representing inefficiency in 
production relative to the stochastic frontier. It is assumed to be 

independently and identically distributed, that is, ui ～ iid N (0, σu
2), 

which could be half-normal at 0 mean, truncated half-normal (at 
mean µ) and exponential (Aigner et al., 1977; Meeusen and van 
den Broeck, 1977; Stevenson, 1980; Jondrow et al., 1982; Greene, 
1990) introduces a gamma distribution model. 

For the estimation of stochastic frontier model, we employ Cobb-
Douglas form of production function. Following Okikie et al. (2004), 
the effects of inputs on productivity in different conditions are 
explicitly incorporated in the production function using fixed-effects 
method. The binary dummy of irrigation is explicitly inserted in order 
to capture the impact of irrigation on productivity. Also, three 
regional dummies are used for controlling the difference in general 
environmental conditions in each particular country of Tunisia. The 
stochastic frontier production function is specified: 
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Where β0 is the intercept term; βi (i = l, a, m) and λi (i = I, S, K, B) 
denote unknown parameters to be estimated corresponding to 
three intermediate input variables (costs of fertilizer, pesticides, 
water and transport) and four dummy variables in terms of irrigation 
and region (Sousse, Kairouan and Beja), respectively. 

Following Battese and Coelli (1995), the technical inefficiency 
effects, ui could be further expressed as a linear function of 
explanatory variables, reflecting orchard-specific characteristics. 
The inefficiency component of the stochastic frontier can be 
specified: 
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Table 3. Frequency distribution and scores of efficiencies. 
 

Percentage p VRS TE SE 

  <10 80 59 3 

11-20 31 34 3 

21-30 4 8 6 

31-40 2 3 7 

41-50 0 6 6 

51-60 0 0 6 

61-70 0 0 7 

71-80 0 0 12 

81-90 0 0 20 

91-100 1 8 48 

Mean 0.089 0.178 0.743 

Median 0.059 0.100 0.875 

Standard deviation 0.109 0.248 0.275 

Minimum 0.004 0.004 0.025 

Maximum 1.000 1.000 1.000 

Orchards 1 8 3 

 IRS CRS DRS 

Return to scale (Number of orchards) 74 15 29 

Mean VRS TE 0.197 0.099 0.180 

Mean SE 0.764 1.000 0.554 
 

CRS TE: Constant returns to scale technical efficiency. VRS TE: Variable returns to scale technical efficiency (pure technical 
efficiency). SE: Scale efficiency. Orchards: Number of perfectly efficient orchards. IRS: Orchards operating under increasing 
returns to scale. CRS: Orchards operating under constant returns to scale. DRS: Orchards operating under decreasing 
returns to scale. 
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                                                     (7) 
 
Where δ0 is the intercept term; δh (h = 1,…,6) is a vector of 

unknown parameters to be estimated. zhi is a vector of explanatory 
variables associated with technical inefficiency in production. wi is a 
random variable. From Equation (7), the inefficiency effects to be 
estimated are defined follows:

 

iOFiiiiiii wDIRREMPEDUAGEMACu  6543210 
   (8) 

 
Where MACi is the stock of productive capital inputs (including 
tractors, cultivators and sprayer); AGEi is the owner’s age; EDUi is 
the discrete variable that represents the owner’s education on a 
scale of 1 to 5 (1: illiterate, 2: qur’anic education, 3: primary, 4: 
secondary, 5: university). EMPi is the share of employed labour to 
total labour. IRRi is the share of irrigated area to total (IRRi has a 
value of 0 if the orchard had not introduced irrigation). DOFi is the 
off-orchard dummy, which equals 1 if the orchard engages in non-
agricultural activities and 0 otherwise. The parameters of both the 
stochastic frontier and the inefficiency effects can be estimated 
consistently by maximum likelihood (ML) procedures. 
 
