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To our knowledge, no research study has been carried out on the effects of ascorbic acid (ASA), 5-
Aminolevulinic acid (ALA) and Nano selenium (N-Se) on the cytological parameters of pea seedlings 
under salinity stress. Salinity treatment (60 and 120 mM NaCl) was applied. Two concentrations of ASA 
(50 and 100 ppm), ALA (25 and 50 ppm), and N-Se (10 and 20 ppm), respectively were used individually 
and in combination with NaCl (60 and 120 mM). Modifications in shoot length, number of leaves, leaf 
area, chromosomal aberrations and mitotic index were determined. Salinity treatment (120 mM) caused 
the highest reduction in shoot length, leaf area and mitotic index. A significant increase of 
chromosomal abnormalities percentage (%) was detected in salinity treatments compared with control.  
ASA (100 ppm), ALA (50 ppm) and N-Se (10 ppm) treatments significantly reduced the damaging effect 
of salinity stress on growth attributes, mitotic index and chromosomal abnormalities percentage (%) 
and improved seedlings’ performance. These treatments can be recommended for the improvement of 
pea plants’ productivity under salt stress. 
 
Key words: Ascorbic acid, 5-aminolevulinic acid, nano selenium, salt stress, mitosis, chromosomal aberrations, 
Pissum sativum L. 

 
 
INTRODUCTION 
       
Salt stress adversely affects the morphological, 
physiological and biochemical responses of plant species 
(Nazar et al., 2011). Several researchers found that the 
chlorophyllian pigments were reduced with an increase in 
salinity level. This may be due to the disruption of the fine 
structure of chloroplasts and pigment-protein complex or 
chlorophyll   stability,   which   can   result   in  chlorophyll 

oxidation (Saha et al., 2010; Helaly et al., 2016; Elsheery 
et al., 2020c) and disturb plant growth and development 
(Sairam and Tyagi, 2004). Tang et al. (2017b) 
established that salinity inhibits plant growth, reduces 
yield in many crop plants and affects their commercial 
value (Helaly et al., 2016; Elsheery et al., 2020c). So, 
salinity    stress    inhibits   growth   of   basil    plants    by 
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decreasing  a significant number  of  leaves/plant and  
plant  height (Khan et al., 2009; Nassar et al., 2019). 
Also, the retardant effects of salinity stress on growth, 
physiological aspects and productivity were also recorded  
on  other  different  plants  species; for instance,  Reda  
(2007)  on Senna occidentalis, Dawood et al. (2014) on 
Faba bean, Bargaz et al. (2016) on Phaseolus vulgaris, 
Nassar et al. (2016) on Leucaena and Elsheery et al. 
(2020b) on mango. There are many ways to improve 
salinity tolerance in plants such as using of biofertilizer 
and amino acids (Helaly et al., 2016) and grafting in 
vegetable crops (Elsheery et al., 2020a; Helaly et al., 
2016; Al-Mayahi, 2016). This study was carried out to 
investigate the effects of ascorbic acid (ASA) under 
salinity stress  on growth of pea plant. Some biochemical 
constituents that can promote growth and increase 
productivity of many species of plants grown under 
normal or abiotic stress conditions are highly 
recommended (Sharma et al., 2019). Ascorbic acid (ASA) 
is a small water soluble antioxidant molecule which acts 
as an essential substrate in the cyclic pathway of 
enzymatic detoxification of hydrogen peroxide. Ascorbic 
acid (ASA) is a naturalist product that acts as an 
antioxidant and enzyme and also improves cofactor. It 
engages in a variety of procedures. It correlates with 
chloroplasts in the oxidative stress of photosynthesis 
(Latif et al., 2016). Furthermore, ASA has a number of 
roles in protein modification and cell division in plant cells 
(Hussein et al., 2019). Nowadays, it plays an essential 
role in a series of physiological processes such as 
cofactor of key enzyme, plant defense against 
oxidization, growth, development, cell division, cell 
extension, senescence and counteracts the deleterious 
effects of biotic and abiotic stresses (Zhang and 
Sonnewald, 2017). Therefore, it is chosen to be one of 
the substances of the subject of our present study.  

