African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6918

Full Length Research Paper

Antifungal effect of wood vinegar from selected feedstocks on Ascochyta rabiei in vitro

Mary Simiyu
  • Mary Simiyu
  • Faculty of Agriculture, Department of Crops, Horticulture and Soils, Egerton University, Njoro, Kenya.
  • Google Scholar
Joseph Mafurah
  • Joseph Mafurah
  • Faculty of Agriculture, Department of Crops, Horticulture and Soils, Egerton University, Njoro, Kenya.
  • Google Scholar
Jane Nyaanga
  • Jane Nyaanga
  • Faculty of Agriculture, Department of Crops, Horticulture and Soils, Egerton University, Njoro, Kenya.
  • Google Scholar
Elizabeth Mwangi
  • Elizabeth Mwangi
  • Faculty of Agriculture, Department of Crops, Horticulture and Soils, Egerton University, Njoro, Kenya.
  • Google Scholar


  •  Received: 04 April 2023
  •  Accepted: 22 January 2024
  •  Published: 31 March 2024

References

Arsyad WOM, Efiyanti L, Trisatya DR (2020). Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5):641-650. 
Crossref

 

Baite MS, Dubey SC, Singh B (2016). Morphological variability in the Indian isolates of Ascochyta rabiei causing blight in chickpea and evaluation of chickpea cultivars. Indian Journal of Plant Protection 44:74-82.

 

Cadenillas LF, Hernandez C, Bailly S, Billerach G, Durrieu V, Bailly JD (2022). Role of Polyphenols from the Aqueous Extract of Aloysia citrodora in the Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus. Molecules 28(13):5123. 
Crossref

 

Chenari Bouket A, Narmani A, Sharifi K, Naeimi S, Afshar Mogaddam MR, Hamidi AA, Luptakova L, Alenezi FN, Belbahri L (2023). Semi-VOCs of Wood Vinegar Display Strong Antifungal Activities against Oomycete Species Globisporangium ultimum and Pythium aphanidermatum. Microbiology Research 14(1):371-389. 
Crossref

 

Chenari Bouket A, Narmani A, Tavasolee A, Elyasi G, Abdi A, Naeimi S, Sharifi K, Oszako T, Alenezi FN, Belbahri L (2022). In vitro evaluation of wood vinegar (Pyroligneous acid) VOCs inhibitory effect against a fungus-like microorganism Ovatisporangium (Phytopythium) isolate recovered from tomato fields in Iran. Agronomy 12(7):1609.
Crossref

 

Cheng J, Geng ZC, Zheng JL, Qiu L, Jiao F (2022). Characterization of the pyroligneous acids generated from the pyrolysis of four types mulberry branches. Industrial Crops and Products 183:114949. 
Crossref

 

Crociara C, Valetti L, Bernardi Lima N, Iglesias J, Pastor S (2022). Morphological and molecular characterization, pathogenicity and sexual reproduction of Ascochyta rabiei isolates of chickpea fields in Argentina. Journal of Phytopathology 170(4):221-232. 
Crossref

 

Deng W, Feng Y, Fu J, Guo H, Guo Y, Han B, Jiang Z, Kong L, Li C, Liu H, Nguyen PT, Ren P, Wang F, Wang S, Wang Y, Wang Y, Wong SS, Yan K, Yan N, Zhou H (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment 8(1):10-114. 
Crossref

 

Doti SB, Nyaanga D, Nyakach S (2023). Designing, Developing and Testing of a Pyrolysis System: A Case Study of Biochar and Pyroligneous Acid. Journal of Energy, Environmental and Chemical Engineering 8(1):1-9.
Crossref

 

Fanning J, Brand J, Munoz Santa I, McDonald L, Taylor, J, Hollaway G (2022). Management of chickpea Ascochyta blight using fungicides and cultivar resistance improves grain yield, quality, and grower profitability. Frontiers in Plant Science 13:942220. 
Crossref

 

Fikre A, Desmae H, Ahmed S (2020). Tapping the economic potential of chickpea in sub-Saharan Africa. Agronomy 10(11):1707. 
Crossref

 

Grewal L, Abbey A, Gunupuru LR (2018). Production, Prospects and Potential Application of Pyroligneous Acid in Agriculture. Journal of Analytical and Applied Pyrolysis 175:106190. 
Crossref

 

Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, Malik NA, Majid SA (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis 173:105854. 
Crossref

 

Kundu A, Dutta A, Mandal A, Negi L, Malik M, Puramchatwad R, Antil J, Singh A, Rao U, Saha S, Kumar R, Patanjali N, Manna S, Kumar A, Dash S, Singh PK (2021). A Comprehensive in vitro and in silico Analysis of Nematicidal Action of Essential Oils. Frontiers in Plant Science 11:614143. 
Crossref

 

Kursa W, Jamio?kowska A, Wyrostek J, Kowalski R (2022). Antifungal Effect of Plant Extracts on the Growth of the Cereal Pathogen Fusarium spp. An In Vitro Study. Agronomy 12(12):3204. 
Crossref

