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In order to determine the effect of different aluminium (Al) concentrations on the seedling parameters of 
wheat and the effect of malate and citrate treatments as chelates for reducing the noxious effect of Al in 
medium culture and seedlings of two wheat cultivars, Darab (Al sensitive) and Maroon (Al tolerant) were 
grown on hydroponic solution (non modified Hoagland) containing AlCl3 (0-100-200-300 μM). Factorial 
experiment was realized in a complete randomized design with three replications. The root and shoot 
length as well as fresh and dry weight of roots and shoots were measured. Leaf area was measured by 
a special computer program named compuEyeLSA. Analysis of variance (ANOVA) revealed that, for 
fresh weight of root (FWR), fresh weight of shoot (FWS), dry weight of shoot (DWS) and length of root 
(LR), the main effect of genotype, Al concentration and their interaction was highly significant, whereas, 
in the case of dry weight of root (DWR) and leaf area (LA) traits, only the main effect of genotype and Al 
concentration were highly significant. LS trait only was affected by different Al concentrations. ANOVA 
indicated a significant interaction between genotype and Al concentration for DWS, FWR, FWS and LR 
traits. Therefore, a separate regression analysis was conducted for each genotype. We found difference 
in fitted model between two studied varieties. In the second experiment the effect of malate and citrate 
treatments was studied on reducing the noxious effect of Al in medium culture. ANOVA revealed that, 
there are significant differences among applied treatments on studied seedling growth parameters. This 
means that the application of malate or citrate is effective in some Al concentrations as compared to 
others.   
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INTRODUCTION  
 
Phytotoxic aluminium (Al) ion (mainly Al

3+
) restricts crop 

productivity in acidic soils that cover almost 40% of 
world's arable land (Foy, 1988; Kochian, 1995; Matsumoto, 
2000; Kochian et al., 2004). While acid soils present a 
number of challenges to plant growth,  the  major  limit to   
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Abbreviations: DWS, Dry weight of shoot; DWR, dry weight of 
root; FWR, fresh weight of root; FWS, fresh weight of shoot; LR, 
length of root; LS, length of shoot; LA, leaf area. 

production is Al toxicity, since micromolar concen-trations 
of the trivalent Al cations can rapidly inhibit root growth 
(Foy et al., 1978; Carver and Ownby, 1995). Al toxicity 
inhibits root cell division and elongation, thus reducing 

water and nutrient uptake, consequently resulting in poorer 
plant growth and yield (Alam, 1981; Clarkson, 1966; Foy, 
1983; Foy et al., 1967; Gauthier, 1953; Reid et al., 1969). 
Relative shoot and root dry weights in tolerant barley 
cultivars was two and three fold respec-tively compared 
to susceptible cultivars (Foy, 1996). Root elongation is 
affected within hours of AI exposure (Wallace et al., 
1982), and as in many plant species, the primary site of 
AI toxicity in wheat  (Triticum aestivum  L.) appears to  be 
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the root apex (Bennet and Breen, 1991). Ryan and 
Kochian (1993) have shown that in wheat and maize, root 
elongation is inhibited only when apices are exposed to 
Al, whereas selectively exposing the remainder of the 
root does not inhibit elongation.  

Many plants have evolved mechanisms to tolerate 
aluminum stress and there is a significant variation in Al 
tolerance within some species, such as wheat and maize 
(Kochian et al., 2004). Control of rhizosphere pH has 
been proposed as a means of Al avoidance, because 
aluminum solubility is very pH dependent (Foy, 1988; Foy 
et al., 1965; Taylor, 1987).  Aluminum tolerance in wheat, 
barley, rye and triticale is associated with an increased 
pH of the growth medium (Foy et al., 1965; Mugwira and 
Patel, 1977) or an increased resistance towards lowering 
the pH of a mixed NH4

