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A simple model was build for the metabolic flux determination based on published articles. A method 
for metabolic flux determination by carbon labeling experiments was described and developed here in 
the first part of this study that allows mathematical description relating the measured quantities and the 
intracellular fluxes. The described method was used to investigate the central carbon metabolism of 
Escherichia coli. In the second part of this study, computer simulation was made to study the dynamics 
of the intracellular metabolite concentrations in E. coli in particular for the glycolysis and pentose-
phosphate pathway based on the kinetic rate equations. The model successfully simulates the main 
features of the time course without alteration of the experimentally determined parameters. After 
simulation starts, the intracellular concentrations of ATP, PEP, PYR, G6P, F6P, NAD and 3PG decreased 
while FDP, 6PG, S7P, E4P AMP, GAP, ADP, NADH and NADPH increased for wild E. coli. These simulation 
results were also partly verified by experimental results.  
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INTRODUCTION 
 
Conventional metabolic flux analysis has been made 
based on the measured extracellular flux data and mass 
conservation law for key intracellular metabolites (Yang et 
al., 2002; Vallino and Stepphanopoulos, 1993; Theobald 
et al., 1997; Hua et al., 1998). Due to the insufficient 
information from metabolite balancing to determine 
intracellular fluxes, some of the metabolic fluxes such as 
cyclic pathway, parallel pathway cannot be defined 
without imposing more assumptions on enzyme activities 
or energy yields. By the introduction of labeling 
experiments, it can overcome this problem (Noronha et 
al.,   2000;   Park   et   al.,   1997;  Sonntag  et  al.,  1995;  
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Wierchert et al., 1997) and these labeling measurement 
data provide additional and independent constraints on 
the intracellular fluxes, which enables a more refined 
analysis  of  metabolic  fluxes  in  the  complex  metabolic 
network.  

Microbial growth depends on the biosynthesis of 
cellular macromolecules (proteins, lipids, amino acids, 
RNA and DNA), which require NADPH as a redox-
equivalent. In Escherichia coli NADPH is mainly formed 
from the pentose phosphate pathway and TCA pathway 
(Hoque et al., 2005; Lagunas and Gancedo, 1973; 
Thomas et al., 1991; Sarkar et al., 2008; Nogae and 
Johnson, 1990). Also a set of precursors for the synthesis 
of amino acids, cometabolites and nucleotides is 
provided by these main pathways (Figure 2). One of the 
recent most challenging and demanding research areas 
of metabolic engineering is to investigate the dynamics of  
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Figure 1. A simple model of comparing two metabolic networks  

 
 
 

metabolism and to estimate the control coefficients by 
using mathematical models. The model development for 
simulation is useful in that the model may be less 
expensive in terms of time, more easily studied and more 
easily controlled than the original (Greco, 1986). In the 
present study, dynamic simulations based on 
Chassagnole et al. (2002) and Rizzi et al. (1997) were 
performed and verified by published experimental 
results.We also considered a simple model for flux 
determination to get some idea on how to compute 
metabolic flux distributions based on measured 
isotopomer distributions.  
 
 
MATERIALS AND METHODS 

 
There exist various theories arisen recently to explain various 
biological phenomena, such as allometrical method to solve various 
basic problems in biology (He, 2008).  Zhou et al. (2009) suggested 
a simple method for carbon absorption using allometric scaling. 
These methods sometimes give good result but to meet our goal of 
the present study we use Yang et al. (2002) method. 

 
 
A simple model for metabolic flux determination based on 
isotopomer measurements 

 
Consider a simple metabolic network as shown in Figure 1, where S 
represents an input (extracellular) metabolite with known 
isotopomer distribution, A, B and C the intracellular metabolites 

(intermediates) and P the output metabolite. For simplicity, we 
assume that B has one carbon atom, and the others have two 
carbon atoms. In Figure 1, V1 is the measurable input flux, V6 is 
the output flux and the remaining V2, V3, V4 and V5 are the 
intracellular fluxes. V2 and V3 keep the metabolite together with 
different fates of carbon atoms. V2 is the bidirectional flux while the 
others are unidirectional fluxes. The mass balances for the 
intracellular metabolites yield: 
 

A:   
43221 vvvvv
rrrsr

++=+   

B:   54 vv
rr

=                                                             

C:   62532 vvvvv
rsrrr

+=++  
                                                (1) 

 

where 2v
r

, 3v
r

, 4v
r

are the free fluxes and the remaining fluxes can 

be expressed as: 
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                                                   (2) 

 
The balance equation for isotopomer distributions are derived as 
follows.  
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Figure 2. Metabolic network of E. coli central carbon metabolism of glycolysis and pentose phosphate (PP) pathway. Oval indicates 

the enzyme which catalyses the corresponding reaction. See text for the enzyme names. 
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where )1,0,(,,, =jiscba ijijiij are the isotopomer 

fractions of A, B, C and S, respectively. Since the sum of all 

isotopomer fractions of a metabolite must be 1, 00A  B00 and C00 are 

computed by this relationship. The following relationships can be 
derived:  
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where,  
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The mass isotopomer distributions of metabolites 

