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Developing a protocol for somatic embryogenesis (SE) for adult mother plants of Jatropha curcas, aids 
to overcome problems such as harvesting time and an uneven yield, providing the opportunity to 
propagate proven elite genotypes. Until now, several authors have achieved SE in J. curcas using 
different explants, however, in none of these protocols adult plants have been used as mother plant 
material. Furthermore, the challenge of overcoming the morphogenesis limitations successfully and 
further regeneration of adult plants of J. curcas has been great. The main objective of this study was to 
develop a somatic embryogenesis protocol for adult plants of the oil producing J. curcas. transverse 
thin cell layers (tTCL) of young petioles were used as explants. Half strength Y3 and MS media were 
used containing three different concentrations of 2,4-dichloropherioxyacetic acid and 6-benzil-
aminopurine in a factorial trial. Nine accessions of J. curcas of various ages (3-12 years.) were tested 
using this protocol. All accessions responded positively to callus induction and to the induction of 
somatic embryos, demonstrating the protocol to be genotype-independent. This study enables 
micropropagation of adult of proven elite plants of J. curcas via somatic embryogenesis.  
 
Key words: Jatropha curcas, transverse thin cell layers (tTCL), somatic embryos, half strength media, 
regeneration. 

 
 
INTRODUCTION 
 
In a world of an increasing demand for energy, fossil 
fuels are becoming more scarce and less favourable due 
to their CO2 emissions and impact on global warming 
(Rehman et al., 2019). The focus on renewable energies 
has identified Jatropha curcas L. as a promising  plant  to 

contribute to a more sustainable alternative. This is due 
to the yield and quality of the oil extracted from the 
seeds, having a relatively high oil content, ranging from 
~30% to ~35% (Barros et al., 2015; de Oliveira et al., 
2009).  
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Nevertheless, even though J. curcas is highly promising 
as a renewable energy source, some challenges have 
been encountered whilst attempting to exploit the crop 
(Mulpuri et al., 2019). The plant is still a wild type plant, 
that is not domesticated yet and this presents high 
heterogeneity between individuals within cultivars 
(Bahadur et al., 2012). Consequently, agronomical and 
harvesting processes are challenging (Mulpuri et al., 
2019). In order to minimize and overcome these 
challenges, the selection and mass propagation of elite 
genotypes has become an encouraging solution (Mulpuri 
et al., 2019).  

To achieve mass propagation, the somatic 
embryogenesis (SE) technique was chosen due to its 
high amount of plants obtained per explant, considering 
that, the plants regenerated from this technique are 
mostly non-chimeric and the populations derived are true 
clones (Egertsdotter et al., 2019). However, adult plants 
are highly recalcitrant to tissue culture (Jyoti et al., 1998). 
To achieve SE in J. curcas, different explants have been 
used: embryo axis and cotyledons (Nindita et al., 2014); 
root and hypocotyl (Galaz-Ávalos et al., 2012); leaf and 
shoot tips (Medipally et al., 2014); young leaves from 
young plants (Baran Jha et al., 2007); and immature 
zygotic embryos (Cai et al., 2011). However, there are no 
reports on SE protocols using transverse Thin Cell 
Layers (tTCL) in adult plants of J. curcas. TCL explants 
are small pieces of somatic tissue that usually consist of 
different types of cells (parenchyma, epidermal, 
cambium, vascular and medullar tissues) (Van, 1980). As 
explained by Nhut et al. (2003), TCLs are very responsive 
and the morphogenic responses are dependent on 
different factors, also involving growth conditions (PGRs, 
light quality, temperature, photoperiod). 

The aim of this paper was to develop an efficient 
protocol to induce SE in adult plants of J. curcas, to 
obtain successful micropropagation of elite genotypes, 
using transverse Thin Cell Layers of young petioles. 
 
 
MATERIALS AND METHODS 

 
Nine accessions of J. curcas L. were used, with an age range of 4 
to 12 years from different countries (Table 1) where the plant is 
widely cultivated and economically important. The reason for the 
wide location range and age span was to develop a robust 
genotype-independent micropropagation protocol, which could be 
applied to elite material. 