+
/NO3

-
 solution (Taylor, 1987; Foy, 

1985). However, there is a controversy surrounding the 
observed pH difference that is, if it is the cause or the 
effect of differential Al tolerance. Wagatsuma and 
Yamasaku (1985), found no positive correlation between 
aluminum tolerance in barley and pH changes in the bulk 
nutrient solution induced by the plant in response to 
manipulation of nitrogen (N) sources. Taylor (1988) found 
similar results for winter wheat. Al tolerance in some 
wheat cultivars is inherited in a simple manner consistent 
with the presence of a major dominant gene conferring Al 
tolerance (Kerridge and Kronstad, 1968; Larkin, 1987). 
Other cultivars show a more complex inheritance, 
indicating the presence of several additive genes (Aniol, 
1991).  

In some plants, the increased secretion of organic 
acids is localized in the root apex and depends upon the 
presence of Al in the external solution (Kollmeier and 
Horst, 2001; Ma et al., 2001; Zhang et al., 2001). The 
root apex is particularly sensitive to Al, therefore only the 
cat-ions those immediately surrounding the apical root 
cells need to be detoxified. It has been showed that, the 
organic acids protect the root apex from the toxic Al 
cations by forming chelates with Al. In this study, we 
observed: effect of different Al concentrations on the 
seedling parameters of two wheat cultivars, and the effect 
of malate and citrate treatments as chelates on reducing 
the noxious effect of Al in medium culture.  

 
 
MATERIALS AND METHODS 
 
Plant materials and experimental design  
 
The seeds of two wheat cultivars, Darab (Al sensitive) and Maroon 
(Al tolerant) were prepared from Agricultural Research Center of 
Karaj. The seeds of two cultivars were sterilized with 5% (v/v) 
sodium hypochlorite for 15 min then were rinsed with distilled H2O 
for 15 min and were kept in the dark for 24 h at 25°C. Germinated 
seeds were placed on a plastic net, which was floated on a 
continuously aerated solution containing 0.5 mM CaCl2. The 
seedlings were kept in the dark for 1 day at 25°C and then, were 
moved to natural light. Solution was renewed daily and seedlings 
were selected for treatment by measuring uniform root length. Pre-
culture solution were replaced by hydroponic solution (non modified  

 
 
 
 
Hoagland) containing AlCl3 (0-100-200-300 μM) and pH was kept 
constant at 4. Factorial experiment was realized in a complete 
randomized design with three replications. Each replication 
consisted of one Petri dish of ten seedlings per cultivar and AlCl3 
combinations. Treatment solutions were renewed every 3 days with 
fresh solution (Zakir et al., 2005). The plants were grown for 15 
days under a 16 h photoperiod. The 15 days old plants used for the 
experiments for in citrate and malate used as phytochelator for 
decreasing the effect of aluminum toxicity.  
 
 
Measurement of root, shoot and leaf area 
 
At the end of the treatment application (after 15 days), root and 
shoot length was measured after washing in distilled water and 
using a digital scale (Metler) with 0.001 g sensitivity. Fresh weight 
of roots and shoots was also determined. Leaf area was measured 
by a special computer program named compuEyeLSA (leaf & 
symptom area by Dr Ehab M. Baker). The samples were put in 
oven with 80°C for 48 h then the dry weight of roots and shoots was 
determined.  
 
 
Data analysis 
 
Analysis of variance (ANOVA) was performed using the general 
linear model (GLM) procedure in the SAS software (SAS Institute 
Inc., Cary, NC, USA). The main effect of genotype and Al 
concentration as well as their interactions was determined. To 
generate a trend analysis, the Proc REG procedure of PC-SAS is 
specified (SAS Institute Inc., Cary, NC, USA). Commands for each 
model are placed after the Proc Reg statement.  A separate model 
statement is required for linear, quadratic and cubic trends. 
 
 

RESULTS  
 
ANOVA revealed that, for seedling growth parameters 
such as dry weight of shoot (DWS), fresh weight of root 
(FWR), fresh weight of shoot (FWS) and length root (LR) 
the main effect of genotype, Al concentration and their 
interactions was highly significant, whereas in the case of 
dry weight of root (DWR) and leaf area (LA) traits just the 
main effect of genotype, Al concentration was highly 
significant. Length shoot (LS) only was affected by 
different Al concentrations (Table1).  

