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In this study, a model called “fuzzy reasoning model” was proposed for the case when the explanatory 
variables were crisp and the value of the binary response variable was reported as a number between 
zero and one. In this regard, the concept of possibilistic odds is also introduced. Then, the 
methodology and formulation of this model was used to explain the model parameters. Some goodness 
of fit criteria were proposed and a numerical example was given as an example.  
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INTRODUCTION 
 

Since Jain, Dubis and Prade (Dubios et al., 1987) 
introduced the relevant concepts of fuzzy numbers, in 
classical set theory, an element either belongs to a set or 
it does not. In other words, the status of the element 
relative to the set is obvious. This property is related to 
the definition of that set. Some sets, such as the set of 
natural numbers equal or greater than 10 and the blood 
groups of the people, have such well defined and precise 
criteria that people with varied levels of knowledge are in 
total agreement regarding their members. Now, consider 
the set of tall men, the set of real numbers much greater 
than 10 or the set of patients with high blood pressure. 
There may be disagreement on the elements of these 
sets, because their definition contains imprecise or vague 
language. These imprecisely defined sets, called Fuzzy 
sets, play an important role in human though. In many 
scientific researches, linguistic, rather than numerical 
terms are frequently used. For instance, in clinical 
research, to measure the severity of disease or pain in 
patients, linguistic terms like low, medium, high, etc, are 
used. These terms can be viewed as fuzzy sets. 
Moreover, the border line between these fuzzy sets is not 
crisp even if they are measured in numerical scale. In 
other words, cases in the neighborhood of the borderline 
have a vague status with regard to the disease.  

A     similar     situation   occurs   in    the   definition   of  
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hypertension. To model the relationship between these 
observations, an ordinary statistical model which is based 
on certain assumption and exact observations is not a 
good choice. We note that fuzzy models as compared to 
the usual statistical models consider possibilistic rather 
than probabilistic errors. In other words, there are some 
aspects of uncertainty that measure the vagueness of the 
phenomena and cannot be summarized in random terms. 
This kind of uncertainty is evaluated by a measure called 
possibility. Hence error terms are deleted in fuzzy 
regression models and are, in fact, hidden in the fuzzy 
coefficients. Almost all previous studies on fuzzy 
reasoning have focused on linear models and nonlinear 
models have been seldom considered.  

A nonlinear reasoning model which is widely used in 
research, especially in classical clinical studies, is the 
reasoning model. In practice, there are many situations in 
which the ordinary reasoning method cannot be used. In 
this situation, the variations of the model error terms 
cannot be attributed wholly to the randomness of the 
phenomenon. Furthermore, the probabilistic assumptions 
of the reasoning model are not fulfilled. To deal with such 
situations, we combined the reasoning model with fuzzy 
set theory to present a new model which we called the 
fuzzy reasoning model.  
 
  

Preliminaries 
 

This was done with a simple definition of a fuzzy set, 
along with some definitions  which are used in this  paper 
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(Zimmerman, 1991; Tanaka et al., 1982). 
 
Definition 1. The fuzzy set M  of the real line ℜ  is called 

a fuzzy number if it is normal convex fuzzy set of ℜ .  

 
Definition 2. A fuzzy number N  is called LR -type if it has 

the membership function as follows: 
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Where, L and R are decreasing shape functions from +ℜ  

to 0, 1, with 1)(,1)0( <= xLL  for all 0>x , 0)( >xL for all 

1<x  and 0)1( =L . Similar conditions hold forℜ . The real 

number m is called the mean value of N , while σ  and 

β are called the left and the right spreads, respectively. 

Symbolically N  is denoted by LRm ),,( βσ . In special 

cases, )()( xRxL = , N  is called triangular fuzzy number 

and is denoted by Tm ),,( βσ . Its membership function is: 
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If in addition, βσ = , then N  is denoted by Tm ),( σ and is 

called a symmetric triangular fuzzy number.  
 

Definition 3. Let LRmM ),,( βσ=  be a fuzzy number and 

ℜ∈λ . Then; 
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Definition 4. Let LRmM ),,( βσ=  and LRnN ),,( δγ= be two 

LR -type fuzzy number. Then; 
 

( )LRLRLR nmnmNM δβγσδγβσ +++=+=+ ,,),,(),,(

. 
There are several defuzzification methods introduced in 
literatures. A common method which is used in this paper 
is as follows. 
 
Definition 5. Let W be a fuzzy set, then defuzzification of 

W is defined as a real number as follows: 
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METHODOLOGY AND FORMULATION 
 

Consider the data set ( )iniii xxxX ,,, 21 L= , ni ,,2,1 L= , where 

iX  is the vector of crisp observation on the independent variables 

like sex, age, marital status, weight, blood pressure and blood 

cholesterol for the i -th case. iµ , the corresponding response 

observation, is a number in ]1,0[  and indicates the possibility of i -

th case having the relevant property i.e. )1( == ii YPossµ . 