Mother plants growing in two different conditions, greenhouse 
and field, were used. Second and third leaves were excised from 
apical buds in active growth (Figure 1). The leaves were rinsed with 
Milli-Q water, and subsequently, the petioles were separated. The 
excised petioles were washed in 70% alcohol for 1 min. For the 
plants derived from the field, 2 g of disinfectant soap was used for 2 
min, as an extra step. The petioles were washed with Milli-Q water 
for 1 min and placed into a laminar flow chamber. Petioles were 
surface sterilized with a solution of 0.5% sodium hypochlorite 
(Sigma-Aldrich 10-14% W/W) with 0.02 % of Tween® 20 for 7 min. 
The field plants were additionally treated with a fungicide solution 
(Carbendazim 2% (Sigma-Aldrich 97%) + 2 g Tween® 20), before 
surface sterilization  with  sodium  hypochlorite.  The  petioles  were  

 
 
 
 
then rinsed three times ( at 5, 10 and 20 min) with autoclaved 
double distilled water. Both ends of the petioles were removed and 
the middle part was sectioned using a sterile scalpel to obtain the 
tTCLs. Subsequently, the tTCLs were used as explants to induce 
somatic embryogenesis (Figure 1). In addition, different types of 
explants were used, that is, leaf discs, petiole segments, 
longitudinal and transverse TCL of leaf and petiole. 

Two basal media, Y3 salts and vitamins (Eeuwens, 1976) and 
MS salts and vitamins (Murashige and Skoog, 1962) at full and half 
strength, were tested. Both media were supplemented with 30 g.L-1 
sucrose, 100 mg.L-1 Myo-inositol, 100 mg.L-1 arginine, 100 mg.L-1 
asparagine, 100 mg.L-1 L-glutamine and jellified with 3.8 g.L-1 of 
Gelrite™ (DUCHEFA Biochemie B.V, Netherlands). The pH was 
adjusted to 5.7 ± 0.1, prior to autoclaving for 15 min at 121°C. The 
growth chamber conditions for all the experiments were darkness 
and temperature 26 ± 1°C. Light conditions were only used for the 
maturation of embryos.  

The two basal media, were supplemented with different 
concentrations of the auxins 2,4-D, indole-3-acetic acid (IAA), 
Picloram, the cytokines 6-Benzyl-aminopurine (BAP) and Kinetin, 
alone and in combinations. When alone, the hormones were added 
in a decreasing gradient of 0.5 from 5 to 0 mg.L-1, and when in 
combination, in a decreasing gradient of 0.5 from 2.5 to 0 mg.L-1. 30 
ml of culture medium was poured post-autoclaving into polystyrene 
Petri dishes (9 cm). Seven tTCLs from petioles were inoculated per 
Petri dish, and the Petri dish was sealed with Parafilm before being 
placed in a growth chamber.  

After 4 weeks of initial inoculation, the explants with developed 
callus were transferred onto callus multiplication medium consisting 
of the two basal media supplemented with 0.05 mg.L-1 of 2,4-D and 
2 mg.L-1 BAP. The Petri dishes were sealed and placed in the 
growth chamber. 

Two weeks after multiplication, to induce SE, calli were 
transferred onto regeneration media. The regeneration media 
consisted of the two basal media, supplemented with 2 mg.L-1 of 
BAP. Petri dishes containing the callus were sealed with Parafilm 
and kept in the growth chamber.  

After 2 weeks in the induction phase, the calli showing embryo 
structures were transferred to both basal media containing 2 mg.L-1 

of BAP. The Petri dishes were kept in the growth chamber for 
further two weeks.   

For the maturation of the embryos, they were transferred to both 
basal media, containing 2  mg.L-1 of BAP, and the Petri dishes were 
moved to a growth chamber with 26 ± 1°C with a photoperiod of 16 
h light/8 h darkness and an irradiance of ± 40 µMol.m-2 s-1. 

 
 

RESULTS AND DISCUSSION 
 

In order to overcome the recalcitrance, characteristic of 
adult plants of J. curcas for micropropagation (Jyoti et al., 
1998; Nhut et al., 2013), it was sought to develop a 
protocol to induce SE using different types of explants 
from adult mother plants. Several types of explants were 
tested, and it was found that tTCLs of young petioles 
were the most suitable explants (Figure 2B). As shown in 
Figure 2A, tTCL of the petiole contains a small number of 
cells of different types, which means that this type of 
explant includes a new and greater number of patterns 
for morphogenesis compared to those present in other 
somatic cell systems (Gendy et al., 1996).  

