Full Length Research Paper
References
Agius F, González-Lamothe R, Caballero JL, Mu-oz-Blanco J, Botella MA, Valpuesta V (2003). Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat. Biotechnol. 21:177-181. Crossref |
||||
Anselme N, Subba NK, Brian GT (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 29:703-710. Crossref |
||||
Anwar F, Bhanger MI (2003). Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 51:6558-6563. Crossref |
||||
Asada K (2006). Production and Scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396. Crossref |
||||
Badejo AA, Fujikawa Y, Esaka M (2009). Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). J. Plant Physiol. 166:652-660. Crossref |
||||
Barth C, De Tullio M, Conklin PL (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 57:1657-1665. Crossref |
||||
Bhuptawat H, Folkard GK, Chaudhari S (2007). Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. J. Hazard. Mater. 142:477-482. Crossref |
||||
Chatterjee IB (1973). Evolution and the biosynthesis of ascorbic acid. Sci. 182:1271-1272. Crossref |
||||
Conklin PL (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24:383-394. Crossref |
||||
Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 96:4198-4203. Crossref |
||||
Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847-856. | ||||
Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC (2010). Analysis of genes involved in l-ascorbic acid biosynthesis during growth and ripening of grape berries. J. Plant Physiol. 167:739-748. Crossref |
||||
Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000). Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80:825-860. | ||||
Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007). Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. 52:673-689. Crossref |
||||
Fukunaga K, Fujikawa Y, Esaka M (2010). Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Biosci. Biotechnol. Biochem. 74:888-891. Crossref |
||||
Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR (1988). An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. U.S.A. 85:7089-7093. Crossref |
||||
Helena M, Carvalho CD (2008). Drought stress and reactive oxygen species. Plant Signal Behav. 3:156-165. Crossref |
||||
Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999). Plant cis-acting regulatory DNA elements (PLACE) database: Nucleic Acids Res. 27:297-300. Crossref |
||||
Hudson ME, Quail PH (2003). Identification of promoter motifs Involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol. 133:1605-1616. Crossref |
||||
Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R (2005). The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221:243-254. Crossref |
||||
Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009). Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39-51. Crossref |
||||
Lorence A, Chevone BI, Mendes P, Nessler CL (2004). myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134:1200-1205. Crossref |
||||
Mano J, Hideg E, Asada K (2004). Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch. Biochem. Biophys. 429:71-80. Crossref |
||||
Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita Ra, Zhang D, Bryant SH (2013). CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41:D348-D352. Crossref |
||||
Morton JF (1991). The horseradish tree, Moringa pterygosperma (Moringaceae)— A boon to Arid Lands? Econ. Bot. 45:318-333. Crossref |
||||
Radzio JA, Lorence A, Chevone BI, Nessler CL (2003). l-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol. Biol. 53:837-844. Crossref |
||||
Smirnoff N, Wheeler GL (2000). Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 35:291-314. Crossref |
||||
Sreelatha S, Padma PR (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 64: 303-311 Crossref |
||||
Suzuki N, Mittler R (2006). Reactive oxygen species and temperature stresses : A delicate balance between signaling and destruction. Physiol. Plant. 126:45-51. Crossref |
||||
Wheeler GL, Jones MA, Smirnoff N (1998). The biosynthetic pathway of vitamin C in higher plants. Nature 393:365-369. Crossref |
||||
Wolucka BA, Persiau G, Van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, Van Montagu M, Zabeau M, Boerjan W (2001). Partial purification and identification of GDP-mannose 3',5'-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc. Natl. Acad. Sci. U.S.A. 98:14843-148488. Crossref |
||||
Wolucka BA, Van Montagu M (2007). The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry 68:2602-2613. Crossref |
||||
Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007). Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J. Exp. Bot. 58:2661-2671. Crossref |
||||
Yoshimura K, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T, Shigeoka S (2014). Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Biosci. Biotechnol. Biochem. 78:60-66. Crossref |
||||
Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008). An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol. 146:431-440. Crossref |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0