African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6938

Full Length Research Paper

Maize phenology as an indicator of climate change simulated by RegCM4 under RCP4.5 and RCP8.5 in Mozambique

Telmo Cosme A. Sumila
  • Telmo Cosme A. Sumila
  • Federal University of Santa Maria/CCNE - Department of Physics, Av. Roraima, 1000 – 97105900 - Santa Maria, RS – Brazil. Scholarship holder, PEC-PG, CAPES/CNPq. National Institute of Meteorology- Department of Weather Analysis and Forecasting, Rua de Mukumbura, 164, Maputo – Mozambique.
  • Google Scholar
Simone E. T. Ferraz
  • Simone E. T. Ferraz
  • Federal University of Santa Maria/CCNE - Department of Physics, Av. Roraima, 1000 – 97105900 - Santa Maria, RS – Brazil
  • Google Scholar
Angelica Durigon
  • Angelica Durigon
  • Federal University of Santa Maria/CCR - Department of Phytotechnics, Av. Roraima, 1000 – 97105900 - Santa Maria, RS – Brazil.
  • Google Scholar


  •  Received: 01 March 2023
  •  Accepted: 31 July 2023
  •  Published: 31 August 2023

References

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3(9):827-832.
Crossref

 

Badu-Apraku B, Hunter RB, Tollenaar M (1983). Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.) . Canadian Journal of Plant Science 63(2):357-363.
Crossref

 

Bergamaschi H, Dalmago GA, Comiran F, Bergonci JI, Müller AG, França S, Santos AO, Radin B, Bianchi CA, Pereira PG (2006). Deficit hídrico e produtividade na cultura do milho. Pesquisa Agropecuária Brasileira 41:243-249.
Crossref

 

Birch CJ, Hammer GL, Rickert G (1997). Temperature and photoperiod sensitivity of development in five cultivars of maize (zea mays l.) from emergence to tassel initiation. Field Crops Research 55:1-38.
Crossref

 

Brunini O, Zullo Júnior J, Pinto HS, Assad E, Sawazaki E, Duarte AP, Patterniani ME (2001). Riscos climáticos para a cultura de milho no estado de São Paulo. Revista Brasileira de Agrometeorologia 9(3):519-526.

 

Butler EE, Mueller ND, Huybers P (2018). Peculiarly pleasant weather for US maize. Proceedings of the National Academy of Sciences of the United States of America 115(47):11935-11940.
Crossref

 

Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL, Thaitad S, Makumbi D, Magorokosho C, Bänziger M, Menkir A (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science 53(4):1335-1346.
Crossref

 

Cammarano D, Valdivia RO, Beletse YG, Durand W, Crespo O, Tesfuhuney WA, Jones MR, Walker S, Mpuisang TN, Nhemachena C, Ruane AC (2020). Integrated assessment of climate change impacts on crop productivity and income of commercial maize farms in northeast South Africa. Food Security 12(3):659-678.
Crossref

 

Chang J, Clay DE, Hansen SA, Clay SA, Schumacher TE (2014). Water stress impacts on transgenic drought-tolerant corn in the northern great plains. Agronomy Journal 106(1):125-130.
Crossref

 

Chang JH (1981). Corn yield in relation to photoperiod, night temperature, and solar radiation. Agricultural Meteorology 24:253-262.
Crossref

 

Chowdhury SI, Wardlaw IF (1978). The effect of temperature on kernel development in cereals. Australian Journal of Agricultural Research 29(2):205-223.
Crossref

 

Cross HZ, Zuber MS (1972). Prediction of Flowering Dates in Maize Based on Different Methods of Estimating Thermal Units 1. Agronomy Journal 64(3):351-355.
Crossref

 

de Oliveira MD, Filho DF, dos Santos MX (1999). Comparação do Método de Graus-Dia e do Número de Dias de Calendário para a Estimativa do Ciclo do Milho Safrinha (Emergência ao Florescimento Masculino), no Estado do Mato Grosso do Sul. Reunião Latino Americana do Milho pp. 239-244.

 

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.

 

Mearns LO, Katz RW, Schneider SH (2014). Extreme high-temperature events: Changes in their probabilities with changes in mean temperature. Journal of Climate and applied Meteorology 23(12):1601-1613.
Crossref

 

Hanway JJ (1963). Growth stages of corn (Zea mays, L.) 1. Agronomy Journal. 55(5):487-492.
Crossref

 

Harrison L, Michaelsen J, Funk C, Husak G (2011). Effects of temperature changes on maize production in Mozambique. Climate Research 46(3):211-222.
Crossref

 

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of working groups I, II and III to Fifth Assessment Report of the Intergovernment Panel on Climate Change. IPCC, Geneva, Switzerland 151 p.

