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Imaging may be referred to as the ‘eyes of science’ as it provides scientists with highly informative 
multi-dimensional and multi-parameter data usually invisible to the naked eye. As instrumentation 
technologies and genetic engineering advances, it’s possible in modern times to observe and image 
highly dynamic biochemistry processes. This paper reviews positron emission tomography (PET), 
magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, visible light microscopy, 
bioluminescence (BLI) and fluorescence mediated tomography (FMT) imaging techniques, highlighting 
the principles behind the operation of each technique, their major strengths and drawbacks. With the 
enhancement of the existing techniques and evolution of new ones, the future possibility of refined 
view of systems invisible to naked human eye is promising. More so is when two or more techniques 
are combined in biological systems analysis.  
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INTRODUCTION 
 
Imaging, whether macroscopic, microscopic or 
nanoscopic plays a unique role in sciences in that it aids 
to collect data that can be analyzed to provide useful 
insights during experimentation and postexperiment. In 
that respect, imaging may be referred to as the ‘eyes of 
science’. Imaging provides scientists with highly 
informative multi-dimensional and multi-parameter data. 
Examples of physical parameters that could be 
imaged/measured are concentration e.g. of water

 
(Pircher 

et al., 2003) and oxygen (Kurokawa et al., 2015; 
Papkovsky and Dmitriev, 2012a, b), tissue properties

 

(Gao, 1996), surface area
 

(Eils and Athale, 2003), 
molecular architecture (Fridman et al., 2012), protein 

binding dynamics (Marsh and Teichmann, 2015), protein 
diffusion rates

 
(Day and Schaufele, 2008)  and many 

others, all of which provide an insight on temporal 
biological functions. Traditionally imaging has been done 
using various techniques that for example freezes 
biological specimens during sample preparations, but 
with the recent advances in high-resolution microscopy 
and genetically engineered fluorescent probes that are 
fusible to cellular proteins (Day and Schaufele, 2008), live 
cell imaging is now possible, that is very useful to 
observe the highly dynamic cellular multi-parameters. In 
other words, events or parameters occurring on a large 
scale of time scales can be obtained in minimally invasive  
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Table 1. Imaging from anatomical to atomic scales. 
 

Imaging technique Spatial resolution Depth limit Scan Time  Key use References  

PET/MicroPET/MicroSPECT 1-2 mm No limit Minutes 
Metabolic imaging of molecules such as glucose, thymidine, 
imaging of probes such as antibodies, peptides etc. 

Weissleder, 2002; Park et al., 2007; Koba et al., 
2013; Moore et al., 2000; Jang, 2013 

      

MRS ≈ 2 nm - Minutes-Hours Detection of metabolites 
Gabbay et al , 2007; Müller et al., 2014; Strobel et 
al., 2008 

      

fMRI ≈ 1 nm No limit Seconds-Minutes Functional imaging of brain activity 
Kriegeskorte and Bandettini, 2007; Ciobanu and 
Pennington, 2004 

      

MRI/MicroMRI 4-100 μm, No limit Minutes-Hours Anatomical Imaging 
Weissleder, 2002; Ciobanu and Pennington, 2004; 
Singh et al., 2002 

      

CT/MicroCT 12-50 μm No limit Minutes Lung and bone tumor imaging 
Weissleder, 2002; Koba et al., 2013; Jang, 2013; 
Meng et al , 2006. 

      

Ultrasound  ≈ 50 μm Millimeters Seconds Vascular and interventional imaging Weissleder, 2002, Jang, 2013. 

Visible Microscopy (various modern techniques are summarized in Table 2) 

Bioluminescence (BLI) Several mm cm Minutes  Gene expression and cell tracking Sadikot and Blackwell, 2005; Keyaerts et al., 2012) 

Fluorescence mediated 
tomography (FMT) 

1-2 mm < 1 cm Seconds-Minutes Quantitative imaging of targeted fluorochromes in deep tumors 
Ntziachristos et al., 2002; Ntziachristos and 
Weissleder, 2003 

      

Atomic force microscopy 10-20 nm - Minutes Mapping cell surface Leonenko et al., 2007; Binnig et al , 1986. 