As shown in Figure 1, for DWR there was significantly 
difference between Maroon and Darab in all Al 
concentrations. On the other hand, by increasing the 
amount of aluminum concentration in medium culture  
DWR was significantly decreased. In the case of LS trait, 
we did not find any difference between the genotypes in 
all Al concentrations but it was affected by the amount of 
aluminum concentration in medium culture so that by 
increasing Al concentration it decreased in the both 
genotypes in similarly trend.  

ANOVA indicated a significant interaction between 
genotypes and Al concentrations for DWS, FWR, FWS 
and LR traits. Therefore, a separate regression analysis 
was conducted for each genotype. Response of Maroon  
and Darab DWS,  best  fit  the  linear  model as  indicated  
by  a  significant  T-value (Table 2). However, the regres-
sion equations differed  for  each  genotype  (Y  =  0.312 - 
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Table 1. Analysis of variance summary for wheat seedling growth parameters data, under different Al concentrations. Data were 
analyzed using procedures for a completely randomized design. 
 

Source df 
Mean of square 

DWR DWS FWR FWS LS LA LR 

Line 1 0.003**
 

0.004**
 

0.26
** 

0.09
* 

2.331
ns 

19.62
** 

35.50
** 

Al concentration 3 0.001
** 

0.014
** 

0.61
** 

1.40
** 

40.569
** 

45.96
** 

205.30
** 

Line ×Al 
concentration 

3 0.000005
ns 

0.002
** 

0.05
** 

0.07
* 

0.850
ns 

0.27
ns 

2.68
* 

Error 16 0.00002 0.00008 0.006 0.015 0.833 0.11 0.802 

C.V.  6.66  10.92 7.03  3.68 3.75 
 

 df, Degrees of freedom;  **, *, Significant at 0.01 and 0.05 probability level; ns, non significant. 
 
 
 

Table 2. Summary table for wheat seedling growth parameters in different Al concentrations using regression analysis.  
 

Character Line Source 
Linear  Quadratic  Cubic 

Pr>(T)
 

R2 
Estimate SE Pr>(T)

 
R2 

Estimate SE Pr>(T)
 

R2 
Estimate SE 

DWR 

R 

Intercept - - 0.09 0.00201 - - 0.09 0.00241 - - 0.09 0.00253 

Concentration *** 0.92 -0.00012 0.00001 *** - -0.0001 0.00004 ns - -0.0002 0.000097 

Concentration2 
- - - - ns 0.91 8.33 1.237031E-7 ns - 7.33 8.590208E-7 

Concentration3 
- - - - - - - - ns 0.91 -1.44 1.888072E-9 

     

S 

Intercept - - 0.06 0.00195  - - 0.07 0.00204  - - 0.06 0.00191 

Concentration *** 0.91 -0.00011 0.00001 *** - -0.0002 0.000033 *** - -0.0003 0.000073 

Concentration2 
- - - - ns 0.93 1.92 1.048882E-7 ns - 0.000001 6.493587E-7 

Concentration3 
- - - - - - - - ns 0.94 -2.38889E-9 1.427248E-9 

DWS 

     

R 

Intercept - - 0.312 0.00752  - - 0.302 0.00623  - - 0.30 0.00635 

Concentration *** 0.93 -0.0005 0.00004 ns - -0.0002 0.0001 ns - 0.00004 0.00024 

Concentration2 
- - - - ** 0.97 -0.000001 3.194807E-7 ns - -0.000003 0.0000022 

Concentration3 
- - - - - - - - ns 0.97 5E-9 4.732016E-9 

     

S 

Intercept - - 0.25 0.00321  - - 0.25 0.00387  - - 0.25 0.00332 

Concentration *** 0.94 -0.00025 0.00002 *** - -0.0003 0.00006 ** - -0.0005 0.00013 