 

RESULTS AND DISCUSSION 
 
DEA approach 
 
The CRS and VRS DEA models are estimated using the 
DEAP for efficiency measurement. Table 3 indicates the 
estimated frequency distribution and scores of technical 
and scale efficiencies. The average scores for CRS and 

VRS technical efficiencies are 0.089 and 0.178, 
respectively. One orchard was identified as fully 
technically efficient under CRS specification and eight 
under VRS specification, respectively. These results 
mean that olive orchards in Tunisia could increase 
production on average by 91.1% (0.911 = 1 - 0.089) and 
82.2% (0.822 = 1 - 0.178), respectively, to reach full 
technical efficiency. 

The average score of scale efficiency is 0.743. Three 
orchards were identified as fully scale efficient. Also, 
number of olive orchards operating under IRS, CRS and 
DRS as a percentage of the total is 62.7, 12.7 and 
24.6%, respectively. This reflects that 87.3% (103 
orchards) of the olive orchards in the sample can 
enhance overall efficiency by improving scale of 
production. Specifically, the majority of olive orchards can 
achieve it through increasing scale of production. 
However, improvement in scale of production under IRS 
may have less effect on overall efficiency than under
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Table 4. Efficiency scores by governorate. 
 

Model Mean Minimum Maximum 

CRS TE    

Sousse 0.109 0.008 0.331 

Nabeul 0.088 0.043 0.177 

Kairouan 0.108 0.004 1.000 

Beja 0.053 0.010 0.384 

VRS TE    

Sousse 0.335 0.068 1.000 

Nabeul 0.315 0.072 1.000 

Kairouan 0.168 0.004 1.000 

Beja 0.120 0.011 1.000 

SE    

Sousse 0.799 0.122 1.000 

Nabeul 0.534 0.043 0.989 

Kairouan 0.807 0.110 1.000 

Beja 0.728 0.025 0.999 

 
 
 

Table 5. Efficiencies of irrigated and non-irrigated orchards. 
 

Model CRS TE VRS TE SE Number of samples 

Irrigation 0.108(0.127) 0.207(0.263) 0.762(0.275) 74 

Non-irrigation 0.057(0.058) 0.129(0.213) 0.710(0.277) 44 

Mean difference 0.051 0.078 0.052  

t-statistics 2.520 1.675 0.990  
 

Standard deviations are in parentheses. 
 
 
 
DRS because the average score of scale efficiency is 
close to 1 compared with that for orchards operating 
under DRS. On the other hand, the average score of 
VRS technical efficiency for orchards operating under 
CRS is 0.099, which is lower score than that under IRS 
and DRS. This result shows that even the fully scale-
efficient orchards need to enhance overall efficiency by 
improving their technical efficiency. Consequently, 
substantial inefficiencies occur in the surveyed area and 
technical rather than scale inefficiency is the major 
source of overall inefficiency because room for 
improvement in technical efficiency is larger than in scale 
efficiency. 

Table 4 shows the efficiency scores by governorate. 
Olive orchards in Sousse are the highest average 
technical efficiency scores under VRS specification. On 
the other hand, olive orchards in Beja are the lowest. 
Specifically, orchards operating in Beja and Keirouan 
require to substantially improve their technical efficiency. 
Also, olive orchards in Kairouan are the highest average 
scale efficiency scores, while olive orchards in Nabeul 
are the lowest. One orchard in Sousse and two orchards 
in Kairouan are operating at optimal scale. 

Most noteworthy about the average score for VRS 

technical efficiency is that orchards in the surveyed areas 
are producing only 17.8% of the maximum output levels 
for the existing inputs. This result shows that substantial 
improvement is needed to increase technical efficiency. 