Electron microscopy  ≈ 5 nm - Seconds Discerning protein structure Murphy and Jensen, 2007 
 
 
 

optical based techniques. Obtained parameters in 
biological systems are useful and applied to allow 
both therapeutic and diagnostic applications 
(Alivisatos et al., 2005; Michalet et al., 2005; Loo 
et al., 2004). In addition data acquired from 
imaging procedures forms the foundation for 
mathematical modeling e.g. of protein kinetics and 
biochemical signaling networks (Chen and 
Murphy, 2004). Imaging data can also be utilised 
to test computational models developed in 
computational biology (Kherlopian et al., 2008). 
 
 

IMAGING ON MULTIPLE SCALES 
 

In contemporary times, using several techniques 
such as positron-emission tomography, magnetic  

resonance imaging, and optical coherence 
tomography, imaging is possible in a wide large of 
spatial resolution, ranging between 1 mm and 10 
µm. Even much higher spatial resolutions at the 
molecular or at atomic levels (< 10 nm) are now 
possible with electron microscopy and scanning 
probe techniques, as summarized in Table 1.  

Between these two resolutions extremes lies the 
resolving power of optical microscopy (that is, 10 
nm to 1 mm) that utilizes visible light (≈ 400 to 700 
nm). A summary of various modern visible range 
imaging techniques are summarized in Table 2.  
Imaging within this electromagnetic spectra region 
is beneficial since the radiation energy strikes a 
balance between being energetic enough to view 
fluorescent   probes   and   fair    enough    to    be  

minimally invasive, thus enabling live cell imaging. 
However, a major drawback arises from the 

limits to spatial resolution that is famously 
represented by the Abbes equation (Abbe, 1873): 
 

                                            (1) 
 

where   is the radiation wavelength,   is the 
refractive index of the medium,   is the half angle 
over which the objective can gather light radiation, 
   is the numerical aperture of the objective. A 

direct implication of Equation 1, with            
    possible with modern optics is that, the spatial 

resolution   
 

 
    meaning that for green light of 

around 500 nm d = λ/2 = 250 nm (0.25 μm).  In

 =
 

2  sin  
≡

 

2  
                                                              [1]   (1) 
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Table 2. Modern innovative techniques that overcomes the Abbes resolution limit. 
 

Visible microscopic technique Principle  Resolution Scan time  References  

Near-Field (NSOM) 

-Scanning near-field optical microscopy 

-Wide-field near-field optical microscopy 

Done by placing the detector very close to the 
specimen surface 

20 nm (Lateral), 

2–5 nm (axial) 
 

Dürig et al., 1986; Oshikane et al., 2007: Novotny et al., 
1995 

     

-Photo-activated light microscopy (PALM) 

-Fluorescence PALM (FPALM) 

-Stochastic optical reconstruction (STORM) 

Photoactivation/photo switching and localization of 
single fluorescent molecules 

10-40 nm (Lateral) 

~ 10-50 nm (Axial) 
Seconds 

Hess et al., 2006; Betzig et al 2006; Rust et al., 2006; 
Heilemann et al., 2008; Huang et al., 2008; Shtengel et al., 
2009 

     

Stimulated emission depletion (STED) PSF shrinking by stimulated emission depletion 
30-50  nm (Lateral) 

30-600 nm (Axial) 
 

Betzig et al., 2006; Rust et al., 2006; Donnert et al., 2006; 
Hell and Wichmann, 1994 

     

Saturated structured illumination (SSIM) Moiré pattern by spatially structured illumination 
~ 100 nm (Lateral) 

< 300 nm (Axial) 
Seconds Gustafsson, 2000; Burnette et al., 2011; Andersson, 2008;  

     

Ground state depletion (GSD) 
Depletion of ground-state energy of out-of-focus 
molecules  

~ 15 nm (Lateral) Minutes  Hell and Kroug, 1995 

     