Concentration2 
- - - - ns 0.95 1.166667E-7 1.983108E-7 ns - 0.000003 0.000001 

Concentration3 
- - - - - - -  ns 0.96 -5.44444E-9 2.475185E-9 

FWR 

     

R 
Intercept - - 1.28 0.06719  - - 1.38 0.05576  - - 1.39 0.05294 

Concentration *** 0.87 -0.003 0.00036 *** - -0.006 0.0009 ** - -0.009 0.00203 
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Table 2: Contd. 
 

  Concentration2 
- - - -  *** 0.93 0.000009 0.000003  ns - 0.00004 0.00002 

Concentration3 
- - - - - - - - ns 0.94 -6.25E-8 3.946244E-8 

     

S 

Intercept - - 0.87 0.03117  - - 0.90 0.03274  - - 0.90 0.03519 

Concentration *** 0.91 -0.02 0.0002 *** - -0.003 0.00053 * - -0.003 0.00135 

Concentration2 
- - - - ns 0.92 0.0000031 0.000002 ns - 0.0000083 0.000012 

  Concentration3 
- - - -  - - - -  ns 0.92 -1.16667E-8 2.623258E-8 

 

 

 

 

 

 

FWS 

     

R Intercept - - 2.31 0.07610  - - 2.28 0.09228  - - 2.25 0.08221 

Concentration *** 0.91 -0.004 0.00041 * - -0.004 0.00148 ns - 0.002 0.00315 

Concentration2 
- - - - ns 0.90 -0.000002 0.000005 ns - -0.00006 0.000028 

Concentration3 
- - - - - - - - ns 0.92 1.215556E-7 6.127831E-8 

     

S 

Intercept - - 2.28 0.05718  - - 2.25 0.06723  - - 2.28 0.05606 

Concentration *** 0.91 -0.003 0.00031 ns - -0.002 0.00108 * - -0.007 0.00215 

Concentration2 
- - - - ns 0.91 -0.000003 0.0000035 ns - 0.00004 0.00002 

Concentration3 
- - - - - - - - * 0.94 -9.91111E-8 4.178225E-8 

LS 

     

R 

Intercept -  31.46 0.62262  - - 31.85 0.72134  - - 32.12 0.66145 

Concentration *** 0.74 -0.02 0.00333 * - -0.031 0.01158 * - -0.072 0.02538 

Concentration2 
- - - - ns 0.74 0.000039 0.000037 ns - 0.00044 0.00022431 

Concentration3 
- - - - - - - - ns 0.79 -8.91111E-7 4.930192E-7 

     

S 

Intercept - - 31.14 0.26556  - - 31.13 0.32610  - - 31.19 0.34337 

Concentration ** 0.95 -0.021 0.00142 *** - -0.021 0.00524 ns - -0.03 0.01317 

Concentration2 
- - - - ns 0.95 -1.66667E-7 0.00001673 ns - 0.000085 0.00011644 

Concentration3 
- - - - - - - - ns 0.94 -1.88889E-7 2.559297E-7 

LA 

     

R 

Intercept - - 13.26 0.30312  - - 12.77 0.18640  - - 12.81 0.18986 

Concentration *** 0.94 -0.02 0.00162 * - -0.008 0.003 ns - -0.02 0.00728 

Concentration2 
- - - - *** 0.98 -0.00005 0.00001 ns - 0.00002 0.00006 

Concentration3 
- - - - - - - - ns 0.98 -1.50556E-7 1.415141E-7 

     

S Intercept - - 11.09 0.23398  - - 10.82 0.22712  - - 10.91 0.19318 

  Concentration *** 0.96 -0.02 0.00125  * - -0.012 0.00365  ** - -0.03 0.00741 

Concentration2 
- - - - * 0.97 -0.00003 0.000012 ns - 0.00012 0.00007 

Concentration3 
- - - - - - - - ns 0.98 -3.25E-7 1.439897E-7 

LR 

    

R 
Intercept - - 32.34 0.38425 - - 32.60 0.442  - - 32.61 0.48067 

Concentration *** 0.98 -0.05 0.00205 *** - -0.06 0.007 * - -0.06 0.01844 
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Table 2: Contd. 
 

