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The degradation kinetics of different sources of 2,4-dichlorophenoxyacetic (2,4-D) and atrazine by the 
natural strain Mo008 of the basidiomycete fungus Trametes versicolor (L.:Fr.) Pilát was studied, 
knowing that in this process the strain used produces an enzyme complex composed of manganese 
peroxidase (MnP), lignin peroxidase (LiP) and laccase, and the response on the global consumption 
rate and yield is dependent on the 2,4-D source, being more efficient with an analytical source and 
mixture with atrazine than amine salt; however, it was more efficient to degrade atrazine. The strain 
studied (Mo008) consumed 1000 ppm of 2,4-D analytical, 2,4-D amine, 2,4-D plus atrazine and atrazine in 
750, 850, 650 and 550 h, respectively. 
 
Key words: Trametes versicolor, degradation kinetics, biodegradation, 2,4-dichlorophenoxyacetic (2,4-D), 
atrazine. 

 
 
INTRODUCTION 
 
Lignin is one of the most abundant polymers in nature 
and the fungi that cause white rot of wood are 
responsible for initiating its depolymerization (Buswell 
and Odier, 1987; Gold et al., 1989; Kirk and Farrell, 1987; 
Szklarz et al., 1989). Ligninolytic fungi such as Trametes 
versicolor, Phanerochaette chrysosporium and Pleurotus 
ostreatus, have been extensively studied in  the  recovery 

of effluents from various industries due to the production 
of an enzymatic system capable of degrading lignin and 
phenolic compounds (Yateen et al., 1998; Tortella et al., 
2008), which is composed of the manganese peroxidase 
(MnP), lignin peroxidase (LiP) and laccase (Rothschild et 
al., 1999; Guo et al., 2000; Ullah et al., 2000; Gómez et 
al., 2005). 
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Diverse species of basidiomicetes have been studied in 
recent years, due to their ability to degrade lignin and 
phenolic compounds (Córdoba et al., 2012; Betancur et 
al., 2013; Stamatiu et al., 2015). Studies in biotechnology 
and industrial applications of lignolytic fungi are focused 
on the species that cause white rot of the wood as a 
group in general, although this is taxonomically and 
physiologically heterogeneous, which has overestimated 
the importance of the best studied fungus, P. 
chrysosporium and has left aside other species with 
better qualities for biotechnological applications (Peralta 
et al., 1998; Nyanhongo et al., 2007).  

T. versicolor is a basidiomycete that has the ability to 
degrade compounds with varying kinetics, which is 
attributed to the production of enzymes that degrade 
lignin, particularly laccase and MnP, which are excreted 
in amounts that increase during lignolytic activity (Hobbs, 
2004; Lin et al., 2008; Lau et al., 2004; Sedarati et al., 
2003). In this sense, it is reported that at an initial 
concentration of 50 mg L

-1
, T. versicolor showed a 

complete removal of benzene after 14 h of exposure and 
by increasing it to 300 mg L

-1
 the removal took 42 h. 

Concentrations of 50 ml L
-1

 of toluene were removed in 4 
and 36 h when increased to 300 ml L

-1
 (Demir, 2004). On 

the other hand, Megan et al. (2010) reported that this 
species degrades trifluralin and dieldrin in maximum 
amounts of 24.6 and 115 ml L

-1
 as well as the mixture of 

both in a concentration of 32.3 ml L
-1

 in a time of 480 h. 
Within this degradation process, T. versicolor excretes an 
enzyme that acts as a kind of Mn(II)-dependent 
peroxidase (Johansson and Nyman, 1987). MnP is able 
to catalyze the oxidation of phenanthrene, fluorene and 
other phenolic compounds (Collins and Dobson, 1996) 
suggesting that this enzyme is capable of degrading a 
large number of phenolic compounds as well as the LiP; 
however, the laccase enzyme, which is also present in 
this fungus, does not degrade phenanthrene and 
fluorene, but does have activity over a wide range of 
polyphenols (Collins and Dobson, 1996; Majcherczyk et 
al., 1998). Obtained data by Pozdnyakova et al. (2018) 
support the hypothesis that, the degree of degradation of 
the phenolic compounds can depend of the composition 
of the extracelular ligninolytic complex of strain used. In 
this regard, for the correct selection of fungal strains for 
remediation, it is necessary to study the activity of the 
basic ligninolytic enzymes. This will allow the 
development of a technological process to avoid the 
accumulation of toxic substances in the treated objects. 
On the basis of their degradative properties and the 
composition of the ligninolytic enzyme system, T. 
versicolor can be employed for detailed study and for the 
development of technologies of remediation of 
contaminated environments. The present research was 
carried out to determine the degradation kinetics of T. 
versicolor natural strain Mo008 as well as to know the 
enzimatic complex involved in the degradation process 
over acid 2,4-dichlorophenoxyacetic (2,4-D) and atrazine. 