5-Aminolevulinic acid (ALA) is a type of non-protein 
amino acid that supports plant stress tolerance. However, 
the underlying physiological and biochemical 
mechanisms are not entirely understood (Anwar et al., 
2020). ALA is found in all plants and animals. 5-
aminolevulinic acid (ALA) is and a key precursor for the 
biosynthesis of porphyrins such as chlorophyll, heme and 
plant hormones. In addition, it has newly been reported 
that ALA regulates the expression level of fructose-1, 6-
bisphosphatase (FBP), triose-3-phosphate isomerase 
(TPI), and ribulose-1, 5-bisphosphate carboxylase/ 
oxygenase small subunit (RBCS), which activate the 
Calvin cycle of photosynthesis under drought stress (Liu 
et al., 2016). It was found that, ALA is one of plant growth 
regulators (PGRs) and mitigates salinity stress effect in 
germinating seeds and ameliorates seedling growth. 
Foliar application of 5-aminolevulinic acid at low 
concentrations has been shown to promote salt tolerance 
in a lot of plants (Tang et al., 2017a). On the other hand, 
ALA is involved in the chlorophyll biosynthesis pathway 
under   salt   stress   conditions   (Wu   et  al.,  2011)  and 
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motivates antioxidant enzyme efficiency and 
accumulation of endogenous hormone under many stress 
factors such as low-temperature in cucumber seedlings 
(Anwar et al., 2018). Under drought stress, spray 
application of ALA up-regulated the chlorophyll 
fluorescence indexes in oilseed rape (Brassica napus L.) 
(Liu et al., 2014) and gas exchange indexes, such as net 
photosynthetic average (Pn), stomatal behavior (gs), 
intercellular CO2 concentration (Ci) and the rate of 
transpiration (Tr), which were adversely influenced by 
abiotic stress (Wu et al., 2018). It is also reported that 
foliar application of ALA may confer plant tolerance to 
diverse abiotic stresses, such as chilling, high 
temperature, salinity, drought, weak light, and heavy 
metals (Wu et al., 2019a). Previous studies demonstrated 
that ALA encourages abiotic stress tolerance by 
activation of numerous types of transcription factors, 
signal transduction, and chlorophyll and carbohydrate 
biosynthesis (Nishihara et al., 2003; Anwar et al., 2020). 
These results submit that ALA can broadly minimize the 
harmful effects of environmental stress. Increasing 
attention has been paid to the beneficial impacts of many 
nanoparticles (NPs) used in low doses on diverse crops 
(Jampílek and Kráľová, 2017; Rastogi et al., 2019; Kumar 
et al., 2020; Elsheery et al., 2020c). A lot of researchers 
like Sonkaria et al. (2012) and Prasad et al. (2014) 
established that, using of NPs can promote plant growth, 
warrant food goodness and decrease waste. Nano-
Selenium (N-Se) as Nano fertilizer has been recently 
used in the field (Shang et al., 2019; Elsheery et al., 
2020a; Elsheery et al., 2020b). There is less documented 
information on the biological effects of N-Se and its 
application (Chau et al., 2007; Cushen et al., 2012). 
Bhattacharjee et al. (2014) and Kamle et al. (2020) 
suggest that N-Se plays a role as a reactive oxygen 
species (ROS) scavenger in plants under stress 
conditions. So, the purpose of our study was: To evaluate 
the (ASA, ALA and N-Se) morphological and cytological 
effect of application of our treatments (Soaked and foliar) 
on pea plants under salinity stress using hydroponic 
methods. 
 
 
MATERIALS AND METHODS 
 

Plant material 
 

The pea variety used in this study was obtained from El Korma 
Company, Egypt for seeds import. The experiment was carried out 
at the greenhouse of the Agriculture Botany Department, Faculty of 
Agriculture, Tanta University, Egypt, during winter of the two 
growing seasons of 2018 and 2019. In both growing seasons, the 
average of the daily temperature ranged between 11 and 26°C and 
relative humidity between 60 and 65%. 
 
 

Hydroponic experiment for evaluating responses of tested 
cultivar of pea to salt stress 
 

The  seeds  were  washed  and  soaked  for  6 h  before  they were 
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planted in the treatment solutions [ASA (50, 100 ppm), ALA (25, 50 
ppm) and N-se (10, 20) ppm]. Then they germinated in 
polyethylene bags (8 seeds per bag) filled with washed sand on a 
half-strength Hoagland,s nutrient solution used as macronutrient 
sources (Hoagland and Arnon, 1950). Then, the bags were placed 
in dishes containing 1 L of Hoagland,s solution (pH 5.8) in 
greenhouse at a temperature range of 20 to 26° during the day and 
11 to 16° during the night.  Nutrient solutions were added every day 
and renewed every 3 days. Four replicates (each with 10 
polyethylene bags containing 8 plants) were planted. After the 
emergence of the first real leaves (15 days after germination), the 
number of plants per bag was adjusted to five, by thinning out weak 
and less vigorous ones. Seedlings were exposed to two levels of 
salinized water (salt mixture of 60 and 120 mM) of a mixture salts. 
When the 4th true leaf emerged, foliar spraying was done twice 
(after 30 and 33 days from sowing) at the same concentrations 
[ASA (50,100 ppm), ALA (25, 50 ppm), N-Se (10, 20 ppm)[. Foliar 
treatments were not applied on nine pots: The first 3 pots were 
treated with saline; the second pot was treated with a salt mixture of 
60 mM and the third was treated with a salt mixture of 120 mM. 