  Concentration2 
- - - -  - 0.98 0.00003 0.00002  ns - 0.00004 0.00016 

Concentration3 
- - - - - - - - ns 0.98 -3.72222E-8 3.582687E-7 

    

S Intercept - - 29.06 0.55968 - - 28.34 0.50744  - - 28.37 0.55093 

Concentration *** 0.95 -0.04 0.00299 * - -0.02 0.0082 ns - -0.03 0.02114 

Concentration2 
- - - - * 0.97 -0.00007 0.00003 ns - -0.00004 0.0002 

Concentration3 
- - - - - - - - ns 0.96 -7.88889E-8 4.106416E-7 

 
 

 
 

0.0005 x (Maroon) and Y = 0.25 - 0.0003 x 
(Darab)).  This means that, although DWS 
response for these  genotypes  followed  the  
same basic trend (linear  model), the slope of 
predicted  line differed for  each  genotype. R

2
 

values for Maroon and Darab were 0.93 and 0.94, 
respecttively.  This means 93 and 94% of the 
variation was explained by the linear model. 
These values are high because R

2
 values for 

biological data generally range from 0.50 to 0.90, 
whereas a low R

2
 for non-biological data may be 

0.90 (Kleinbaum and Kupper, 1978).  
Analysis of DWR variable using polynomial 

contrasts indicated that, the response of Maroon 
and Darab explants also best fit the linear model 
and approximately had the same equations (Table 
2). Concerning FWR trait, the response of Maroon 
best fit the quadratic model whereas Darab 
explants the linear model (Table 2). Analysis of 
FWS variable using polynomial contrasts indicated 
that, the response of Maroon and Darab explants 
best fit the linear and cubic models, respectively 
(Table 2). Response of Maroon and Darab LS 
best fit the linear model  as  indicated  by  a signi- 
significant T-value (Table 2) and approximately 
had the same equations. But R

2
 values for 

Maroon and Darab were 0.74 and 0.95, 
respectively. This means that 74 and 95% of the 
variation was explained by the model. Analysis of 

LR variable using polynomial contrasts indicated 
that, the response of Maroon and Darab explants 
best fit the linear and quadratic model. R

2
 values 

for Maroon and Darab were 0.98 and 0.97, 
respectively. This means that 98 and 97% of the 
variation was explained by the model. Response 
of Maroon  and Darab LA  best  fit  the  quadratic  
model as  indicated  by  a  significant  T-value  
(Table 2).  R

2
 values for Maroon and Darab were 

0.98 and 0.97, respectively. 
In the second experiment the effect of malate 

and citrate treatments was studied on reducing 
the noxious effect of Al in medium culture. 
ANOVA revealed that, there are significant 
differences among applied treatments on studied 
seedling growth parameters however, the 
interaction effects between applied treatment and 
Al concentration was significant in the studied 
traits (Table 3). This means that, the effect of 
malate or citrate application is effective in some Al 
concentrations compared to other Al 
concentrations. As shown in Figure 1, the 
application of malate especially in two first Al 
concentrations reduced the noxious effect of Al in 
medium culture in both studied genotypes. The 
results showed that, the application of malate 
were effective when compared with citrate 
treatment in reducing the noxious effect of Al 
(Figure 1). 