( )aaa
mmmA 210 ,,  etc. and the multiplet patterns of the second 

carbon of ( )22 , c
a

c
a

dSA  etc. can be measured by 2D NMR. Thus 

the following relationships can be utilized.  
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From Equations (6) and (8), the values of 2
am  and 

c
m2  can be 

obtained respectively. Based on the above relationships we have 
the remaining parameters as follows:   
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It should be noted that while it is possible to formulate both the net 
and exchange fluxes for bidirectional fluxes in a simple reaction 
network as given in the above example, it is usually not possible to 
derive the similar equation for large and complex metabolic system.   
 
 
Model building and simulation 
 

The approaches to modeling and simulation for the metabolic 
pathways include differential equations and metabolic control theory 
(Mendes, 1997). The fundamental entities to simulate are 
determined by the knowledge of biochemical system, generally at 
the level of metabolites and enzymes. And a model defined in terms 
of enzymes and reaction they catalyze, the rate of a reaction and 
the conditions under which a reaction proceeds is elucidated here 
at the present study. Differential equations have been widely used 
in the modeling and simulation of the metabolic pathways. The use 
of differential equations may work in case of complex and nonlinear 
systems (Raczynski, 1996). For the purpose of our study, we briefly 
describe the model equations developed by Chassagnole et al. 
(2002).  
 
 
Phosphotransferase system (PTS) 
 

The kinetic rate equation for the metabolic reaction Glc + PEP → 
G6P + PYR with enzyme PTS (Chassagnole et al., 2002) is 
expressed as, 
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Embden- Meyerhof-Parnas pathway  
 

The kinetic rate equation for the metabolic reaction PFPG 66 ⇔  

catalyzed by enzyme PGI (Phosphoglucosisomerase) which is 
reversible Michaelis-Menten kinetic type (Richter et al., 1975) is 
expressed as, 
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 For metabolic equation ADPFDPATPPF +⇔+6  catalyzed 

by the enzyme PFK (phosphofructokinase) along with the allosteric 
type of enzyme reaction rate equation (Hofmann and 
Kopperschlager, 1982) may be expressed as, 
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For metabolic reaction  DHAP GAP +<=>FDP  catalyzed by 

enzyme ALDO (Adolase) with the ordered uni-bi mechanism 
(Richter et al., 1975), the kinetic type rate equation is expressed as,  
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For the metabolic reaction GAP <=>DHAP  catalyzed by 

enzyme TIS (triosephosphate isomerase) with the reversible 
Michaelis-Menten (Richter et al., 1975), the kinetic rate equation is 
given by: 
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For the reaction ATP 3PG  +<=>+ PGPADP  catalyzed by 

the enzyme PGK (phosphoglycerate kinase) having the two 
substrate reversible Michaelis-Menten (Chassagnole, 2002) the 
kinetic rate equation is expressed as: 
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For the metabolic reaction NADH  PGP +<=>+ NADGAP  

catalyzed by GAPDH (Glyceraldehyde 3-phosphate 
dehydrogenase) having the two-substrate reversible Michaelic-
Menten (Chassagnole et al., 2002) the kinetic rate equation is 
expressed as, 
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For the metabolic reactions 2PG3 <=>PG  and  

PEPPG <=>2  catalyzed by enzyme PGluMu (phosphoglycerate 

mutase) and ENO (enolase), respectively, having the reversible 
Michaelis-Menten (Chassagnole et al., 2002), the kinetic rate 
equations are respectively given by, 
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For the equation ATP  PYR +<=>+ ADPPEP  catalyzed by 
PK (pyruvate kinase) with allosteric regulation, the kinetic rate 
equation (Johannes and Hess, 1973) is described as, 
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For the last equation of EMP pathway in E. coli 

 COACA  2+<=>PYR  catalyzed by PDH (pyruvate 

dehydrogenase) along with the Hill equation (Chassagnole et al., 
2002) the kinetic rate equation is given by, 
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Pentose-phosphate pathway (PPP): The first metabolic reaction 

NADPH 6PG  6 +<=>+ NADPPG  of PP pathway in E. coli 

catalyzed by enzyme G6PHD (glucose-6-phosphate 
dehydrogenase) under the two-substrate irreversible Michaelis-
Menten, the kinetic rate equation (Vaseghi et al., 1999) is given by,  
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For the reaction 

NADPHCO  RiBu5P 6 2 ++<=>+ NADPPG  catalyzed 

by PGDH (6-phosphogluconate dehydrogenase) under the two-
substrate irreversible Michaelis-Menten kinetic rate equation 
(Vaseghi et al., 1999) the rate equation is given by,  
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For metabolic reaction PRibPRiBu 55 <=>  catalyzed by R5PI 