The plants were collected after seven days of foliar application 
and their morphological parameters were recorded. 

 
 
Growth parameters 

 
The following parameters were recorded: Shoot length (cm), 
number of leaves and leaf area per plant (cm2) using the formula: 

 
Leaf area /plant with weight method (cm2/plant) = B=L*S/ Z 

 
B = Green leafy area on one plant; S = Circle space for tablets; L = 
Total weight of the leaves on the plant; Z = Weight of tablets. 
 
For shoot length from each treatment, shoots of 10 pea plants were 
separated from roots; they were washed using distilled water and 
dried carefully with wish tissue paper. The number of leaves per 
plant was counted. 

 
 
Cytological parameters 

 
For mitotic screening physiologically, uniform and healthy seeds of 
Pisum sativum L. were used to study the effect of ASA, ALA and N-
Se on the growth of pea plants under salinity stress conditions 
(Darlington, 1976). The dividing cells were observed and recorded. 
Cells were examined under a light microscope for mitotic index, 
numbers and types of abnormalities. At least 3000 cells were 
examined per treatment (1000 cell/replicate). Mitotic index (MI) and 
percentage of abnormal cells were calculated using the following 
formulas:  
 

 
 

 

 
 
RESULTS AND DISCUSSION 
 
Growth parameters 
 
Plant  height  (shoot  length),  fresh  and  dry  biomass of  

 
 
 
 
shoot and root per pea plant, number of leaves and leaf 
area per plant were affected by salt stress levels. ASA, 
ALA, and N-Se soaking and foliar application improved 
the plant’s tolerance to salt stress (Table 1). 

The data presented show that increased salt levels 
induced significant (mean value for two seasons) stress 
which resulted in a significant reduction of all growth 
parameters compared to control. ALA, ASA and N-Se 
treatments reduced the harmful effect of salinity on plants 
treated compared with non-treated plants. 

Salinity is an essential environmental factor which 
curbs crop plants from attaining their full genetic 
potential; therefore, salt stress in pea plant induces a lot 
of growth limitation (Gama et al., 2007). Pea plant 
subjected to higher salt will experience delay in growth 
which could be attributed to the inhibition of cell 
elongation (Taïbi et al., 2013). These results are 
consistent with those obtained on rice by Yu et al. (2019), 
on flax by Wu et al. (2019b) or other species. 

The inhibitory effects of salt stress on pea plant and the 
reduction in dry mass might be due to the toxic effect of 
salt stress as a result of high osmotic pressure. Salinity 
stress causes a significant increase of growth inhibitors 
and decrease of growth promoters. Disturbance of water 
in plants grown under salinity restricts absorption or 
plants are not able to uptake the water and nutrients 
required by them (Memon et al., 2010) (Colla et al., 
2006a, b). 

A similar tendency was observed by Shi et al. 
(2013). The suppression  effects of salinity lead to 
disturbance in ionic homeostasis, stomatal closure, 
reduction in photosynthesis, accumulation of toxic ions 
(Na

+
, Cl‾) which restricted the absorption of water 

(Shahzad et al., 2020; Kamran et al., 2020) and inhibited 
growth and productivity. The same trend was observed 
by Nassar et al. (2019) and Bargaz et al. (2016). 

The results presented in Table 1 show that all growth 
characteristics of "leaf area, shoot height and number of 
leaves" decreased significantly with increased salt stress 
level. 
 
 
Leaf area 
 

Data indicate that the leaf area has been significantly 
affected by different salinity concentrations (Table 1). 
Soaking and foliar applications significantly increased the 
leaf area under salinized and non-salinized conditions (P 
< 0.05). 

Under salinity level of 120 mM, the highest increase in 
leaf area was with ASA (100 ppm) (99.96 cm

2
) followed 

by ALA (50 ppm) (96.71 cm). In contrast, the lowest 
amounts of leaf area recorded using N-Se (20 ppm) 
(62.50 cm

2
) were 99.96, 96.71 and 62.50 cm

2
, 

respectively, compared with control plants. 
Foliar application of ASA and ALA increased all 

previous parameters, improved plants’ tolerance to NaCl 
toxicity and  minimized  reduction  in  growth  caused  by
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Table 1. Effect of ASA, ALA and N-Se soaking and foliar application on growth parameters of field pea plant grown under different 
salt stress levels. 
 