 

Kumudini S, Andrade FH, Boote KJ, Brown GA, Dzotsi KA, Edmeades GO, Gocken T, Goodwin M, Halter AL, Hammer GL, Hatfield JL (2014). Predicting maize phenology: Intercomparison of functions for developmental response to temperature. Agronomy Journal 106(6):2087-2097.
Crossref

 

Langner JA, Streck NA, Dalmago GA, Reiniger LRS, Durigon A, da Silva SD, Lago I, Scheffel LG, Poersch AH (2016). Estimating the development of landrace and improved maize cultivars as a function of air temperature. Ciência Rural 46(10):1737-1742.
Crossref

 

Larkindale J, Mishkind M, Vierling E (2007). Plant Responses to High Temperature. Plant Abiotic Stress pp. 100-144.
Crossref

 

Liu Z, Hubbard KG, Lin X, Yang X (2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology 19(11):3481-3492.
Crossref

 

Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change 1(1):42-45.
Crossref

 

Lobell DB, Burke MB (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology 150(11):1443-1452.
Crossref

 

Mavume AF, Banze BE, Macie OA, Queface AJ (2021). Analysis of climate change projections for mozambique under the representative concentration pathways. Atmosphere 12(5):588.
Crossref

 

Mcmaster GS, Wilhelm WW (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology 87(4):291-300.
Crossref

 

Ministry of foreign affairs of the netherlands (2018). Climate Change Profile Mozambique. Ministry of Foreign Affairs of the Netherlands P 20.

 

Neild RE, Newman JE (1987). Nch-40 growing season characteristics and requirements in the corn belt. National corn handbook.

 

Neild RE, Wilhite DA, Hubbard KG (1987). Preseason precipitation probabilities as an aid to corn planting decisions. Agricultural and forest meteorology 41(3-4):259-266.
Crossref

 

Pachauri RK, The Core Writing Team, Meyer L (2014). AR5 Synthesis Report: Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva.

 

Parent B, Tardieu F (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist 194(3):760-774.
Crossref

 

Reay D, Sabine C, Smith P, Hymus G (2007). Intergovernmental Panel on Climate Change. Fourth Assessment Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change. Cambridge; UK: Cambridge University Press.
Crossref

 

Renato ND, Silva JB, Sediyama GC, Pereira EG (2013). Influência dos métodos para cálculo de graus-dia em condições de aumento de temperatura para as culturas de milho e feijão. Revista Brasileira de Meteorologia 28(4):382-388.
Crossref

 

Ribeiro BS, Zanon AJ, Streck NA, Friedrich ED, Pilecco IB, Alves AF, Puntel S, Sarmento LF, Streck IL, Inklman VB, Petry MT (2020). Ecophysiology of maize aiming at high yields. Santa Maria: sn. Accessed on: 08 Aug. 2023.

 

Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology 151(4):449-460
Crossref

 

Salite D, Poskitt S (2019). Managing the impacts of drought: The role of cultural beliefs in small-scale farmers' responses to drought in Gaza Province, southern Mozambique. International Journal of Disaster Risk Reduction 41:101298.
Crossref

 

Sánchez B, Rasmussen A, Porter JR (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology 20(2):408-417.
Crossref

 

Schröder W, Schmidt G, Schönrock S (2014). Modelling and mapping of plant phenological stages as bio-meteorological indicators for climate change. Environmental Sciences Europe 26(1):1-3.
Crossref

 

Schulzweida U, Quast R (2015). Climate indices with CDO. Climate indices reference manual 26 p.

 

Siebert S, Ewert F, Rezaei EE, Kage H, Graß R (2014). Impact of heat stress on crop yield - On the importance of considering canopy temperature. Environmental Research Letters 9(4):044012.
Crossref

 

Streck NA (2008). et al. Simulating maize phenology as a function of air temperature with a linear and a nonlinear model. Pesquisa Agropecuaria Brasileira 43(4):449-455.
Crossref

 

Soler CMT, Sentelhas PC, Hoogenboom G (2005). Thermal time for phonological development of four maize hybrids grown off-season in a subtropical environment. Journal of Agricultural Science. pp. 169-182.
Crossref

 

Sumila TCA, Ferraz SET, Durigon A (2023). Evaluating Possible Changes in Air Temperature and Precipitation Patterns in Mozambique by Comparing Present and Future RegCM4 Simulation. Meteorology 2(1):15-36.
Crossref

 

Wang E, Martre P, Zhao Z, Ewert F, Maiorano A, Rötter RP, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP (2017). The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants 3(8):1-3.
Crossref

 

Wang N, Wang J, Wang E, Yu Q, Shi Y, He D (2015). Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. European Journal of Agronomy 71:19-33.
Crossref

 

Wang N, Wang E, Wang J, Zhang J, Zheng B, Huang Y, Tan M (2018). Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agricultural and Forest Meteorology 250:319-329.
Crossref

 

Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1555):3129-3147.
Crossref

 

Yan W, Hunt LA (1999). An Equation for Modelling the Temperature Response of Plants using only the Cardinal Temperatures. Annals of Botany 84(5):607-614.
Crossref