Contamination was not observed in the plant material 
from the greenhouse and in less than 10% of the plant 
material coming from the field. Thus, the methodology 
used for  partial  surface sterilization and disinfestation on  
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Table 1. Nine different accessions of Jatropha curcas L. used for the induction of  somatic embryogenesis of adult 
plants.   
 

Accession  Age (year) Location Condition 

Ghana 1 12 Norwegian University of Life Sciences - NMBU Greenhouse 

Ghana 2 12 Norwegian University of Life Sciences – NMBU Greenhouse 

Cape Verde 11 Norwegian University of Life Sciences – NMBU Greenhouse 

Tanzania 12 Norwegian University of Life Sciences – NMBU Greenhouse 

Ethiopia 4 Norwegian University of Life Sciences – NMBU Greenhouse 

Indonesia 1 10 Norwegian University of Life Sciences – NMBU Greenhouse 

Indonesia 2 10 Norwegian University of Life Sciences – NMBU Greenhouse 

Colombia  6 Antioquia University – Medellín, Colombia Field 

Brazil 5 Antioquia University – Medellín, Colombia Field 

 
 
 

 
 

Figure 1. System used for obtaining somatic embryos from adult plants of J. curcas using young petioles tTCL and two different 
basal media, 5 different hormones and 85 different hormones combinations and concentrations.  
Source: Nhut et al., (2005). 

 
 
 
both plant materials was efficient, allowing the in vitro 
establishment of the selected accessions.  

In this study, the results indicate that half-strength Y3 
medium supplemented with 0.5 mg.L

-1
 of 2,4-D and 0.5 

mg.L
-1 

of BAP gave the best results for callus induction 
(100%) in all accessions and more embryogenic cells 
compared to the other treatments (Figure 3). The other 
explants either died or the cells were hyper hydrated. To 
induce somatic embryos, Medipally et al. (2014) used the 

same concentration and type of hormones as were used 
in this paper, but with very young plants (9-months-old) 
and using leaf lamina and shoot tips as explant. For this 
protocol, responses were obtained from adult plants 
using petioles. Calli showed granular/nodular aspect, 
were friable and of a light green/yellow colouration. The 
cells were rounded and obtained seven days after first 
inoculation (Figure 2D).   

It  could  be  observed that callus started developing on  
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Figure 2. Somatic embryogenesis development and maturation from young petioles tTCL of J. curcas (A-D) Embryogenic 
callus obtained using half-strength Y3 medium supplemented with 0.5 mg.L-1 of 2,4-D and 0.5 mg.L-1 of BAP. (E-G) Callus 
multiplication and formation of pro-embryo structures using half-strength Y3 supplemented with 0.05 mg.L-1 of 2,4-D and 2 
mg.L-1 of BAP. (H-L) Embryo formation and maturation using half-strength MS medium supplemented with 2 mg.L-1 of BAP 
and under light conditions. Red arrow shows formation of somatic embryos. Bar = 1 mm. 

 
 
 
the central part of the petiole TCL and continued all over 
the explant (Figure 2C). Moreover, Nhut et al. (2013) 
described a protocol for propagating J. curcas through 
direct and indirect SE and Organogenesis using tTCL. 
However, they also performed it on very young plants 
and used leaves lamina, while in this study, adult plants 
were used given the advantage that the protocol can be 
used for elite genotypes. Even though in a more recent 
study (Galaz-Ávalos et al., 2018), SE was obtained using 
relatively low concentrations of exogenous hormones. 
The time for each stage (seed germination, plantlet 
preparation, individualisation of explant, embryo 
induction, etc.) was extremely long (≥100 days before 
first response was seen), whilst in this study, somatic 
embryos were obtained before 45 days after first 
inoculation and from in vivo explants.  