(Ribose phosphate isomerase) under the reversible mass action 
kinetic type (Chassagnole et al., 2002), the rate equation is 
expressed as, 
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For metabolic reaction XY15P5 <=>PRiBu  catalyzed by Ru5p 

(ribulose phosphate epimerase) under the reversible mass action 
kinetic type (Chassagnole et al., 2002), the rate equation is 
expressed as, 
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For metabolic reaction GAP  S7P 155 +<=>+ PXYPRib  

catalyzed by Tka (transketolase a) under the reversible mass action 
kinetic type (Chassagnole et al., 2002), the rate equation is 
expressed as,  
 

   
)(

,

7

155

max

eqTKa

gapps

pxypribTKaTKa
K

CC
CCrr −=

                                          

(29) 

Hoque et al.         2345 
 
 
 

For the metabolic reaction E4P  F6P 7 +<=>+ GAPPS  

catalyzed by TA (Transketolase) under the reversible mass action 
kinetic type (Chassagnole et al., 2002) the rate equation is 
expressed as, 
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And for the metabolic reaction GAPPFPEPXY +<=>+ 6415  

catalyzed by the enzyme TKb (Transketolase b) under the 
reversible mass action kinetic type (Chassagnole et al., 2002) the 
rate equation is expressed as, 
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Analytic functions for cometabolites 
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RESULTS AND DISCUSSIONS 
 
Computer simulation was made using the mathematical 
model described above where the model parameter 
values are given in Chassagnole et al. (2002) and Rizzi 
et al. (1997). The MATLAB and GEPASI were used for 
simulation. Figures 3 to 5 show the simulation results. 
The abbreviations for compounds, reactions and 
enzymes used as usual and presented in the Appendix A 
and B are as per common usage. 

The graphs in Figure 3 depict the concentrations of 
cometabolites with respect to time. These simulation 
results were performed using the Equation (32). It can be 
seen for Figure 3 that concentration of ATP and its effect 
sharply decreased from 0 to 1 s and then increased 
slowly reaching its steady state condition after 20 s. In the 
case of ADP, it shows the opposite trend as compared 
with ATP, which is reasonable from biochemistry point of 
view. The concentration  of  NAD  decreased  little  slowly  
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Figure 3. Simulation result for varying Concentrations of ATP, NAD, NADH, ADP, NADPH and AMP in E.coli. 
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Figure 4. Time courses of the metabolite concentrations for Glc, G6P, F6P, FDP, 3PG, 2PG, PGP, DHAP, PEP, GAP, PYR, ATP, ADP, 
NAD and NADH in E. coli 

 
 
 

until first 50 from its steady state. We also found from this 
figure that the concentration for NADH, NADP and AMP 
increased with few seconds where as concentration of 
NADPH increased first then oscillated to become its 
steady state. 

The simulation results for the glycolysis and pp pathways 
are given in Figures 4 and 5, respectively. Figure 4 shows 
the concentrations of the metabolites Glc, G6P, F6P, FDP, 
3PG, 2PG, PGP, DHAP, PEP, GAP, PYR, ATP, ADP, NAD 
and NADH with respect to time (s). The result shows that 
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Figure 4. Continued… 
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Figure 5.  Time courses of the metabolite concentrations for 6PG, Ribu5P, XY15P, Rib5P, S7P, E4P, NADP and NADPH in E. coli 

 
 
 

the concentration of Glc decreased sharply within 7 s 
from the start and then it became steady state at zero 
concentration and the PEP concentration sharply 
decreased and then increased again slowly reaching to 
its steady state after 50 s. The result shows the similar 
change in FDP, ADP and DHAP which are completely 
opposite results for concentration of ATP but almost the 

same results as was found for 3PG and 2PG and also the 
same results for GAP and PGP.  

Figure 5 shows the concentrations of such metabolites 
as 6PG, Ribu5P, XY15P, Rib5P, S7P, E4P, NADP and 
NADPH with respect to time. The sharp increase in 6PG 
and nadph concentrations can be seen initially and then 
became steady state after  a  certain  time.  The  opposite 
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trend can be seen for the concentrations of NADP, 
Ribu5P, Rib5P and XY15P. The concentrations of both 
S7P and E4P increased rapidly and then decreased 
sharply for S7P but slowly for E4P and finally became 
steady state after 40 and 30 s, respectively. These simu-
lation results are mostly similar with published experi-
mental results (Hoque et al., 2005). A stable steady state 
is an essential prerequisite for a mathematical model of 
living cells as well as for application  of  metabolic  control  
analysis (Lui et al., 1996). 
 
