Full Length Research Paper
References
Becerril J, Abdulai A (2010). The impact of improved maize varieties on poverty in Mexico: A propensity score matching approach. World Development 38(7):1024-1035. |
|
Bourdillon MP, Hebinck J, Hoddinott B, Kinsey J, Marondo N, Mudege T (2002). Assessing the impact of HYV maize in resettlement areas of Zimbabwe. Summary report. International Food Policy Research Institute, Washington, D.C. |
|
de Janvry A, Sadoulet E (2001). World poverty and the role of agricultural technology: direct and indirect effects. Journal of Development Studies 38(4):2-26. |
|
Dehejia RH, Wahba S (2002). Propensity score matching methods for non-experimental causal studies. Review of Economics and Statistics 84(1):151-161. |
|
Diagne A, Demont M (2007). Taking a new look at empirical models of adoption: Average treatment effect estimation of adoption rates and their determinants. Agricultural Economics 37(3):201-210. |
|
Doss C (2006). Analyzing technology adoption using microstudies: limitations, challenges, and opportunities for improvement. Agricultural Economics 34(3):207-219. |
|
Edge M, Oikeh SO, Kyetere D, Mugo S, Mashingaidze K (2018). Water efficient maize for Africa: A public-private partnership in technology transfer to smallholder farmers in Sub-Saharan Africa. In (eds N Kalaitzandonakes, EG Carayannis, E Grigoroudis, S Stelios-Rozakis): From agri-science to agribusiness: theories, policies and practices in technology transfer and commercialization. Springer: Dordrecht, the Netherlands. |
|
Evenson R, Gollin D (2003). Assessing the impact of the green revolution: 1960 to 2000. Science 300(2):758-762. |
|
FAO Statistical Database (2016). Maize consumption in Kenya 2005-2016. FAOSTAT. |
|
Heckman J, Navarro-Lozano S (2004). Using matching, instrumental variables, and control functions to estimate economic choice models. The Review of Economics and Statistics 86:30-57. |
|
Hossain M, Bose ML, Mustafi BAA (2006). Adoption and productivity impact of modern rice varieties in Bangladesh. Developing Economies 64(2):149-166. |
|
Howard J, Crawford E, Kelly V, Demeke M, Jaime JJ (2003). Promoting high-input maize technologies in Africa: the Sasakawa-Global 2000 experience in Ethiopia and Mozambique. Food Policy 28:335-348. |
|
Janaiah A, Hossain M, Otsuka K (2006). Productivity impact of the modern varieties of rice in India. Developing Economies 64(2):190-207. |
|
Kassie M, Shiferaw B, Geoffrey M (2011). Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda. World Development 39(10):1784-1795. |
|
Kephis (2017). |
|
Kijima Y, Otsuka K, Serunkuuma D (2008). Assessing the impact of NERICA on income and poverty in central and western Uganda. Agricultural Economics 38(3):327-337. |
|
Köhler O, Gasse C, Petersen L, Ingstrup KG, Nierenberg AA, Mors O, Ostergaard SD (2016). The effect of concomitant treatment with SSRIs and statins: a population-based study. America Journal Psychiatry 173:807-815. |
|
Macharia I, Garming H, Ouma E, Birachi E, Ekesa B, de Lange M (2013). Assessing the impact of CIALCA 1. Technologies on Crop Productivity and Poverty in the Great Lakes Region of Burundi, the Democratic Republic of Congo (DR Congo) and Rwanda. Consortium for Improving Agriculture-based Livelihoods in Central Africa. |
|
Matuschke I, Qaim M (2009). The impact of social networks on hybrid seed adoption in India. Agricultural Economics 40(5):493-505. |
|
Mendola M (2007). Agricultural technology adoption and poverty reduction: a propensity-score matching analysis for rural Bangladesh. Food Policy 32(3):372-393. |
|
Oikeh SO, Nganyamo-Majee D, Mugo SIN, Mashingaidze K, Cook V, Stephens M (2014). Water efficient maize for Africa: an example of public-private partnership. In (Eds DD Songstad, JL Hatfield, DT Tomes): Biotechnology in agriculture and forestry: convergence of food security, energy security, and sustainable agriculture. Springer: Dordrecht, The Netherlands P 67. |
|
Ringle CM, Wende S, Jan-Michael B (2015). Smart PLS 3. |
|
Rogers EM (2003). Diffusion of Innovations. Free Press, New York. |
|
Rosenbaum P, Rubin D (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41-55. |
|
Sianesi B (2004). Evaluation of the active labor market programmes in Sweden. The Review of Economics and Statistics 86(1):133-155. |
|
Situma E (2018). Kenyans turn to drought-tolerant maize variety to fight poverty. |
|
Smith JA, Todd PE (2005). Does Matching Overcome LaLonde's Critique of on experimental estimators. Journal of Econometrics 125:305-353. |
|
Tiwari TP, Ortiz-Ferrara G, Gurung DB, Dhakal R, Katuwal RB, Hamal BB, Gadal N, Virk DS (2010). Rapid gains in food security from new maize varieties for complex hillside environments through farmer participation. Food Security 2:317-325. |
|
Weir S, Knight J (2000). Adoption and diffusion of agricultural innovations in Ethiopia: the role of education. CSAE Working Paper WPS2000-5, Center for the Study of African Economies, Oxford University, UK. |
|
World Bank (2017). Dollar a day revisited. |
|
Wu H, Ding S, Pandey S, Tao D (2010). Assessing the impact of agricultural technology adoption on farmers' well-being using propensity score matching analysis in rural China. Asian Economic Journal 24(2):142-160. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0