DISCUSSION  
 
The results of the present study indicated that in 
Al-tolerant plants, Al caused less inhibition of root 
growth than that of Al-sensitive plants. One of the 
very early symptoms of aluminum toxicity is root 
growth inhibition, which can be accompanied by 
cell death as a consequence of the loss of plasma 
membrane (PM) integrity at higher aluminum 
concentrations (Matsumoto, 2000; Kochian, 
1995). Several research works showed that, Al 
toxicity inhibits root cell division and elongation, 
thus reducing water and nutrient uptake, 
consequently resulting in poorer plant growth 
(Alam, 1981; Clarkson, 1966; Foy, 1983; Foy et 
al., 1967; Gauthier, 1953; Reid et al., 1969). 
Wallace et al. (1982) reported that wheat (T. 
aestivum L.) root elongation is affected within 
hours of AI exposure and as in many plant 
species; the primary site of AI toxicity in wheat 
appears to be the root apex (Bennet and Breen, 
1991). Rayan and Kochian, (1993) have reported 
that root elongation in wheat and maize is 
inhibited only when apices are exposed to Al. 

Our results showed that, in the both cultivars 
(Darab as Al sensitive and Maroon as aluminum 
tolerant) the application of malate and citrate as 
organic acids (Table 3) reduced the noxious effect 
of Al on seedling parameters. In some plants, the 
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LSD(0.05)=0.02 

   
LSD(0.05)=0.01 

   
LSD(0.05)=0.33 

   
LSD(0.05)=0.17 
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LSD(0.05)=1.35 

   
LSD(0.05)=1.16 

 
LSD(0.05)=0.55 

 

     

 
 

 

Figure1. Effect of malate and citrate treatments on reducing the noxious effect of Al in medium culture. The first column 
from left show the effect of only Al concentration in medium culture. The second column show the effect of Al 
concentration in medium culture together with the malate and the third column show the effect of Al concentration in 
medium culture together with the citrate on the different seedling parameters. 

 
 
 

increased secretion of organic acids is localized in the 
root apex and depends upon the presence of Al in the 
external solution (Kollmeier and Horst, 2001; Ma et al., 
2001; Zhang et al., 2001). The root apex is particularly 
sensitive to aluminum, therefore only the cations those 
immediately surrounding the apical root cells need to be 
detoxified. It has been shown that the organic acids, by 
forming chelates with Al, shield the root apex from the 
toxic Al cations by forming chelates with aluminum. Al 
resistance in wheat is correlated with the Al-activated 

efflux of malate from the root apices (Ryan et al., 1995) 
and this is consistent with our results observed as a 
correlation between malate application and Al resistance 
among the wheat lines. 
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Table 3. Analysis of variance summary for wheat seedling growth parameters data under different Al concentrations including malate and citrate treatments. Data were analyzed using 
procedures for a completely randomized design. 
 

Source df 
Mean of square 

DWR DWS FWR FWS LS LR LA 

Genotype 1 0.007**
 

0.01**
 

0.92**
 

0.09
ns 

15.88**
 

112.63**
 

19.62**
 

Al concentration 3 0.002**
 

0.03**
 

1.35**
 

2.94**
 

90.45**
 

528.91**
 

45.96**
 

Treatment 2 0.004**
 

0.008**
 

0.56**
 

1.97**
 

13.67**
 

21.91**
 

0.28
ns 

Genotype  treatment 2 0.0002
ns 

0.00002
ns 

0.02
ns 

0.02
ns 

0.92
ns 

0.68
ns 

- 

Al concentration  treatment 6 0.0005**
 

0.001
** 

0.09**
 

0.23**
 

1.72*
 

2.58**
 

- 

Genotype  Al concentration 3 0.00009
ns 

0.007**
 

0.14**
 

0.18**
 

9.18**
 

7.33**
 

- 

Genotype  Al concentration  
treatment 

6 0.00006
ns 

0.00001
ns 

0.01
ns 

0.02
ns 

0.93
ns 

0.43
ns 

- 

Error 46 0.00006 0.0001 0.01 0.04 0.67 0.49 0.11 
CV  11.16 4.53 12.63 9.45 2.81 2.82 3.68 
 

CV, Coefficient of variation; df, degrees of freedom; ***, **, *, Significant at 0.001, 0.01 and 0.05 probability level; ns, non significant. 
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