Salinity level  

(mM NaCl) 
Treatments 

Concentration 
(ppm) 

Leaf area 

 )cm
2
) 

Shoot length  

(cm
2
) 

No. of leaves 

Control 

0 mM NaCl 

Control  131.07 28.96 6.00 

ASA 
50 135.33 29.64 7.00 

100 168.26 38.81 9.00 

ALA 
25 132.77 30.61 7.00 

50 140.04 35.66 8.00 

N-Se  
10 137.50 32.70 7.00 

20 137.18 29.24 6.33 

      

60 mM NaCl 

Control  97.08 22.73 6.00 

ASA 
50 133.52 29.03 7.00 

100 167.14 35.82 8.00 

ALA 
25 99.98 27.95 7.00 

50 138.57 34.68 7.00 

N-Se 
10 137.01 30.84 7.00 

20 122.33 26.45 6.00 

      

120 mM NaCl 

Control  49.84 17.75 5.00 

ASA 
50 68.11 25.34 6.00 

100 99.96 32.69 7.00 

ALA 
25 58.64 24.79 6.00 

50 96.71 28.00 6.00 

N-Se 
10 85.39 27.24 6.00 

20 62.50 22.39 5.00 

      

L.S.D. (0.05)    

Salinity 1.491** 0.403** 0.540** 

Treatment 2.277** 0.616** 0.825** 

Salinity x Treatment 3.944** 1.067** 0.040** 

 
 
 
NaCl. Meanwhile, it is evident that ASA and ALA play a 
vital role in the regulation of a number of metabolic 
processes in plants exposed to salinity. It has been 
concluded that, the typical effect of salt stress on plants is 
growth retardation due to the inhibition of cell elongation 
(Hanafy et al., 2013). 

ALA  is one of the existing PGRs used for the 
improvement of plants’ stress tolerance (Hotta et al., 
1997; Naeem et al., 2012) and an essential precursor for 
the biosynthesis of tetrapyrroles such as heme and 
chlorophyll. It was found that ALA is formed in all animals 
and plants. Recently, it was found that low concentrations 
of ALA had a promotive effect on growth and yield of 
several crops and vegetables (Watanabe et al., 2000). 

Ascorbic acid is an essential main metabolite in plants 
that is utilized as an enzyme cofactor, an antioxidant and 
a cell signaling modulator in crucial physiological 
processes, in biosynthesis of the cell wall, secondary 
metabolites and phytohormones, stress tolerance, 
photoprotection, cell division and growth  (Elkelish  et  al., 

2020). 
Selenium spraying treatment had a considerable 

positive effect on all studied characteristics such as plant 
height, number of leaves, fresh weight of shoots and 
roots, dry weight of leaves and shoots and chlorophyll 
content. It could be proved that foliar application of nano 
selenium at 10 and 20 ppm increased vegetative growth, 
yield and quality as well as mineral contents in leaves of 
pea plants. Furthermore, the best selenium used as a 
foliar spray is the nano type because it is safer and more 
environmental friendly compared to the chemical form. 
These results agree with Shedeed et al. (2018). 
 
 
Shoot length 
 
Shoot length was significantly affected by different salinity 
concentrations. ASA (100 ppm) showed higher shoot 
length followed by ALA (50 ppm) (32.69 and 28.00 cm, 
respectively).  The  lowest shoot length was obtained with 
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N-Se (20 ppm) treatment (22.39 cm) compared to 
untreated plants exclusively under high level of salt 
mixture (120 mM). Previous studies show that the 
application of some natural bio-stimulants used as a foliar 
spray and/or seed soaking improved growth and yield 
constituents of pea grown under salinity stress (Desoky 
et al., 2017). 
 
 
Number of leaves 
 
The data in Table 1 show that in both growing seasons, 
salinity caused a significant reduction in the number of 
leaves by different salinity concentrations. In contrast, in 
the treatments of ASA (100 ppm) and ALA (50 ppm), the 
number of leaves was higher (7 leaves and 6 leaves 
respectively). The lowest number of leaves was obtained 
with N-Se (20 ppm) treatment (5 leaves) in comparison to 
untreated plants, especially under high level of salinity 
(120 mM).  

The decrease in growth and productivity could be 
attributed to the osmotic effect of salinity stress which 
caused increase of growth inhibitors and decrease of 
growth promoters, disturbance of water in plants grown 
under salt stress. It indicates that these inhibitory effects 
of salinity lead to stomatal closure, reduced 
photosynthesis,  unrest  in  ionic  homeostasis, 
accumulation of toxic Na

+
, Cl

-
 and finally inhibit growth 

and productivity. Moreover, the decrease in the shoot 
length of stressed plants is actually due to senescence 
which is accompanied by loss and withering of plant 
organs as well as the transport of elaborated materials to 
the reproductive organs. 