 
 
 
 
MATERIALS AND METHODS 
 
Strain 
 
In the present investigation, the native strain of T. versicolor (L.:Fr.) 
Pilát isolated from Crescentia alata in Jojutla, Mor., México was 
used (Mo008). 
 
 
Detection of 2,4-D in liquid medium 
 
To extract 2,4-D from a solution, a methodology proposed by 
Anonimo (1995) was used, the residues were collected from a 
steam rod at 50°C and 50 rpm and 50 mL of ethyl alcohol (95%) 
was added to concentrate the 2,4-D residues. 
 
 
Calibration curve of 2,4-D, 2,4-D amine and atrazine 
 
This was obtained using the methodology of Bhoi (2011), for which 
a standard solution of ethylic alcohol (95%) was prepared with 100 
mg L-1 of 2,4-D analytical (SIGMA®) and 2,4-D amine 
(Hierbamina®). A solution in distilled water of 10 mg L-1 of atrazine 
was prepared too and from each standard solutions aliquot was 
taken to prepare a solution of 0, 2, 5, 10, 15 and 20 mg L-1 from 
both sources of 2,4-D and 0, 0.5, 1, 2, 3, 4, 5 and 10 mg L-1 of 
atrazine. The absorbance was measured in a spectrophotometer 
(Genesys 10uv®) at 287 nm for 2,4-D and 220 nm for atrazine. 
 
 
Bioreactors for biodegradation of 2,4-D, 2,4-D amine and 
atrazine 
 
PVC containers with 15 L-1 solution with 1000 ppm of 2,4-D 
(SIGMA®), 2,4-D amine (Herbamina®) and the mixture of 2,4-D 
amine plus atrazine (Atrazine 90®) at pH 5.0 and 25°C were used 
as bioreactors. Filters with steril polyurethane fiber support and 10 
g of mycelium of T. versicolor strain Mo008 and previously 
developed for 15 days in malta-agar culture medium were 
constructed and adapted to each biorreactor. The strain was 
exposed for 1000 h at continuous flow. Every 50 h, 3 samples of 
100 ml were collected from each reactor in amber glass bottles and 
stored at 0°C. 
 
 
Degradation kinetics 
 
The degradation kinetics was obtained by estimating yield of 
biomass-substrate and consumption global velocity (CGV) based 
on the methodology presented by Rubio (2005) and Marron et al. 
(2006). The yield represents the amount of mycelium produced by 
the fungus per each ppm consumed (Equation 1) and the CGV like 
decrease of the concentration of the substrate in a given time 
(Equation 2). 

 

                                                             (1) 

 
Where, Y is the yield; Xf is the final biomass; Xi is the initial 
biomass; Sf is the final concentration; Si is the initial concentration. 

 

                                                        (2) 

 
Where, CGV is the consumption global velocity; Is is the initial 
substrate; Sf is the final substrate; Tt is the total time. 



 
 
 
 
Enzymatic analysis 
 
Preparation of enzyme expression fluid 
 
An enzyme expression fluid was prepared according to the 
methodology of Penninckx and Jiménez (1996) and Jiménez et al. 
(1999) which contained 1% of glucose, 0.02% of ammonium 
tartrate, 0.05% of MgSO4.7H2O, 0.01% of CaCl2.12H2O, 0.05% of 
Tween 80, 0.1 mg of thiamine chloride, veratryl alcohol 2.5 mM, 70 
ml L-1 of trace elements (which contains per liter: 1.5 g of 
nitriloacetic acid, 3 g of MgSO4.5H2O, 1 g of NaCl, 0.1 g of 
FeSO4.7H2O, 0.1 g of CaCl2.2H2O, 0.1 g of ZnSO4.7H2O, 0.01 g of 
CuSO4.5H2O, 0.01 g of ALK (SO4).12H2O, 0.01 g of HBO3 and 0.01 
g of Na2MoO4.2H2O) and brought to pH 4.5 with sodium tartrate 
buffer. In 500 ml Erlenmeyer flasks, 70 ml of expression fluid was 
added and sterilized at 120°C for 15 min. A gram of mycelium of the 
Mo008 strain was added with 15 days of development (Jiménez et 
al., 1997) and it was placed on a shaker at 150 rpm at room 
temperature. At 48 h, 40 ppm of Mn+2 was added and held for an 
additional 48 h on the shaker. 
 