 

Lee CL, Chin KL, Khoo PS, Hafizuddin MS, San P (2022). Production and Potential Application of Pyroligneous Acids from Rubberwood and Oil Palm Trunk as Wood Preservatives through Vacuum-Pressure Impregnation Treatment. Polymers 14(18):3863. 
Crossref

 

Liu X, Wang J, Feng X, Yu J (2021). Wood vinegar resulting from the pyrolysis of apple tree branches for annual bluegrass control. Industrial Crops and Products 174:114193.
Crossref

 

Mathew S, Zakaria ZA (2015). Pyroligneous acid the smoky acidic liquid from plant biomass. Applied Microbiology Biotechnology 99:611-622. 
Crossref

 

Mhamd R (2023). The evolution and impact of wood vinegar research: A bibliometric study, Journal of Analytical and Applied Pyrolysis 175:106190. 
Crossref

 

Ngegba PM, Cui G, Khalid MZ, Zhong G (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 12(5):600. 
Crossref

 

Oramahi HA, Yoshimura T, Diba F, Setyawati D (2018). Antifungal and antitermitic activities of wood vinegar from oil palm trunk. Journal of Wood Science 64(3):311-317. 
Crossref

 

Sangsuk S, Suebsiri S, Puakhom P (2018). The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy for Sustainable Development 47:149-157.
Crossref

 

SAS Institute Inc. (2016). SAS® 9.4 Language Reference: Concepts, Sixth Edition. Cary, NC: SAS Institute Inc.

 

Shimira F, U?ur S, Özdemir ?M, Mendi YY (2021). Future and Prospect use of Pyrethrum (Chrysanthemum cinerariifolium) as Part of the Integrated Pest and Disease Management (IPDM) Tool in Turkey. Turkish Journal of Agriculture-Food Science and Technology 9(1):150-158. 
Crossref

 

Shiny KS, Remadevi OK, Wijayalakshmi G (2014). Preliminary study on antifungal of coconut shell pyrolytic oil against wood decay fungi. International Wood Production Journal 5:124-126. 
Crossref

 

Shirazi OU, Khattak MMAK, Shukri NAM (2014). Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. Journal of Pharmacognosy and Phytochemistry 3(3):104-108.

 

Silva B, Souza MM, Badiale-Furlong E (2020). Antioxidant and antifungal activity of phenolic compounds and their relation to aflatoxin B1 occurrence in soybeans (Glycine max L.). Journal of the Science of Food and Agriculture 100(3):1256-1264. 
Crossref

 

Simonetti G, Brasili E, Pasqua G (2019). Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. Against Human Pathogens. Molecules 25(16):3748. 
Crossref

 

Singh R, Kumar K, Purayannur S, Chen W, Verma PK (2022). Ascochyta rabiei: A threat to global chickpea production. Molecular Plant Pathology 23(9):1241-1261. 
Crossref

 

Souto AL, Sylvestre M, Tölke ED, Tavares JF, Maria J (2021). Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 26(16):4835. 
Crossref

 

Tadesse M, Turoop L, Ojiewo CO (2017). Survey of Chickpea (Cicer arietinum L) Ascochyta Blight (Ascochyta rabiei Pass.) disease status in production regions of Ethiopia. Plant 5(1):22-30. 
Crossref

 

Theapparat Y, Chandumpai A, Faroongsarng D (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. Tropical forests pp. 163-183. 
Crossref

 

Theapparat Y, Chandumpai A, Leelasuphakul W, Laemsak N (2015). Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity. Journal of Tropical Forest Science 27(4):517-526.

 

Wang C, Zhang S, Wu S, Cao Z, Zhang Y, Li H, Jiang F, Lyu J (2018). Study on an alternative approach for the preparation of wood vinegar from the hydrothermolysis process of cotton stalk. Bioresource Technology 254:231-238. 
Crossref

 

Xue R, Cui E, Hu G, Zhu M (2022). The composition, physicochemical properties, antimicrobial and antioxidant activity of wood vinegar prepared by pyrolysis of Eucommia ulmoides Oliver branches under different refining methods and storage conditions. Industrial Crops and Products 178:114586. 
Crossref

 

Yang JF, Yang CH, Liang MT, Gao ZJ, Wu YW, Chuang LY (2016). Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules 21(9):1150. 
Crossref

 

Zhai M, Shi G, Wang Y, Mao G, Wang D, Wang Z (2015). "Chemical compositions and biological activities of pyroligneous acids from walnut shell," BioResource. 10(1):1715-1729.
Crossref

 

Zhang C, Chen W, Sankaran S (2019). High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Protection 125:104885. 
Crossref

 

Zhao H, Li Q, He J, Yu J, Yang J, Liu C, Peng J (2014). Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. Gcb Bioenergy 6(6):768-776. 
Crossref