 
Conclusions 
 
In the present study, we considered a simple model to 
understand basic idea on how to estimate the flux 
distribution based on measured data using NMR and GC-
MS. Dynamic simulation of glycolysis and pentos-
phosphate pathway in E. coli was made and validated 
with the initial concentrations using the kinetic rate 
equations for metabolites as well as using the analytic 
function for cometabolites. The simulation results give 
some idea on metabolic regulation, dynamic responses of 
intracellular metabolite concentrations and further 
analysis needs to be made. Although the intracellular 
metabolic fluxes can be analytically derived for the simple 

network considered in this study, more elaborate non-

linear optimization techniques have to be considered for 

the more complex metabolic networks. 
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Appendix A. Stoichiometric equations of E. coli. 
 

Glycolysis Pathway: 

 Enzymes Genes Reactions 
1. Phosphotransferase system pts Glucose + PEP <-> G6P + PYR 
2. Phosphoglucose isomerase pgi G6P <-> F6P 
3. Phosphofructokinase  pfk F6P <-> GAP 
4. Phosphoglycerate kinase pgk GAP -> PEP + NADH + ATP 
5. Pyruvate kinase pyk PEP  -> PYR + ATP 
6. Pyruvate dehydrogenase pdh PYR -> AcCoA + NADH + ATP 

TCA Pathway: 

 Enzymes Genes Reactions 
7. Acetate kinase ack AcCoA -> Acetate + ATP 
8. Citrate synthase  glt AcCoA + OAA -> ICT 
9. Isocitrate dehydrogenase  icd ICT -> KG + NADH + CO2 

10. Glyoxylate bypass (lumped reaction) ace AcCoA + ICT  -> 2OAA + NADH 
11. 2-ketoglutarate dehydrogenase AKGDH KG -> SUC + NADH + ATP +CO2 

12. Malate dehydrogenase mdh  SUC -> OAA + NADH + ATP 
13. PEP carboxylase ppc PEP +CO2 -> OAA 

PP Pathway: 

 Enzymes Genes Reactions 
14. Glucose-6-phosphate dehydrogenase zwf 6PG -> RU5P + 2NADH + CO2 

15. Ribose-5-phosphate isomerase rpi RU5P �> R5P 
16. Ribulose-5-phosphate epimerase rpe RU5P <-> XY5P 
17. Transketolase tkt R5P + X5P <-> GAP + S7P 
18. Transaldolase tal GAP + S7P <-> F6P +E4P 

Two more reactions: 

  Genes Reactions 
19. ATP degradation  Jatp ATP ->  
20. Nad(p)h oxidation Jresp NAD(P)H -> 2ATP 

Biomass Equation: 

205G6P+70.9F6P+1625GAP+519.1PEP+2832.8PYR+4028.8AcCoA+1786.7OAA+1078.9KG+ 
897.7R5P+361E4P+14678NAD(P)H+18485ATP-> Cellmass + 1793CO2 + 387Acetate 

 
 
 

Appendix B. Nomenclature. 
 

Enzymes 

6PGDH 6-phosphogluconate dehydrogenase 

Eno enolase 

Fba fructose-1, 6-bisphosphate aldolase 

G6PDH glucose-6-phosphate dehydrogenase 

GAPDH glyceraldehydes-3-phosphate dehydrogenase 

GDH glutamate dehydrogenase 

Hxk hexokinase 

ICDH isocytrate dehydrogenase 

LDH lactate dehydrogenase 

MDH malate dehydrogenase 

Mk myokinase 

Pgi phosphoglucose isomerase 

Ppc phosphoenolpyruvate carboxylase 

Pta phosphotransacetylase 

PTS phosphotransferase system 

Pyk pyruvate kinase 

Rpe ribulose-phosphate epimerase 

Rpi ribose-phosphate isomerase 

Tkt transketolase 

Tpi Triosephosphate isomerase 
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Metabolites 

2PG 2-phosphoglycerate 
6PG 6-phosphogluconate  
AcCoA acetyle-coenzyme A  
ADP adenosindinophosphate 
AKG α-ketoglutarate 
AMP adenosinmonophosphate 
ATP adenosintriphosphate 
DHAP dihydroxyacetonephosphate 
E4P erythrose-4-phosphate 
F6P fructose-6-phosphate 
FBP fructose-1,6-bisphosphate 
G6P glucose-6-phosphate  
GAP glyceraldehydes-3-phosphate  
ICT isocitrate 
NAD diphosphopyridindinucleotide, oxidized 
NADH diphosphopyridindinucleotide, reduced 
NADP diphosphopyridindinucleotide-phosphate, oxidized 
NADPH diphosphopyridindinucleotide-phosphate, reduced 
OAA oxaloacetate 
PEP phosphoenolpyruvate 
PYR pyruvate 
Rib5P ribose-5-phosphate 
Ribu5p ribulose-5-phosphate 
SUC succinate 

 