 
Preparation of extracts 
 
Mycelium (1 g-1) developed in the enzyme expression fluid was 
centrifuged (Hermle®) at 5000 rpm for 5 min (Pennickx and 
Jimenez, 1996). The supernatant was stored at -15°C in total 
darkness for further use. This same methodology was used to 
obtain extracts of the mycelium developed in the filters of the 
bioreactors with the solution of 1000 ppm of 2,4-D amine after 1000 
h of exposure in continuous flow. 
 
 
Conditioning of extracts 
 
The temperature was elevated to 20°C to each extracts, as each 
one of them was used for the detection of the enzymatic activity.  
 
 
Calibration curves for the substrates used 
 
To measure the enzymatic activity of LiP, a calibration curve was 
performed for concentrations from 0 to 5 mM of veratril alcohol in a 
sodium tartrate buffer 50 mM pH 4.5 and 25°C. For the case of 
Manganese Peroxidasse (MnP), the curve was estimated for 
concentrations from 0 to 0.5 mM of phenol red [0.01%] in sodium 
succinate buffer 0.1 M and for laccase, concentrations from 0 to 9 
mM of ABTS 5 mM in 0.1 M sodium acetate buffer pH 5.0. The 
absorbance was recorded at 310, 610 and 420 nm for each 
substrate, respectively. From the absorbance data recorded for 
each of the enzymes studied, the concentration of the substrate 
(mM) was estimated from the equation obtained from the calibration 
curve, the extinction coefficient and the enzymatic activity 
(mM/min/ml). From these results, the Michaelis-Menten kinetic 
model was obtained as well as the Lineweaver-Burk representation 
to obtain the maximum reaction velocity (Vm) and the concentration 
of the substrate for which the reaction speed is half the speed 
maximum (km) 
 
 
Determination of enzymatic activity 
 

The activity of LiP was measured using the method proposed by 
Tien and Kirk (1983), which records the increase in absorbance at 
310 nm due to the oxidation of veratril alcohol to veratryl aldehyde. 
The reaction employs 2.2 ml of sodium tartrate buffer (50 mM, pH 
4.5 at 25°C), 40 μl veratryl alcohol (2 mM) and 240 μl of the culture 
extract. The reaction is initiated by adding 20 μl H2O2 (0.2 mM)  and  
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the absorbance is measured at 310 nm. The activity of MnP was 
recorded following the methodology described by Glenn and Gold 
(1985). This method is based on the oxidation of Mn (II) to Mn (III) 
and uses as a substrate 2.5 ml of red phenol (0.01%) and MnSO4 
(0.1 mM) in sodium succinate buffer (0.1 M). The reaction mixture 
contains 2.5 ml of substrate and 200 μl of the culture extract. The 
reaction is started by adding 20 μl of H2O2 (0.1 mM), after 
incubation for 2 min at 30°C and the absorbance WAS measured at 
610 nm. On the other hand, laccase activity was recorded using the 
method described by Bourbonnais et al., (1995) which records the 
oxidation of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) 
(ABTS substrate, 5 mM). After dissolving the substrate in 2.5 ml of 
sodium acetate buffer (0.1 M, pH 5.0), 100 μl of the extract was 
added, the mixture was incubated for 2 min at 30°C and after that 
time the absorbance was recorded at 420 nm. For all cases, the 
absorbance was measured at intervals of 30 s for 5 min. 

All analysis had three replicates and the variance analysis and 

Tukey test (=0.01) was made with SAS® Stadistical Software.  

 
 
RESULTS AND DISCUSSION 
 
Calibration curve for detection of analytical 2,4-D, 
2,4-D amine and atrazine 
 
The obtained curves are represented by a linear model 
with a correlation coefficient that allows to affirm that the 
detected absorbance is a direct function of concentration 
in each one of the samples (Figure 1). 
 