Pea seed and plant treated with ASA, ALA and N-Se 
used as foliar spray and seed soaking significantly 
promoted plant growth and productivity under the 
adverse effect of soil salinity. One of the compounds 
which has antioxidative characteristic is ASA (Zhang, 
2013). This compound can reduce the harmful effects in 
plants under environmental stress. The ASA treatments 
influenced the passive effect of salinity on growth and 
productivity. This could be referred to as the  biochemical 
functions of ASA which can be divided into categories, 
that is, antioxidant, that changes the lipophilic 
antioxidants such as  tocopherol, vitamin  E, and enzyme  
cofactor  for  hydroxylase  enzymes involved  in  the 
synthesis  of  rich-hydroxyproline glycolproteins, and  cell  
wall structural  proteins (Desoky et al., 2017). It was 
observed that, foliar treatment with ALA stimulated 
growth and also partially enhanced the effects of toxic 
caused by high levels of salinity in root and shoot. Also, 
salinity damage can also be attributed to the 
physiological drought generated by salt stress (Hopkins, 
1995; Sajid et al., 2020), due to the reduction in osmotic 
potential and relative water content. ALA application 
encouraged an increase in osmotic potential and relative 
water content of  the  stressed  seedlings (Naeem  et  al., 

 
 
 
 
2011). Many studies have shown that ALA can stimulate 
crop resistance, yield and quality and can be used as a 
new type of plant growth regulator (Rafaqat et al., 2015; 
Tang et al., (2017b). A concentration of 50 mg/L of ALA 
could significantly mitigate seeds’ deterioration and 
seedlings of Perilla frutescens under NaCl stress and 
encourage salt resistance (Zhang et al., 2011). It was 
indicated that a high level of salinity damages cellular 
electron transport, leading to the generation of reactive 
oxygen species (ROS). This activates lipid peroxidation 
and cell membrane damage (Shalata et al., 2001). 
 
 
Cytological parameters 
 
The cytological effects on pea plants treated with ASA, 
ALA and N-Se under saline conditions are shown in 
Table 2. 

Our results showed that, the mitotic index in root tip 
meristems of P. sativum treated with salt mixture (60 
and120 mM) significantly decreased compared to seeds 
(in control treatment). Table 2 proves the effect of ASA, 
ALA and N-Se on mitotic index (%) in P. sativum root 
tips. The total number of proliferating cells and the 
numbers of cells at various mitotic stages of P. sativum 
meristemic cells were scored in root tips. Cytological 
analysis showed that, under harmful stress conditions 
(120mM NaCl), the highest value of mitotic index (%) was 
observed in pea treated with ascorbic acid at a 
concentration of 100 ppm (13.53%) followed by ALA 50 
ppm (13.19%); nano selenium at a concentration of 20 
ppm gave the lowest value (10.12%), compared to 
control (10.02%). 

The mitotic index of root tips of seeds treated with ASA, 
ALA and N-Se remarkably increased in salinity samples. 
At the same time, ASA, ALA and N-Se + NaCl application 
indicated serious performance in improving the passive 
effects of salt stress on the mitotic activity. Çavuşoğlu et 
al. (2007, 2013) established that, growth regulator 
(exogenous application) may have a positive or negative 
effect on seed germination and seedling growth under 
non-stress conditions. 

Thus, the study aims to test the effects of ASA, ALA 
and N-Se application on seedling growth in non-stress 
and stressed conditions. Our results indicated that the 
shoot length, number of leaves and leaf area of treated 
plants were generally amplified in comparison to the 
control. It was stated previously that saline conditions 
harmfully affect growth and development actions in 
general, even in halophytes (Çavuşoğlu et al., 2017; 
Ghoulam and Fares, 2001). The seedling growth and 
germination of P.sativum seeds, as anticipated, were 
prevented under saline conditions (Table 1). 

Ali (2000) demonstrated that salinity could fulfill/replace 
its harmful effect in numerous ways. It may intervene with 
seed germination by converting the water status of the 
seed so that water reuptake  is  inhibited.  Our  outcomes
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Table 2. Mitotic index and mitotic phase (%) of tip root cells of pissum sativum under salinity stress conditions and different applied treatments (ascorbic acid - ASA, 5-
aminolevulinic acid - ALA and Nano selenium - N-Se). 
 