Table 5 includes the effect of irrigation systems on 
average efficiency scores and test of mean differences in 
the average level of efficiency. In the irrigated orchards of 
each governorate, average technical efficiency scores 
under CRS and VRS specifications were 10.8 and 20.7%, 
respectively. These empirical findings reveal that average 
efficiency in irrigated orchards exceeds that in non-
irrigated ones. Also, most of the fully technically efficient 
orchards under CRS and VRS specifications and scale-
efficient orchards had introduced irrigation. Three 
orchards are identified as fully scale-efficient. The 
statistical tests confirm that mean difference of 
efficiencies between irrigated and non-irrigated orchards 
is statistically significant for only the average score for 
CRS technical efficiency, while there is no significant 
difference in the average level of VRS technical and 
scale efficiencies. These results imply that irrigated 
orchards are not necessarily more technically and scale 
efficient than non-irrigated ones. 

We assess effects on technical and scale inefficiencies  



Kamiyama et al.          4633 
 
 
 

Table 6. Tobit regressions. 
 

Variable CRS TE VRS TE 

Intercept 1.016***(0.072) 0.476***(0.169) 

MAC 0.000(0.000) 0.000(0.000) 

AGE -0.001*(0.000) 0.002(0.001) 

EDU -0.006(0.009) -0.005(0.021) 

EMP 0.030(0.040) 0.288***(0.094) 

IRR -0.058**(0.023) -0.108**(0.054) 

DOF 0.015(0.021) 0.123**(0.049) 

Number of samples 118 118 

Sigma 0.103 0.240 

Log-likelihood 96.506 -12.535 

BIC -154.847 63.236 
 

*, **, and ***Significance at the 10, 5 and 1% levels, respectively. Standard errors are in 
parentheses. 

 
 
 

using Tobit regression. As technical and scale 
efficiencies have the propensity to be censored at unity, 
we employ a standard Tobit model with upper censoring. 
Consequently, no inefficiency scores were less than 0. 

We estimate parameters in Tobit regressions using ML 
procedures. The technical and scale inefficiencies 
effectsto be estimated are defined as follows:

 

wDIRREMPEDUAGEMACineff OFiiiii  6543210 
  (9) 

 

 
Where β0 is the intercept term; βi (i = 1,2…,6) is an 
unknown parameter to be estimated; and w represents 
the error term. The technical and scale inefficiencies 
effect is estimated using STATA 11 package. The results 
are indicated in Table 6. 

Under CRS specification, only the estimated 
coefficients of AGE and IRR significantly affect technical 
efficiency. The estimated coefficient of AGE is negative 
and statistically significant at the 1% level: Older farmers 
are more efficient than younger ones. The estimated 
coefficient of IRR is negative and significant at the 5% 
level, suggesting that growers enjoy greater technical 
efficiencies as hectares under irrigation increase. 

On the other hand, technical efficiency under VRS 
specification is significantly affected by the estimated 
coefficients of EMP, IRR and DOF. The estimated 
coefficient of EMP is positive and significant at the 1% 
level: the larger the share of employed labour in total 
labour, the less technically efficient is the orchards. This 
result implies that increasing the proportion of family 
members among total labour can boost technical 
efficiency. Our result disagrees with finding by 
Tzouvelekas et al. (2001), but, as noted by those authors, 
an agency problem may exist due to informational 
asymmetry between the parties. The estimated 
coefficient of IRR is negative and significant at the 5% 
level. The estimated coefficient of DOF is positive and 
significant at the 5% level: involvement in non-agricultural 
activities reduces technical efficiency. 

 

