Full Length Research Paper
References
Adoko M, Sina H, Amogou O, Agbodjato N, Noumavo P, Aguégué R, Assogba S, Adjovi N, Dagbénonbakin G, Adjanohoun A, Baba-Moussa L (2021). Potential of Biostimulants Based on PGPR Rhizobacteria Native to Benin's Soils on the Growth and Yield of Maize (Zea mays L.) under Greenhouse Conditions. Open Journal of Soil Science 11:177-196. |
|
Alabouvette C, Cordier C (2018). Fertilité biologique des sols : des microorganismes utiles à la croissance des plantes. Innovations Agronomiques 69:61-70. |
|
Alexander A, Singh VK, Mishra A (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Frontiers Microbiology 11:568289. |
|
Alexander A, Singh VK, Mishra A, Jha B (2019). Plant growth promoting Rhizobacteria Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogaea. Plos One 14:222405. |
|
Argaw A (2017). Development of environmental friendly bioinoculate for peanut (Arachis hypogaea L.) production in Eastern Ethiopia. Environmental Systems Research 6:,23. |
|
Bambara MD (2019). Isolement et caractérisation de microorganismes bénéfiques associés à la rhizosphère de Dichrostachys cinerea (L.) Wight & Arn. Mémoire de Master, Université Cheikh Anta Diop (UCAD) de Dakar, 59pp. |
|
Bassair AMA, Lakhdar FZ (2022). PGPR : Outils microbiologiques |
|
Bencheikh A, Ghoraf NE, Seghier S (2019). Isolement et caractérisation des nouvelles souches PGPR et étude de leurs effets sur les teneurs en métabolites secondaires chez Moringa Oleifera. Université IBN KHALDOUN-Tiaret. |
|
Bogino P, Banchio E, Bonfiglio C, Giordano W (2008). Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Current Microbiology 56:66-72. |
|
Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W (2006). Peanut (Arachis hypogaea L.) response to inoculation with Bradyrhizobium sp. in soil of Argentina. Annals of Applied Biology 148:207-212. |
|
Cardoso JD, Gomes DF, Goes KP, Junior FNS, Dorigo OF, Hungria M, Andrade DS (2009). Relationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plants. Soil Biology and Biochemistry 41:1760-1763. |
|
Castro S, Permigiani, M, Vinocur M, Fabra A (1999). Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Applied Soil Ecology 13:39-44. |
|
Chotangui AH, Hachim KN, Adamou S, Mandou MS, Solange MS, Beyegue-Djonko H, Assonfack BRT, Kouam EB, Tankou CM (2022). Growth and yield response of groundnut (Arachis hypogaea L.) to rhizobial and arbuscular mycorrhiza fungal inoculations in the western highlands of Cameroon. Plant 10(3):69-75. |
|
Demeule E (2020). Effet répressif de Bacillus subtilis et de Bacillus pumilus envers Rhizoctonia solani sur tomate et concombre de serre. Mémoire de Maîtrise, Université Laval 64 p. |
|
Ekin Z (2019). Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11(12):3417. |
|
El-Mageed A, Taia A, El-Mageed A, Shimaa A, El-Saadony MT, Abdelaziz S, Abdou NM (2022). Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice 15(16):1-15. |
|
Gaur YD, Sen AN, Subba Rao NS (1974). Promiscuity in groundnut rhizobium association. Zbl Bakt 129:369-372. |
|
Jayaprakash A, Thanmalagan RR, Roy A, Arunachalam A, Lakshmi P (2019). Strategies to understand Aspergillus flavus resistance mechanism in Arachis hypogaea L. Current Plant Biology 20:100-123. |
|
Joly M (2018). Conception d'un système d'analyse multi-capteur ISFET pour la surveillance in-situ de l'azote minéral. Application à la culture du blé dur. Thèse de Doctorat de l'Université de Toulouse, France 186p. |
|
Joshi F, Chaudhari A, Joglekar P, Archana G, Desai A (2008). Effect of expression of Bradyrhizobium japonicum 61A152 fegA gene in Mesorhizobium sp., on its competitive survival and nodule occupancy on Arachis hypogea. Applied Soil Ecology 40:338-347. |
|
Kalozoumis P, Savvas D, Aliferis K, Ntatsi G, Marakis G, Simou E, Tampakaki A, Karapanos I (2021). Impact of plant growth-promoting rhizobacteria inoculation and grafting on tolerance of tomato to combined water and nutrient stress assessed via metabolomics analysis. Frontiers in Plant Science 12:670236. |
|
Kandasamy GD, Kathirvel P (2023). Insights into bacterial endophytic diversity and isolation with a focus on their potential applications -A review. Microbiological Research 266:127256.. |
|
Kennedy AC (2019). Deleterious rhizobacteria and weed biocontrol. In: Ecological Interactions and Biological Control pp. 164-177. CRC Press. |
|
Kotasthane AS, Agrawal T, Zaidi NW, Singh U (2017). Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech 7(2):137. |
|
Larbi D, Zourdani S (2022). Caractérisation des PGPR « Bactéries Promotrices de la Croissance des Plantes » isolées de la rhizosphère du blé dur (Triticum durum). Mémoire de Master Université Mouloud Mammeri 54p. |
|
Lau ET, Tani A, Khew CY, Chua YQ, San Hwang S (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research 240:126549. |
|
Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J (2016). The production and potential of biofertilizers to improve crop yields. In N.K. Arora et al. (eds.). Bioformulations: for Sustainable Agriculture 71:92. |
|
Mekdad AA, El-Enin MMA, Rady MM, Hassan FA, Ali EF, Shaaban A (2021). Impact of level of nitrogen fertilization and critical period for weed control in peanut (Arachis hypogaea L.). Agronomy 11:909. |
|
Mohanty S, Swain CK (2018). Role of microbes in climate smart agriculture. In: Panpatte D, Jhala Y, Shelat H, Vyas R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, Springer, Singapore. P. 7. |
|
Nageswara RRC, Talwar HS, Wright GC (2001). Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. Journal of Agronomy and Crop Science 186:175-182. |
|
Nagrale DT, Chaurasia A, Kumar S, Gawande SP, Hiremani NS, Shankar R, Gokte-Narkhedkar N, Renu, Prasad YG (2023). PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology 39:100. |
|
Nambiar PTC (1985). Response of groundnut (Arachis hypogaea) to rhizobium inoculation in the field: problems and prospect. MIRCEN Journal of Applied Microbiology and Biotechnology 1:293-309. |
|
Nath D, Maurya BR, Meena VS (2017). Documentation of five potassium- and phosphorus-solubilizing bacteria for their k and p-solubilization ability from various minerals. Biocatalysis and Agricultural Biotechnology 10:174-181. |
|
Noba K, Ngom A, Guèye M, Bassène C, Kane M, Diop I, Ndoye F, Mbaye MS, Kane A, Ba AT (2014). L'arachide au Sénégal : Etat des lieux, contraintes et perspectives pour la relance de la filière. Oléagineux Corps gras Lipide 21(2):1-5. |
|
Pan J, Peng F, Xue X, You Q, Zhang W, Wang T, Huang C (2019). The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability 11(2):378. |
|
Phukan J, Dekra J, Kurmi K, Kalita S (2021). Deleterious rhizobacteria as a potential bioherbicide - A review. International Journal of Agriculture and Environmental Science 8:1-5. |
|
potentiellement promotrices de la croissance des plantes aux vertus médicinales, cas de Cresson (Lepidium sativum). Mémoire de master, Université de Tissemsilt, 70 pp. |
|
Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR Amelioration in Sustainable Agriculture pp. 129-157. |
|
Rubin RL, van Groenigen KJ, Hungate BA (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil 416:309-323. |
|
Sania Z, Akmal Z, Safdar A, Javed H, Ishaq A, Samina NS (2023). Plant Growth-Promoting Rhizobacteria (PGPR) reduce adverse effects of salinity and drought stresses by regulating nutritional profile of barley. Applied and Environmental Soil Science 7261784, 20 p. |
|
Schiffmann J, Alper Y (1968). Inoculation of peanuts by application of rhizobium suspension into the planting furrows. ExperimentalExpérimental Agriculture 4(3):219-226. |
|
Sekhara Fawzi SAA (2022). Rôle des PGPR dans la promotion de la croissance de la culture de blé dur et la lutte contre les microorganismes nuisibles qui lui sont associés. Mémoire de Master en Sciences Biologiques, Université Mohamed El Bachir El Ibrahimi B.B.A. 57 p. |
|
Sene G, Thiao M, Samba-Mbaye R, Ndoye F, Kane A, Diouf D, Sylla SN (2010). Response of three peanut cultivars toward inoculation with two Bradyrhizobium strains and an arbuscular mycorrhizal fungus in Senegal. African Journal of Microbiology Research 4(23):2520-2527. |
|
Sene G, Thiao M, Sy O, Mbaye MS, Sylla SN (2021). Seed coating with mycorrhizal fungal spores and Leifsonia bacteria: A tool for microbiological fertilization and a seed protection strategy from insect damage. Proceedings of the National Academy of Sciences, India Section B 91:909-918. |
|
Sene G, Thiao M, Sy O, Mbaye MS, Sylla SN (2023b). Reducing mineral fertilizer use for sustainable agriculture: the influence of seed coating with arbuscular mycorrhizal fungal spores and Leifsonia bacteria on maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) production. Journal of Agricultural Biotechnology and Sustainable Development 15(1):1-13. |
|
Sene G, Top N, Cissoko M, Niang N, Ndiaye C, Faye I, Thiao M, Fall S, Sylla SN (2023c). Inoculation effectiveness of native and exotic Bradyrhizobium sp. strains in a Senegalese agricultural soil: a comparison on modern and traditional peanut (Arachis hypogaea L.) cultivars. African Journal of Biotechnology 22(12):335-346. |
|
Sene G, Top N, Niang N, Cissoko M, Ndiaye C, Faye I, Thiao M, Fall S, Sylla SN (2023a). Growth, root colonization and yield attribute responses of five groundnut (Arachis hypogaea L.) varieties toward arbuscular mycorrhizal fungal inoculation in a Senegalese agricultural soil. African Journal of Microbiology Research 17(10):230-245. |
|
Steiner F, de Queiroz LFM, Zuffo AM, da Silva KC, Lima IMO (2021). Peanut response to co?inoculation of Bradyrhizobium spp. and Azospirillum brasilense and molybdenum application in sandy soil of the Brazilian Cerrado. Agronomy Journal 113:623-632. |
|
Vessey JK (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571-586. |
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0