Salinity 
level (mM) 

Treatments 
No. of screened 

cells 

Mitotic phase (%) Total no. of normal 
dividing cells 

Mitotic index 
(%) Prophase Metaphase Anaphase Telophase 

Control (0) 

Control 1072.67 38.333 27.67 22.67 18.00 106.67 12.11 

ASA 
50 ppm 1135.00 61.667 45.33 31.00 20.00 158.00 14.03 

100 ppm 1061.00 83.000 71.33 57.00 38.33 241.67 22.79 

ALA 
25 ppm 1056.67 51.333 44.67 30.67 20.00 146.67 13.97 

50 ppm 1052.67 72.667 59.33 49.00 32.33 221.33 21.06 

N-Se  
10 ppm 1007.00 67.667 50.00 38.33 24.67 180.67 17.95 

20 ppm 1021.67 47.667 33.33 23.33 15.33 119.67 12.11 
          

60 mM 

Control 1054.00 21.000 24.33 20.00 20.00 85.33 10.31 

ASA 
50 ppm 1092.67 45.000 26.00 17.00 9.33 97.33 11.72 

100 ppm 1028.00 71.667 62.33 38.33 26.33 198.67 20.24 

ALA 
25 ppm 1034.00 40.000 21.67 17.67 10.33 89.67 10.92 

50 ppm 1164.33 61.333 54.33 31.33 20.33 167.33 15.63 

N-Se 
10 ppm 1058.33 54.333 41.00 24.67 15.33 135.33 14.17 

20 ppm 1131.33 37.333 27.33 15.67 9.00 89.33 10.74 
          

120 mM 

Control 1103.67 17.000 16.67 17.33 12.67 63.67 10.02 

ASA 
50 ppm 1177.00 21.000 19.33 18.00 12.67 71.00 10.62 

100 ppm 1048.00 37.000 38.00 15.33 8.67 99.00 13.53 

ALA 
25 ppm 1261.00 19.333 19.67 16.00 13.33 72.00 10.23 

50 ppm 1029.00 35.667 34.67 12.33 6.00 88.67 13.19 

N-Se 
10 ppm 1077.33 30.667 27.67 14.67 7.33 80.33 12.12 

20 ppm 1066.67 21.667 18.67 16.33 15.33 68.33 10.12 
          

L.S.D. (0.05)        

Salinity 62.618 1.624** 0.997** 1.065 1.058** 2.435** 0.429** 

Treatment 95.650 2.481** 1.523** 1.626 1.616** 3.719** 0.636** 

Salinity x Treatment 165.670 4.298** 2.638** 2.817 2.798** 6.442** 0.964** 

 
 
 
showed the decrease in stem length, number of 
leaves and leaf area under saline conditions. 
Other studies showed that the inhibitive effect of 
salt   on   root  might  result  from  decreasing  cell 

division (McCue and Hanson, 1990), protein 
synthesis and nucleic acid (Prakash et al., 1988). 
This may be demonstrated by the failure of the 
roots to receive enough water due to high osmotic 

pressure of the medium (Al-Karaki, 2001). 
On the other hand, ASA, ALA and N-S 

treatments noticeably removed the inhibitor effect 
of salinity  stress  on  growth  parameters,  so  our
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Figure 1. A: Sticky Anaphase, B: C- Metaphase stage, C: Vagrant chromosome in Anaphase, Chromosomal Laggard 
in late Anaphase, D: Overlapping chromosomes in Metaphase stage, E: Irregular prophase, F: Sticky Metaphase, G: 
Irregular Metaphase, H: Alignment anaphase, I: Vagrant chromosome in Metaphase, J- Irregular prophase. K: 
Granulation, L: Clumped metaphase, M: Multiple bridges in anaphase, N: Disrupted equatorial plate, O: Telophase 
with a fragment, P: Anaphase with laggard chromosome, Q: Anaphase with chromosome breakage, R: Anaphase 
with a single bridge and sticky chromosome, S: Metaphase with a fragment, T: Anaphase with a single bridge. 1: 
normal prophase, 2: normal metaphase, 3: normal anaphase, 4: normal telophase. 

 
 
 
treatments alleviate salt stress on roots due to the 
reduction in the salts osmotic effects. ASA might have 
been effective in decreasing the inhibitive impact of 
salinity stress on the seed germination and seedling 
growth by rising nucleic acid and protein synthesis, 
providing steadiness of cell membranes or by raising the 
activity of antioxidant enzyme (Al-Kaisy et al., 2018). ASA 
has also received special attention because it is a highly 
efficient antioxidant and has free radical scavenging 
capacity (Acosta-Motos et al., 2020). 

There  are  no  present  studies  on  the  effects  of ALA 

application under salinity conditions on cytogenetical 
parameters as studied here. 

In Figure 1, It was concluded that aberrations in 
chromosomes induced by salinity at different stages of 
mitosis such as prophase, metaphase, anaphase, and 
telophase in root meristem cells are variable. In addition, 
a gradual decline in mitotic index and an increase in the 
abnormality index were observed as the concentration of 
salt mixture application duration was raised. Aberrations 
in chromosomal behavior such as sticky and disturbed 
chromosomes in metaphase and anaphase, c-metaphase, 



 
 
 
 
bridges, laggard, and disturbed telophase were also 
observed. Bhattacharjee et al. (2014) confirmed that a 
significant reduction by N-Se in chromosomal aberration 
in bone marrow, and DNA damage in lymphocytes and 
bone marrow in mice treated with cyclophosphamide -
induced hepatotoxicity and genotoxicity. 
 