 
Degradation kinetics of T. versicolor 
 
Specifically, 2,4-D is one of the herbiides most used to 
control boradleaf weeds; the active ingredient has chronic 
health effects, and lethal on the soil because it has a 
residual effect. It has been shown that there are 
microorganisms that have the capacity to degrade these 
phenolic compounds, which is called bioremediation 
(Akintui et al., 2015). The degradation kinetics in 
bioreactors was determined according to the yield of the 
biomass-substrate, which expresses the increase of 
biomass of T. versicolor for each ppm of consumed 
substrate (Rubio, 2005), with a response differentiated by 
the source 2,4 -D (Table 1) as well as the mixture of this 
with atrazine (Figure 2), confirming a differentiation in the 
yield for each substrate (Figure 3A), which coincides with 
Field et al. (1992), Bhalerao and Puranik (2007) and 
Siddique et al. (2003) who attribute the development of 
filamentous fungi on different substrates which directly 
influence respiration and biomass as the only carbon 
source. Stamatiu et al. (2015) found that some strains 
exposed to chlorpyrifos and endosulfan outgrow the 
mycelial development of their respective controls after a 
period of inhibition (3 to 16 days). Phanerochaete 
chrysosporium, P. ostreatus, Bjerkandera adusta and T. 
versicolor are the most commonly used for the 
degradation of such compounds owing to their production 
of ligninolytic enzymes such as LiP, MnP and laccase 
(Pozdnyakova et al., 2018).  
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Figure 1. Calibration curves for the detection of analytical 2,4-D (A); 2,4-D-amine (B); and atrazine (C). 

 
 
 

Table 1. Bioreactor degradation kinetics of Trametes versicolor (L.:Fr.) Pilát strain Mo008. 
 

Parameter Yield (g ppm
-1

) GCR* (ppm h
-1

) Filter biomass (g) Consumption time (h) 

Analytical 2,4-D 0.0121 1.333 12.113 750 

2,4-D amine 0.0085 1.176 8.480 850 

2,4-D amine + atrazine 0.0117 1.538 11.747 650 

Atrazine - 1.818 - 550 
 

*Global consumption rate. 

 
 
 
On the other hand, Dutta et al. (2010) reported a stimulus 
in basal respiration and in microbial biomass when 
chlorpyrifos like substrate is used in comparison with the 
control, whereas Das and Mukherjee (2000) and 
Eisenhauer et al. (2009) mentioned that soil micro-
organisms treated with organophosphorus and 
organochlorine pesticides increase their population. The 
global consumption rate (GCR) that expresses the 
amount of ppm degraded by T. versicolor per hour 
indicates that when 2,4-D amine is mixed with atrazine, it 
tends to be higher (Figure 3B) than when only analytical 
2,4-D and amine salt are used,  and  the  studied strain is 

more efficient to degrade atrazine than 2,4-D; the 1000 
ppm added to the bioreactor was degraded in a time of 
550 h with a GCR of 1,818. These results indicate that T. 
versicolor (Mo008) can be used as a biodegradation tool 
for this type of compounds in high concentrations (1000 
ppm) as compared to what has been reported by Demir 
(2004), Wu and Yu (2006), Srivastava et al. (2008), 
Kumar et al. (2009), Megan et al. (2010) and 
Pozdnyakova (2018).  

Chlorophenols are the most common organic 
compounds which are widely used in agricultural industry 
and public health. The most  important  pollution  sources
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Figure 2. Bioreactor consumption by Trametes versicolor (L.:Fr.) Pilát strain Mo008 of each of the substrates evaluated. 

 
 
 

  

 

A B 

 
 

Figure 3. Bioreactor degradation kinetics of Trametes versicolor (L.:Fr.) Pilát strain Mo008. A, Yield biomass/substrate (g ppm-1); B, 
global consumption rate (GCR) in ppm h-1.  

 
 
 
of chlorophenols are the waste waters from pesticide, 
paint, solvent, pharmaceutics, wood-preserving chemicals, 
paper  and    pulp    industries    and    water   disinfecting 

processes. Because these types of products are toxic, 
resistant to microbial degradation and can accumulate in 
the  food  chain,   many    countries    have   restricted   or
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Figure 4. Calibration curve for each substrates to detection of enzymatic complex involved in degradation of 2,4-D by Trametes 
versicolor (L.:Fr.) Pilát strain Mo008. A, Lignine peroxidase; B, manganese peroxidase; C, lacase. 