SFA approach 
 

Maximum likelihood estimates of parameters in the model  
of Cobb-Douglas stochastic frontier production are 
obtained using STATA 11 package. Table 7 displays 
parameter estimates and standard errors of the 
estimators. Although two models are estimated 
corresponding to the distributional assumptions of half 
normal and exponential for the one-sided error term (ui), 
a model estimated with the assumption of truncated 
normal distribution for the one-sided term could not 
achieve convergence; therefore, it is not reported. The 
information criteria are used for choosing the two models 
because the half normal distribution is not nested in the 
exponential distribution for the one-sided error term. 
Since the value of the criterion of the half normal model is 
marginally less than of exponential model, the Bayesian 
information criterion (BIC) favours half normal model. On 
the other hand, the constant returns to scale (CRS) 
hypothesis cannot be rejected by the F-test. Alternatively, 
the SFA model under CRS specification is estimated, 
assuming the half normal distribution of the one-sided 
error term. Since models estimated with the assumption 
of exponential and truncated normal distribution for the 
one-sided error term could not achieve convergence, 
both models are not reported. Therefore, results of the 
SFA model under variable returns to scale (VRS) and 
CRS specifications, assuming half normal distribution for 
the one-sided error term, are worth discussing. 

The results of model under CRS and VRS
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Table 7. Parameter estimates of stochastic frontier and inefficiency effects models. 
 

Variable 

CRS specification VRS specification 

Normal-half normal Normal-half normal Normal-exponential 

Coefficient Coefficient Coefficient 

Stochastic frontier model       

Intercept 4.406(0.849) *** 5.399(0.964) *** 5.084(0.955) *** 

lnL 0.383(0.124) *** 0.1836(0.131)  0.209(0.130)  

lnA   0.625(0.167) *** 0.621(0.168) *** 

lnM 0.176(0.087) ** 0.273(0.094) *** 0.269(0.094) *** 

Implicit lnA 0.441      

DI 0.507(0.248) ** 0.766(0.288) *** 0.721(0.282) ** 

DS -0.355(0.260)  -0.291(0.309)  -0.267(0.312)  

DK -0.111(0.306)  -0.254(0.382)  -0.267(0.372)  

DB -1.013(0.246) *** -1.303(0.348) *** -1.312(0.351) *** 

Inefficiency effects model       

Intercept 12.316(5.771) ** 3.043(1.722) * 3.174(2.442)  

MAC -0.00004(0.0002)  0.0002(0.0001) * 0.0002(0.0002) * 

AGE -0.224(0.095) ** -0.519(0.022) ** -0.072(0.032) ** 

EDU -1.334(0.562) ** -0.458(0.222) ** -0.631(0.324) * 

EMP -0.856(1.932)  -0.352(0.985)  -0.320(1.455)  

IRR 0.808(1.297)  1.419(0.723) * 1.787(0.987) * 

DOF 2.730(1.355) ** 0.493(0.483)  0.642(0.676)  

Variance parameters       

lnσv
2
 (0.146) *** -0.852(0.288) *** -0.790(0.249) *** 

Log-likelihood -135.051  -149.581  -149.625  

No. of observations 118  118  118  

BIC 341.661  375.493  375.582  
 

*, **, ***Significance at the 10, 5 and 1% levels, respectively. Standard errors are in parentheses. 
 
 
 
specifications show signs of estimated parameters are as 
expected. Estimated coefficients for intermediate inputs 
are positive and statistically significant in both models. 
The coefficient of labour is significant at model under 
CRS specification. In both models, land remains most 
important input in olive production. This significance of 
land input is similar to the results of Tzouvelekas et al. 
(1999), Tzouvelekas et al. (2001) and Karaginnis and 
Tzouvelekas (2001) for Greek olive orchards. The 
estimate of the irrigation dummy is positive and 
statistically significant at 1% level in both models. This 
result suggests irrigation significantly increases 
production. Also, this result is consistent with that of 
Lambarraa et al. (2007), which found a positive impact of 
irrigation in deterministic part of the production function 
for olive orchards in Spain. In this study, signs for 
regional dummies suggest that production is low in Beja 
compared with production in Nabeul.  