 
Types of chromosome aberrations in P. sativum root 
tips treated with ASA, ALA and N-Se under saline 
condition 
 

In Table 3, various chromosomal aberrations like 
chromosomal bridges, stickiness, vagrant, broken, and 
lag chromosomes were recorded. In our study, the lowest 
value of abnormalities (%) under severe stress conditions 
(120 mM) was observed  when the pea was treated with 
ascorbic acid at a concentration of 100 ppm (13.63%) 
followed by ALA 50ppm (14.01%); nano selenium at a 
concentration of 20 ppm gave the highest value. It was 
17.45% compared with control which recorded 23.42%. 
Cytological effects and the data obtained from the 
analysis of root tips treated with ALA, ASA and N-Se are 
summarized in Tables 1 and 2 and Figure 1. 

Previously, it was reported that salt stress conditions 
adversely affect growth and development events. It is 
recognized that salinity inhibits seedling growth (Abdul 
Qados, 2011; Ghezal et al., 2016). 

Salinity that inhibits shoot length and leaf number may 
result from decreasing cell division (McCue and Hanson, 
1990). The kinds of mitotic abnormalities detected in the 
present study were disturbed chromosomes, sticky, 
vagrant, laggard, bridges and C- shaped Metaphase. 

On the other hand, ASA, ALA and N-Se application that 
markedly removed the inhibitor effect of salinity on growth 
parameters (Tables 1 and 2) is due to the decrease in the 
salts osmotic effects compared to the control. In addition 
to all these, ASA, ALA and N-Se might have been 
efficacious in decreasing the inhibitive effect of salt stress 
on the plant growth by increasing nucleic acid and protein 
synthesis, stabilizing cell membranes or raising the 
activities of antioxidant enzyme (Liu et al., 2014;  
Ekanayake et al., 2015; Germ et al., 2007). 

According to some researchers, the harmful effects of 
salinity stress on mitotic activity have been known for a 
long time. Furthermore, the negative effects of salinity 
stress on chromosomal abnormalities have been planned 
in the last decade (Radic et al., 2009; Tabur and Demir, 
(2009, 2010a, b). It was demonstrated that a high 
concentration of salt entirely suppressed the activity of 
mitotic division and facilitated chromosomal abnormalities 
in root-tip meristem cells (Radić et al., 2009). 

It is worth mentioning that salinity adversely affected 
the mitotic activity and chromosome behaviors in root 
meristem cells of P. sativum. Briefly, the results proved 
that under salinity, ASA, ALA and N-Se might act as a 
stimulator, triggering the protein synthesis necessary for 
the normal division of cells and acceleration of the mitotic 
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cycle. Previous researches also proved that 
nanomaterials with low concentrations are better than 
high concentration alone or in a group with stress (Zedan 
and Omar, 2019). It was indicated that, the protective 
effect of selenium as nanoparticles versus numerous 
material induced cytotoxicity and genotoxicity effects 
(Bhattacharjee et al., 2014). A significant reduction by N-
Se in chromosomal aberration was found in bone 
marrow, and DNA damage in lymphocytes and bone 
marrow in mice treated with cyclophosphamide -induced 
hepatotoxicity and genotoxicity. 

Barakat (2003) established that, treating the roots with 
vitamin B6 or ascorbic acid presented a considerable 
increase in the mitotic index and reduced the inhibition 
effect of NaCl in wheat cultivars. 

The previous results showed that ASA (100 ppm) in 
combination with NaCl does not only antagonize the 
inhibitory action of salinity but also activates the cells to 
inter mitosis and encourages a high mitotic activity. 
These results are in harmony with those obtained by 
Autifi et al. (2018) who proved that vitamin C reduces the 
influence of lead acetate on the mitotic activities. No 
perversion from the normal was seen in roots treated with 
vitamin C or vitamin B6; parallel results were observed by 
Bronzetti et al. (2001). 

Harmful effects of salinity or any other stress conditions 
were attributed to lower endogenous levels of cytokinins 
and endogenous hormonal imbalance by some 
researchers (El-Mashed and Kamel, 2001). Plant growth 
inhibition refers to disturbances in natural growth 
regulators and mitotic chromosomal irregularities as 
additional factor (Hoda et al., 1991). So, the application 
with ascorbic acid can reform the genotoxic effect of the 
salinity which delays the cell in entering mitosis. 
 