Therefore, the fuzzy reasoning model with fuzzy coefficients, are as 
follows:  
 

.,,1,110 mixbxbbP innii LL =+++=  (1) 

 

nbbb ,,, 10 L are the model parameters which are treated as fuzzy 

numbers and 
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ln is the estimator of the logarithmic 

transformation of possibilistic odds. To simplify the calculation, we 

assume that the fuzzy numbers ( )
TRjLjcjj ssab ,,= , nj ,,1 L=  

are triangular. Then miPi ,,1, L=  is the triangular fuzzy number. 

We have; 
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So, the membership function of the fuzzy estimated output can be 
shown as follows: 
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As it is known, iP  is the natural logarithm of possibilistic odds of 

getting or having the known property for the i -th case. According to 

the extension principle, if M  is a fuzzy number with membership 

function iP  and
x

exf =)( , then 
M

eMf =)( is a fuzzy number 

with the following membership function: 
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So, after estimating the model coefficients, we can determine the 

membership function of the possibilistic odds 0,
)( >xe

xPi as 



 

 
 
 
 
follows: 
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Thus, for a new fuzzy case, our model can predict its possibilistic 
odds as a fuzzy number by the use of the crisp vector of input 
observation. 
 
 
Estimation of fuzzy coefficients 

 

In order to estimate the coefficients mjb j ,,0, L= , we followed 

the possibilistic approach in fuzzy linear reasoning models with 
fuzzy output, fuzzy coefficients and non-fuzzy input vector. The 
basic idea is to minimize the fuzziness of the obtained model by 
minimizing the total support of the fuzzy coefficients. So, it is 
assumed that: 
 

1) Each observation, ip  has a membership degree as big as h  in 

the function of the fuzzy estimated output, iP , that is; 
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2) The fuzzy coefficients ( )mjb j ,,0, L=  are such that the 

fuzziness of the model is minimized. Since the fuzziness of a fuzzy 
number increases with its spreads, minimizing the sum of the 
spread of fuzzy outputs leads to a minimum value of the fuzziness 
of the model.  
 
The determination of fuzzy coefficient leads to a linear 
programming problem, in which the objective function is the sum of 
the spreads of the fuzzy outputs, 
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Where, ijx  is the value of the i -th observation for the j - 

th variable. On the other hand, from Equation (5) each constraint of 

the problem ( )nihpP ii ,,1,)( L=≥  can be written as follows: 
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Hence we have a total of m2  constraints.  One  can  minimize  the 
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objective function using linear programming algorithms such as the 
simplex method to estimate the mode value, and the left and  right 
spreads of each coefficient.  
 
Definition 6. Consider the fuzzy reasoning model which is derived 
based on m  crisp observations. Then, the mean degree of 

memberships for observed values in the membership function of 
the estimated ones, that is  
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Which is used as an index for evaluating the model. Large 
membership degrees of the observed values confirm that the model 
constructed from these data supports the data well. The maximum 
value of the MDM is 1 and the minimum value is 0. So, a value near 
1 indicates good model fitting.  
 
Definition 7. Consider the fuzzy reasoning model with crisp input 

observations, 
i

i

µ

µ

−1
, and fuzzy estimated outputs 

iP
e ,the mean 

of squares errors index of the model is defined as follows: 
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in which, )( iP
eD  is the defuzzification of iP

e . 

 
 
Application in clinical studies 
 
In clinical diagnosis, the performance of all screening tests depends 
on the cut off point used to separate normal and abnormal 
individuals. A too high cut off point may cause abnormal individuals 
to be classified as normal and a too low cut off point may classify 
healthy individuals as abnormal. As an example, consider diabetes 
mellitus (DM) which is a common metabolic disorder that shares the 
phenotype of hyperglycemia. Several distinct types of DM exist and 
are caused by a complex interaction of genetics and environmental 
factors (Saneifard, 2009a; Saneifard et al., 2011). There are no 
widely accepted or rigorously validated cut off points for defining 
positive screening tests for diabetes in non pregnant adults 
(Saneifard, 2009b; Yen et al., 1999). The latest suggested cut off 
point for fasting plasma glucose is less than 100 for normal and 
higher than 126 mg/dl for abnormal cases, while for 2 h 
postprandial plasma glucose is less than 140 for normal and 200 
mg/dl for abnormal cases (Ruoning, 1997). However, identical cut 
off point in all texts does not guarantee the crispness. In other 
words, in the neighborhood of the cut off point, a little increase or 
decrease in blood plasma glucose cannot change the individual’s 
status from normal to abnormal. In this case, physicians do not rely 
on one result and repeat the examination to reach more reliability. 
Also, they consider any other clinical symptoms of diabetes to 
decide the classification. However, they admit that the status of 
patient 2 h postprandial plasma glucose is in the 140 to 200 mg/dl 
interval or whose fasting plasma glucose is in the interval 100 to 
126 mg/dl, is unknown. Fuzziness believes that degree of 
vagueness in this interval is not the same.  
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Example 
 

In order to determine the diabetic status of a community in a clinical 
survey, a sample of 2 h postprandial plasma glucose of each 
person was made available. Considering 200 mg/dl as cut off point, 
it was found that 15 cases fell in the interval of 140 to 200 mg/dl. In 
order to predict the possibilistic odds  of  diabetes  for  these  vague 