In the inefficiency effects model, the estimated 
coefficients of AGE and EDU are negative and 
statistically significant in both models. These results 
suggest older and better-educated growers are more 
technically efficient producers, and low education restricts 

development of the sector. The positive effect of 
increasing age and education on technical efficiency is 
also confirmed by Karagiannis and Tzouvelekas (2001) 
for Greek olive orchards and by Lambarra et al. (2007) 
for Spanish olive orchards. The estimated coefficient for 
the stock of capital inputs (MAC) is positive and 
statistically significant in the model with VRS 
specification, while that of the model under CRS 
specification is not significant. These results suggest that 
mechanization is not a significant factor for upgrading 
efficiency. This result is not surprising and is similar to 
that of Tzouvelekas et al. (2001) for Greek olive orchards. 
The positive coefficient for the off-orchard dummy (DOF) 
in the model under CRS specification indicates that 
involvement in non-agricultural activities impairs technical 
efficiency. This result is consistent with Ali and Flinn 
(1987) which suggested off-orchard employment 
compete with on-orchard work. 

Regarding the effect of the share of irrigated area (IRR) 
on efficiency, the estimated coefficient is positive and 
statistically significant at models under VRS specification 
but it is not significant at model under CRS specification. 
At least, these results imply that efficiency does not
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Table 8. Frequency distribution and scores of technical efficiency. 
 

Technical efficiency (TE) CRS TE VRS TE 

TE < 0.2 1(0.8) 11(9.3) 

0.2 < TE < 0.4 8(6.8) 16(13.6) 

0.4 < TE < 0.6 10(8.5) 41(34.7) 

0.6 < TE < 0.8 20(16.9) 47(39.8) 

TE > 0.8 79(66.9) 3(2.5) 

Mean 0.812 0.534 

Median 0.914 0.570 

Standard deviation 0.217 0.200 

Minimum 0.138 0.051 

Maximum 0.999 0.868 

 
 
 

Table 9. Technical efficiency scores by governorate. 
 

Governorates Mean Minimum Maximum 

CRS TE    
Sousse 0.806 0.201 0.990 
Nabeul 0.843 0.342 0.997 
Kairouan 0.719 0.138 0.973 
Beja 0.909 0.353 0.999 
VRS TE    
Sousse 0.513 0.066 0.809 
Nabeul 0.569 0.150 0.794 
Kairouan 0.455 0.051 0.862 
Beja 0.624 0.138 0.868 

 
 
 
improve as the area under irrigation increases. This result 
is different from the finding by Lachaal et al. (2004), but 
alongside the positive sign for the irrigation dummy 
implies that irrigation contributes significantly to higher 
production. Its effect is significant for growth and olive 
production, but irrigation should be scheduled during 
suitable periods (Ahmed et al., 2007). However, we 
cannot confirm the positive effect of irrigation on technical 
efficiency and inefficiencies remain among some irrigated 
orchards. In addition, within the context of introducing 
technological innovations and efficient use of inputs, 
Tzouvelekas et al. (1999) point out that increased 
machinery inputs somewhat affect olive production in 
Greece if and only if they increased land productivity (that 
is, mechanised irrigation). Also, as shown by Chebil et al. 
(2014), the irrigation water use in Tunisian wheat farms is 
inefficient and the substantial decrease in water use 
could be attained by using the existing irrigation 
technology. Results for stock of capital inputs (MAC) and 
share of irrigated area (IRR) imply a need to introduce 
the modern irrigation technology that will raise land 
productivity. In fact, the use of innovative systems such 
as drip irrigation can increase yields and consequently 
incomes (Cetin et al., 2004). 

The estimated frequency distribution of technical 
efficiency appears in Table 8. The average level of 

technical efficiency is 0.534 and 0.812 for models under 
VRS and CRS specifications, respectively. In the model 
under CRS, the level of technical efficiency ranges from a 
minimum of 0.138 to a maximum of 0.999. This estimated 
result of efficiency score is similar to other studies for 
Tunisian olive orchards. The average level of technical 
efficiency was estimated at 0.835 in Mehdia region 
(Lachaal et al., 2004), and samples from Sfax region was 
0.82 (Lachaal et al., 2005). The estimated results of our 
study are based on the sample from Sousse, Nabeul, 
Kairouan and Beja. It suggests that the orchards can 
increase their production by 18.8% on average, given 
present state of technology and input levels. 