The four-week-old calli were then transferred to 
multiplication media containing 0.05 mg. L

-1
 of 2,4-D and 

2 mg.L
-1 

of BAP. Shortly after, callus cells started to 
multiply rapidly and form small clumps, mostly on the 
edges of the callus as well as on the central part (Figure 
2E). It could be observed that the cells started growing 
and forming globular structures on the edges of the callus 
45 days after first inoculation (Figure 2F-G), which was 
also recorded in carrot (Masuda et  al.,  1995),  J.  curcas 

(Kalimuthu et al., 2007), Coffea arabica (Bartos et al., 
2018) and macaw palm (Meira et al., 2019). 

For this experiment, the embryogenic cells were 
obtained only when both 2,4-D and BAP were present in 
the culture media. The importance of the interaction 
between auxins and cytokinins has been well studied and 
described previously (Litz and Gray, 1995) to improve cell 
organisation in morphogenetic processes (Fujimura and 
Komamine, 1980). Baran Jha et al. (2007) obtained 
embryos when the embryogenic calli were transferred 
onto MS supplemented with 0.5 mg.L

-1
 Kinetin and 0.25 

mg.L
-1 

IBA, also proving the importance of auxin-cytokinin 
interaction.  

Once the exogenous auxin 2,4-D was completely 
removed, and 2 mg.L

-1 
of BAP was kept in the medium, 

embryos started to form 55 days after inoculation (Figure 
2H). Medium free of added auxins induces a reduction in 
the level of endogenous auxins in the explant, which has 
triggered somatic cells in the callus to start differentiation 
processes and also leads to the maturation of the 
embryos (Ribnicky et al., 1996). The somatic embryos in 
this protocol presented a white/yellow colouration and 
could be easily separated. (Figure 2I). Several authors 
have shown that callus growing in medium with 2,4-D, 
and  thereafter,  complete  removal  of  the  hormone  has  
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Figure 3. Type of calli of J. curcas obtained with the different PGR concentrations. (A) 1 mg.L-1 of 2,4-D and 0,5 mg.L-1 of 
Kin. (B) 2 mg.L-1 of 2,4-D. (C) 1 mg.L-1 of 2,4-D and 1 mg.L-1 of BAP. (D) 2,5 mg.L-1 of Kin. (E) 1 mg.L-1 of IAA and 1 mg.L-1 
of BAP. (F) 2 mg.L-1 of Picloram (G) 1 mg.L-1 of 2,4-D and 2 mg.L-1 of BAP. (H) 1,5 mg.L-1 of IAA and 2 mg.L-1 of BAP. (I) 2,5 
mg.L-1 of BAP. 

 
 
 
induced SE (Cheema, 1989; Godbole et al., 2002; 
Seldimirova et al., 2019). Kalimuthu et al. (2007)  
managed to induce direct somatic embryos from green 
cotyledons using 2 mg.L

-1 
of BAP. In this study, when the 

embryos were moved onto half-strength MS medium, 
supplemented with 2 mg.L

-1 
of BAP under a photoperiod 

of 16h/8h, the embryos started to mature and advance 
into further stages after 85 days after inoculation (Figure 
2J-L). In accordance with previous publications, BAP 
showed higher responsiveness on the somatic embryos, 
for maturation (Agarwal and Kamal, 2004; Cai et al., 
2011; Kumar et al., 1994) and germination 
(Payghamzadeh and Kazemitabar, 2012; Raemakers et 
al., 1993; Siang et al., 2012).  

Up to the date of submission of this study, there has 
not been a report on the importance of shifting between 
different basal media for inducing somatic embryo-
genesis. However, there are many reports describing the 

importance of media composition on stimulating 
subsequent stages of SE, as well as for the optimisation 
of the morphogenetic response (Kumar et al., 2008; Pinto 
et al., 2008; Rodríguez-Sahagún et al., 2011; Walker and 
Sato, 1981). 

As far as we are aware, this is the first report on the 
successful induction of somatic embryogenesis from 
several accessions of adult plants of J. curcas L., using 
tTCL of petioles. The fast and high response from the 
type of explant and the developmental stage of the 
mother plants make this protocol a great tool for inducing 
somatic embryogenesis from elite genotypes of J. curcas. 
This protocol also provides a great opportunity for plant 
breeders to develop improved varieties. 
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