 

 
 
 
 
statues cases, additional information such as sex, age, body mass 
index (BMI), family history, and 2 h plasma glucose (mg/dl) which 
are shown to be significant risk factors in diabetes (Kim and Bishu, 
1998), were used. We consulted with an expert to assign a 
possibility of the disease to each case. Then, the following 
possibilistic model was fitted: 
 

.15,1),()()()cos()( 543210 L=+++++= ihistoryfamiybBMIbAgebeBloodglubsexbbP iiiiii  

 
Where, for simplicity in computations, the reasoning coefficients 

( )
TRjLjcjj ssab ,,= , 5,,1,0 L=j  are assumed to be 

triangular fuzzy numbers and the fuzziness of the variables 
relationships is hidden in these coefficients. Depending on the 
definition of the coefficients in fuzzy models, there are two types of 
models: 
 

1) The model with symmetric coefficients: jb  in which 

jRjLj sss == , for some .5,,1,0 L=j  

 

2) The model with non symmetric coefficients: jb  in which 

RjLj ss ≠ , for some .5,,1,0 L=j  

 

Both models for different h values were fitted to our data and  

 

results obtained were similar. So, for simplicity in computation and 
interpretation, we chose the symmetrical model to fit our data. Now, 

to decide about the h  value, we fitted the symmetrical model for 

several values of h  and observed its effect on the model 

coefficients.  

As shown, changing h  values do not change the coefficient 

centers )( cja  but affects the spreads )( js  and objective function 

values such that the vagueness of the fuzzy outputs increased with 

the h  values. So, based on the Z values and the vagueness of the 

outputs, it seems that the value 0.6 is the rational choice for h . 

Now the symmetrical possibilistic reasoning model with 6.0=h  is 

fitted to our data. As aforementioned, to fit the model by linear 
programming methods and in order to determine the coefficients 

njb j ,,0, L= , the objective function should be minimized in such 

a way that two constraints for each observation are satisfied. The 
objective function in our example is: 
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This function should be minimized under 30 constraints. Using 
Lingo software, the above linear programming problem was solved 

and coefficients were as follows: ,48.0,88.15 10 =−= cc aa  

09.02 =ca , 07.03 =ca , 11.04 −=ca , 49.05 =ca , 0.00 =s , 

58.01 =s , 0.02 =s , 0.03 =s , 01.04 =s , 13.15 =s . The 

minimized value of the objective function was 02.44=Z , and the 

optimal model was obtained as: 
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This formula can estimate the possibility odds of diabetes for a case 
that is suspected in a diabetic status. Note that the estimated 
possibility odds for each case is a fuzzy output. Now, suppose there 

is a new person with 01 =x , 1652 =x , 403 =x , 254 =x , 

05 =x . Then, according to model 11, the possibilistic odd of 

diabetes for this person is obtained as: 
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Table 1. Distance between the defuzzified estimate and its related observed 
one. 
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1 0.11 0.22 0.11 

2 0.18 0.27 0.09 

3 0.54 0.93 0.39 

4 0.72 0.68 0.04 

5 0.96 3.30 2.34 

6 1.00 1.78 0.78 

7 1.50 2.14 0.64 

8 1.50 1.30 0.20 

9 2.33 3.22 0.89 

10 5.67 4.96 0.71 

11 9.00 16.5 7.56 

12 32.3 36.1 3.86 

13 19.0 16.03 2.97 

14 19.0 16.31 2.69 

15 99.0 108.8 9.88 
 
 
 
So, we can say that, the possibilistic odd of diabetes for this new 
case is about 0.96. Finally, to evaluate the model, we used the two 
criteria proposed earlier to find MDM index, we calculated the 
membership degree of each observed odds in the membership 
function of its related fuzzy output. Finally we obtain, 
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The MDM value was much greater than 0.5, indicating a good fit. 
To obtain the index MSE, we defuzzified each output and then 
calculated its distance to the corresponding observation (Table 1). 
For example, in case 6, by the COG defuzzification method, we 
have: 
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Table 1 shows the results of the calculations. The MSE value of the 
model was obtained as: 
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As aforementioned, this index shows the mean distance between 
the observed and the estimated response values. Its small value 

confirms a good fit. Unfortunately, there are not any critical values 
with which to compare our indices. It seems that the indices, like 
MSE, are useful when we are interested in comparing several fuzzy 
models for the same data set and choosing the best one. The 
model with the smallest MSE value is chosen.  

 
 
Conclusion 
 
In this paper, the details of a fuzzy reasoning are 
discussed and a numerical example of its application to 
clinical studies is given. The proposed model is allied 
when the observations of the binary response variable 
are vague, but the observations of the explanatory 
variables are precise. Since the binary response variable 

has a vague status the 1)( =YP  is not definable and the 

probability odds cannot be calculated. The value of iµ  

detects the degree of adjustment to the category 1 
criteria of the response variable for i -th case and is 

determined by a clinical expert. In our model it is a 
number between 0 and 1. The proposed model can 
therefore be used in other research areas with similar 
situations. 
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