Table 9 presents frequency distribution of efficiency 
scores by region. Both models under VRS and CRS 
specifications suggest that the average level of estimated 
technical efficiency is the highest at Beja, while it is the 
lowest at Kairouan. In Table 10, results of comparison of 
efficiency scores between irrigated and non-irrigated 
orchards and tests of mean differences in the average 
level of efficiency are presented. The statistical tests 
suggest that mean difference of technical efficiency 
between irrigated and non-irrigated orchards is 
statistically significant for both half normal and 
exponential models. These results imply that irrigated 
orchards are less efficient than non-irrigated ones. These
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Table 10. Technical efficiency of irrigated and non-irrigated orchards. 
 

Parameter CRS TE VRS TE Number of samples 

Irrigation 0.761(0.243) 0.473(0.204) 74 

Non-irrigation 0.899(0.127) 0.637(0.146) 44 

Mean difference 0.138 0.164  

t-statistics 3.490 4.666  
 

Standard deviations are in parentheses. 

 
 
 

 
 

Figure 2. Relation between land productivity and technical efficiency under CRS specification. 

 
 
 

 
 

Figure 3. Relation between land productivity and technical efficiency under VRS 
specification. 
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Table 11. Spearman’s rank-order correlation matrix. 
 

 DEA CRS DEA VRS SFA CRS SFA VRS 

DEA CRS 1.000    

DEA VRS 0.855*** 1.000   

SFA CRS 0.107 0.055 1.000  

SFA VRS 0.384*** 0.299*** 0.568*** 1.000 
 

***Significance at the 1% levels. 
 
 
 

results also show the possibility of enhancing efficiency to 
upgrade the productivity and competitiveness. Indeed, 
improper use of irrigation systems could damage 
production efficiency. Growers need to schedule 
appropriately and have suitable knowledge of field 
conditions. 

Figures 2 and 3 shows the relation between land 
productivity and technical efficiency for models under 
VRS and CRS specifications. It is noteworthy that 
production per hectare is higher in irrigated orchards in 
both models. However, technical efficiency varies among 
irrigated orchards and they are less efficient than non-
irrigated ones. These results imply that introducing 
irrigation could potentially increase the level of 
production, but current production technology is 
somewhat distant from the best practices frontier. 
 
 
Comparison between DEA and SFA results 
 
This section reports the results from the DEA and SFA 
approaches that quantify olive orchards’ technical and 
scale efficiencies and identify factors which determine 
variations in efficiency among orchards. 

First, the SFA model produces a higher average 
technical efficiency score than the DEA model. 
Specifically, the average level of technical efficiency 
under the DEA approach was much lower than that under 
the SFA approach. One explanation for this discrepancy 
might be a difference between deterministic and 
stochastic frontier estimations. On the other hand, the 
DEA approach is more sensitive to data noise, 
measurement errors and uncontrollable factors than the 
SFA approach. Therefore, it should be noted that 
efficiency scores obtained in the SFA approach cannot 
simply be compared with that obtained in the DEA 
approach. However, we can identify correlation between 
two approaches calculating the Spearman’s correlation 
coefficient based on rankings of individual orchard 
efficiency score under CRS and VRS specifications. 
Table 11 reports the correlation matrix. Efficiency scores 
in the DEA approach and efficiency ones in the SFA 
approach under VRS specification are lowly positively 
correlated with each other and significantly different from 
0 at the 1% level, while no correlation exists between the 
DEA and SFA approaches under CRS specification. This 
result may imply that the sampled olive orchards operate 

under variable returns to scale or under increasing 
returns to scale rather than under constant returns to 
scale. 