 
 
 
banned their production or use and have designated 
them as priority pollutants in their own list of hazardous 
wastes (Ruiying and Jianlong, 2007). T. versicolor has 
the ability to produce different enzymes that can degrade 
recalcitrant compounds, for this reason, it is used in 
biotechnology for bioremediation studies, likewise it can 
be use to remove Cu

2+
, Pb

2+
, Cd

2+
, Ni

2+
 and Zn

2+
 from 

organic textile dyes (Congeevaram et al., 2007; Fu and 
Viraraghavan, 2001; Baldrian, 2003; Bayramoğlu et al., 
2003; Solis et al., 2015).  
 
 
Calibration curves for the measurement of enzymatic 
activity in degradation of 2,4-D amine and the mixture 
of 2,4-D amine and atrazine 
 
The calibration curves for each extracts used to detect 
enzymatic activity are represented by linear models with 
correlation coefficients above 0.99 as shown in Figure 4.  

Enzymatic activity in the degradation of 2,4-D amine 
and 2,4-D amine plus atrazine 
 
The complex enzymatic involved in the degradation of 
phenolic compounds (LiP and MnP) was detected in the 
micelium extracts exposed to 2,4-D amine as well as to 
the mixture of this with atrazine in continuous flow 
bioreactor and phenol oxidases or polyphenolic oxidases 
as laccase. For each enzyme detected, the mycelial 
extract developed in the enzymatic expression fluid 
(Control) showed a higher affinity than the mycelial 
extract developed in the bioreactor (Table 2); however, 
the development of T. versicolor in 2,4-D amine as well 
as in the mixture with atrazine indicate that this fungus 
produces the enzymatic complex involved for the 
degradation of both compounds (Karam and Nicell, 1997; 
Duran, 1997; Duran and Esposito, 2000) and that the 
degradation process was greater when the 2,4-D amine 
was  mixed   with   atrazine  than   when  it  was  exposed
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Table 2. Enzymatic activity of Trametes versicolor (L.:Fr.) Pilát detected in strain Mo008. 
 

Km expressed in mM 

 Lignin Peroxidase Manganese Persoxidase Laccase 

 2,4-D
a
 2,4-D

b
 + Atrazine 2,4-D

a
 2,4-D

b
 + Atrazine 2,4-D

a
 2,4-D

b
 + Atrazine 

Control 0.1377 0.0878 1.7202 0.4092 0.9056 0.9393 

Extract 0.1684 0.1217 1.0412 0.5337 0.9047 4.8181 

a: amine; b: analytical 

Vm expressed in mMmin
-1

 

 Lignin Peroxidase Manganese Persoxidase Laccase 

 2,4-D
a
 2,4-D

b
 + Atrazine 2,4-D

a
 2,4-D

b
 + Atrazine 2,4-D

a
 2,4-D

b
 + Atrazine 

Control 51.0204 67.5674 3.5958 0.5510 188.6792 303.0303 

Extract 52.6315 64.1025 0.5605 0.4450 158.7301 416.6666 

a: amine; b: analytical 

 
 
 
individually due to the values of speed maximum 
detected in the last process (Figure 5). Oxidative 
enzymes play an important role in the decontamination of 
effluents and soil and T. versicolor possesses a complex 
mechanism involving enzymes that attack lignin directly, 
like LiP, MnP and laccase (Córdoba et al., 2012); these 
enzymes can be used in the management of 
environmental pollutants such as textile effluents, pulp 
effluents, organochloride agrochemicals and crude oil 
residues (Kantharaj, 2017) which were detected in the 
present study. The genus Trametes, which belongs to the 
White-rot fungi, is assumed to be one of the main 
producers of laccases. T. versicolor produces laccase 
and MnP as major lignolytic enzymes; however, and in a 
particular case, the role of these enzymes in 
decolorization of azo dyes is not yet clear. Laccase 
and/or MnP activities in culture fíltrate of T. versicolor 
were not able to decolorize azo dyes, thus indicating a 
role of other enzymes or cell-bound components in azo 
dye degradation (Swamy and Ramsay, 1999). The use of 
enzymes for the treatment of contaminants has been 
proposed by numerous researchers, however, most of 
these investigations are focused on demonstrating the 
decrease of several contaminantsby biological organisms 
that produce the enzyme complex studied as a basis for 
future remediation engineering projects, a fundamental 
step for its implementation (Gianfreda et al., 1999; 
Heitzer, 1993; Aitken, 1993; Heitzer, 1998). This enzyme 
complex is mainly composed of the so-called lignolytic 
enzymes that include laccasa, MnP and LiP. These 
enzymes catalyze the oxidation of lignin, but its non-
specific nature allows the degradation of xenobiotic 
compounds with a chemical structure similar to lignin 
(Dominguez et al., 2010). T. versicolor (L.:Fr.) Pilát is a 
basidiomycete that produces extracellular enzymes that 
participate in the degradation of lignin in a nonspecific 
way (García and Torres, 2003) and has the possibility of 
using it in a broad spectrum of recalcitrant substances 
that  show   structural   similarities  with  lignin.  However, 