 
Conclusions 
 
Considering the data of the present study it appears that 
when applied at high concentrations of salinity shows 
cytotoxic activity. In this study some growth regulators 
such as ASA, ALA and N-Se were used. It was 
concluded that salinity treatments stimulated the 
genotoxic effect to throw ROS generation inside the 
tissues which ultimately cause oxidative disturbance. This 
leads to redox homeostasis imbalance and genotoxic in 
addition to mito-depressive effects. Using these 
treatments (ASA, 100 ppm; ALA, 50 ppm and N-Se, 10 
ppm) causes induction of mitotic index and reduces the 
chromosomal aberrations. 
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Table 3. Effect of salt mixture (60 and 120 mM) ascorbic acid (ASA 50 and 100 ppm), 5-aminolevulinic acid (ALA 25 and 50 ppm) and Nano selenium (N-Se 10 and 20 ppm) and the 
combination between salinity and ASA, ALA and N-Se on frequency of chromosomal aberrations in Pissum sativum root tip meristems. 
 

Salinity 
level mM 

Treatments 

No. of 
examined 

cells 

No. of 
dividing 

cells 

No. of 
abnormal 

cells 

Mitotic aberration (%) 
Abnormalities

% Granulation 
% 

C-
metaphase% 

Laggard
% 

Break% 
Stickiness

% 
Vagrant

% 
Irregular

% 
Alignment

% 
Bridge 

% 

Control 

(0) 

Control 1072.67 106.67 3.00 0.00 0.00 0.67 0.67 0.67 0.33 0.33 0.00 0.33 3.31 

ASA 
50 ppm 1135.00 158.00 1.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00 0.64 

100 ppm 1061.00 241.67 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.13 

ALA 
25 ppm 1056.67 146.67 1.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.33 0.68 

50 ppm 1052.67 221.33 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.15 

N-Se 
10 ppm 1007.00 180.67 0.67 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.33 0.00 0.55 

20 ppm 1021.67 119.67 1.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33 1.11 
                

60 mM 

Control 1054.00 85.33 20.00 2.33 2.67 4.00 3.33 3.33 3.00 1.50 0.00 1.33 18.99 

ASA 
50 ppm 1092.67 97.33 16.67 1.50 2.00 1.67 1.67 3.00 3.33 3.50 0.00 1.67 14.36 

100 ppm 1028.00 198.67 10.00 0.00 0.67 1.33 1.50 1.67 2.00 3.33 0.00 1.67 4.84 

ALA 
25 ppm 1034.00 89.67 17.67 1.33 1.33 2.67 1.67 1.33 2.00 3.33 0.00 4.00 15.68 

50 ppm 1164.33 167.33 12.33 1.33 1.67 1.67 1.67 0.67 1.50 2.33 0.00 2.00 6.87 

N-Se 
10 ppm 1058.33 135.33 11.00 1.67 1.00 1.00 1.67 2.00 0.67 1.33 1.33 1.67 7.36 

20 ppm 1131.33 89.33 18.00 1.00 2.00 1.67 2.00 2.00 2.67 3.00 0.33 3.67 16.56 
                

120 mM 

Control 1103.67 17.000 31.33 5.33 7.33 3.00 5.67 4.00 1.33 2.67 2.67 2.00 23.42 

ASA 
50 ppm 1177.00 71.00 20.67 2.67 4.67 1.00 2.00 5.00 2.33 1.67 4.33 1.33 16.52 

100 ppm 1048.00 99.00 19.33 3.00 3.00 1.33 3.00 1.00 2.33 2.67 1.33 3.00 13.63 

ALA 
25 ppm 1261.00 72.00 21.33 3.00 4.33 1.00 1.33 4.33 2.33 2.67 4.33 2.33 17.02 

50 ppm 1029.00 88.67 19.00 2.67 2.67 1.33 3.00 1.67 2.33 2.33 3.00 3.00 14.01 

N-Se 
10 ppm 1077.33 80.33 20.33 3.67 4.00 0.33 1.33 2.67 2.67 2.67 3.67 3.00 15.61 

20 ppm 1066.67 68.33 22.33 2.67 3.67 2.00 1.67 4.67 2.67 2.00 4.33 3.00 17.45 
                

L.S.D. (0.05)              

Salinity 62.618 2.435** 1.083** 0.551** 0.542** 0.582** 0.498** 0.710** 0.651** 0.628** 0.411** 0.487** 0.791** 

Treat 95.650 3.719** 1.655** 0.842* 0.827** 0.889** 0.761** 1.084** 0.994 0.960 0.628** 0.743** 1.208** 

Salinity x Treat 165.670 6.442** 2.866** 1.459 1.433** 1.540 1.319** 1.877 1.722 1.662 1.088** 1.288* 2.092** 
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