Second, results showing the effects of technical 
inefficiency in the DEA and SFA approaches were similar 
under CRS specification. Specifically, our econometric 
estimations show that nog-agricultural activities 
negatively affect technical efficiency, but the growers’ age 
and education positively affects it. 

Third, estimated results for technical inefficiency differ 
between the two approaches. Although an increase in the 
share of irrigated area to total exhibits a significant 
positive effect on technical efficiency in the DEA 
approach, the opposite results were obtained in the SFA 
approach. In addition, average technical efficiency in 
irrigated orchards under the DEA approach was higher 
than in non-irrigated ones, while irrigated orchards under 
the SFA approach were less efficient than non-irrigated 
ones. However, the test results of mean difference show 
that there is no significant difference in the average level 
of VRS technical and scale efficiencies. This result 
implies a need to ascertain the efficient scale of 
production. 

Unlike the SFA approach, the DEA approach estimates 
scale efficiency. However, Table 5 indicates that average 
scale efficiency in irrigated orchards under the DEA 
approach is not significantly higher than in non-irrigated 
ones. Also, it indicates that technical rather than scale 
inefficiency is the major source of overall inefficiency in 
irrigated orchards because room for improvement in 
technical efficiency is larger than in scale efficiency. 
Furthermore, Table 6 shows that technical efficiency 
under the DEA approach significantly rises as the area 
under irrigation increases, but the opposite results are 
obtained in the SFA approach. A difference between 
deterministic and stochastic frontier estimations might 
explain the discrepancy. As a consequence, irrigated 
orchards have not produced the maximum achievable 
output, but irrigated orchards enjoyed higher production 
than non-irrigated ones by introducing irrigation. 
Therefore, it can at least be stated that enhancing 
technical efficiency requires not only introducing irrigation 
but also improving current production technologies and 
irrigation scheduling. These results suggest that Tunisian 
olive growers should raise output and efficiency by 
introducing more advanced technologies such as drip 
irrigation and sprinklers for improving the performance of  
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irrigation systems. 
 
 

Conclusion 
 
Our study has investigated how irrigation affects 
productivity and technical efficiency by estimating non-
parametric and parametric frontiers. It quantified the 
technical and scale efficiencies of irrigated and non- 
irrigated orchards using the DEA and SFA approaches 
and identified factors which determine variations in 
technical and scale efficiencies among orchards. 

The SFA approach exhibited a higher average 
technical efficiency score than the DEA approach. A 
difference between deterministic and stochastic frontier 
estimations might explain the divergence. Also, 
estimations of technical efficiency under the VRS DEA 
generally mirrored those of the SFA under CRS 
specification with the exception of results for 
mechanization, the share of employed labour in total 
labour and the share of irrigated area to total. 

Average technical efficiency in irrigated orchards under 
the DEA approach was higher than in irrigated ones, 
while irrigated orchards under the SFA approach was 
less technically efficient than non-irrigated ones and the 
technical efficiency of irrigated orchards under the SFA 
approach varied across orchards. Also, average scale 
efficiency in irrigated orchards under the DEA approach 
was higher than in non-irrigated ones. However, the test 
results of mean difference indicated that average VRS 
technical and scale efficiencies in irrigated orchards 
under the DEA approach were not significantly higher 
than in non-irrigated ones. On the other hand, technical 
rather than scale inefficiency was the major source of 
overall inefficiency in irrigated orchards because room for 
improvement in technical efficiency was larger than in 
scale efficiency. 

Consequently, irrigated orchards had not produced the 
maximum achievable output during the period of this 
study, but irrigated orchards enjoyed higher production 
than non-irrigated ones by introducing irrigation and 
thereby it could at least be stated that enhancing 
technical efficiency requires improving current production 
technologies and irrigation scheduling as well as 
introducing irrigation. These results suggest the need for 
technical and financial assistance from government and 
international donors to improve the performance of 
irrigation systems and to rectify inefficiencies in current 
production technologies. 
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