Katharaj (2017) reports that MnP degrades the lignin 
mainly by attacking phenolic lignin component. In the 
presence of H2O2, this enzyme oxidizes the phenolic 
structures by converting Mn

2+
 to Mn

3+
. Oxalato and 

malonate are the mediators that produce carbon centered 
radicals, peroxyl radicals and superoxide radicals which 
improve the effective lignin-degradings system.  

MnP is an essential component to certain basidiomycetes 
and some wood decaying white-rot fungi, which secrete 
MnP in several forms into their environment. Laccases 
are the copper containing polyphenol oxidases which 
enable degradation of phenolic compounds and also 
reduce molecular oxygen to wáter (Arora et al., 2010; 
Divya et al., 2013). Laccases oxidize the phenolic units in 
lignin to phenoxy radicals, which can lead to aryl-C 
cleavage (Kawai et al., 1988). Laccase can also oxidize 
non-phenolic substrates in the presence of certain 
auxiliary substrates (Call and Muncke, 1997; Kantharaj et 
al., 2017). Compounds such as chloro-phenols, 
polychlorinated biphenyls (PCBs), DDTs, dioxins, 
polycyclic aromatic hydrocarbons (PAH's), alkyl halides, 
nitrotoluenes, azo dyes and polymers can be modified or 
degraded to varying extents (Linn et al., 1993; García, 
2001; Raimbault, 1998; Gold and Allic, 1993; Karam and  
Nicell, 1997; Kuhad et al., 1997; Majcherezyk et al., 1998); 
in addition, 2,4-D amine and atrazine can be efficiently 
degraded by this species as shown in this investigation.  

The enzymes produced by the fungi T. versicolor was 
also employed for the detoxification of aromatic pollutants 
like agrochemicals and industrial effuents (Kantharaj et 
al., 2017). In recent years, the presence of micropollutants 
such as pharmaceuticals, industrial chemicals, personal 
care products and many other chemical compounds in 
the aquatic enviroment have become a significant 
problem worldwide (Doruk et al., 2018). Sahadevan et al. 
(2016) reported that lignin-degrading enzymes, LiP, MnP 
and laccase can be used like appropriate biological 
substitute to treat highly alkaline effluents like pulp, paper 
industry and waste water and various non-steroidal,  anti- 



1452          Afr. J. Biotechnol. 
 
 
 

Control Extract 

  
Lignin Peroxidase 
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Figure 5. Average absorbance for each of the enzymes detected in the Trametes versicolor (L.:Fr.) Pilát 
strain Mo008 extract developed in the bioreactor filters exposed to analytical 2,4-D, 2,4-D amine, 2,4-D 
amine plus atrazine and atrazine. 

 
 
 
inflammatory drugs such as naproxen, ketoprofen and 
ibuprofen (Marco et al., 2009; Marco et al., 2010a,  
2010b).  
 
 
Conclusions 
 
T. versicolor (Natural strain Mo008) efficiently degraded 
atrazine and 2,4-D, being more efficient in the 
degradation of 1000 ppm of atrazine (550 h) than of 2,4-
D (850 h); however, the mixture  of  both  herbicides  was 

consumed in a time of 650 h. Likewise, in the 
biodegradation of both, alone and as a mixture, the 
studied strain presented the activity of the enzymatic 
complex which was composed of laccase, LiP and MnP 
which have an important role in the degradation of 
phenolic compounds and other recalcitrants wastes due 
to their similiar structure to lignin. T. versicolor can be 
employed as a bioremediation tool for water 
contaminated with acid 2,4-D and atrazine and others 
phenolics compounds as well as pharmaceuticals 
wastes. 
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