4Pi and I5M 
Coherent addition of spherical wavefronts of two 
opposing high aperture angle lenses 

~ 100 nm (Axial) 

 
 

Bewersdorf et al., 2006; Egner et al., 2002;  Egner et al., 
2004; Egner and Hell, 2005; Geisler, 2009 

     

Confocal microscopy 
actively suppressing any signal coming from out-of-
focus planes e.g. by use of a pinhole in front of the 
detector 

  Robert et al., 1996 

     

Widefield and TIRF (total internal reflection 
fluorescence) Microscopy  

Formation of evanescence excitation field as light is 

total internally reflected at an interface between a 

high- and a low-index medium 

~ 100 nm  Chung et al., 2006 

     

Optical coherence tomography 
Use of low-coherence interferometry to produce a 2D 
image of optical scattering from internal tissue 
microstructures 

Few μm Minutes Huang et al., 1991 

 
 
 

addition, the limit implies that radiation of much 
lower wavelengths e.g. x-rays, can achieve higher 
resolutions, but this leads to the loss of the 
aforementioned advantage of visible light, that is, 
minimal invasiveness. As a consequence of 
tireless research, several techniques to 
innovatively overcome the Abbes resolution limit 
has been developed, as summarized in Table 2. 
Principles underlying the working of these 

techniques laid out in Table 2, have been 
presented in different articles and reviews 
(Weisenburger and Sandoghdar, 2015; Won, 
2009; Hell et al., 2009). 
 
 
IMAGING TECHNIQUES 
 
It   is   projected   that    in    the    coming    years,  

improvement in both spatial and lateral resolution 
combined with time-based sampling will be on the 
increase. In addition, more techniques will 
improve the ability to image highly dynamic 
molecular and cellular substructures. These 
innovative techniques will most probably lie on 
improvement of the existing microscopy methods, 
ultrasound, computed tomography (CT), magnetic 
resonance  I maging   (MRI),   positron    emission 
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Table 3. Comparison of micro-, mini- and clinical-scale CT. 
 

Parameter Suitable for Resolution μm) Transaxial scan field-of-view Time of scan References 

CT Large animals up to humans > 450  > 20 cm Few seconds 
Weissleder, 2002; Meng et al., 2006; 
Thomasson et al., 2004.  

      

Mini-CT Mice, primates, rats , rabbits 100-450  5-20 cm Sub seconds to few seconds Meng et al., 2006; Ritman, 2011. 
      

Micro-CT 
Tissue samples , insects, mice and 
rats 

5-100 1-5 cm Seconds to hours Meng et al., 2006; Ritman, 2011. 

 
 
 
tomography (PET), microCT, microMRI, fMRI, 
MicroPET among others.  This review paper 
briefly discusses in this section the imaging 
techniques across a multiple resolution scale, 
giving a summary of each technique’s underlying 
principles and discussion of their advantages and 
limitations.  
 
 
PET/MICROPET/MICROSPECT 
 
Positron emission tomography (PET) is an 
imaging technique that enables performance of in 
vivo measurements of the anatomical distribution 
and rates of specific biochemical reactions 
(Phelps and Mazziotta, 1985). In this technique, 
radioactive decaying nuclides such as 

15
O, 

13
N, 

11
C, 

18
F, 

124
I and 

94m
Tc are incorporated into 

metabolically active molecules and then 
intravenously injected into the animal (Massoud 
and Gambhir, 2003; Kherlopian et al., 2008; 
Weissleder, 2002). These metabolically active 
molecules diffuse in the target tissue, after a brief 
window period and the nuclides begin to decay, 
emitting positrons that collide with free electrons. 
This interaction of positrons and free electrons 
results to the conversion of matter into two 511 

keV -rays emerging in opposite directions 
(Nelson et al., 2002; Phelps et al., 2002) which 
are detected and observed by  detector  rings.  By 

using radioactive tracers, reconstruction of 3-D 
images to show the concentration and locations of 
metabolic molecules of interest is made possible

 

(Gambhir, 2002). For example, molecular events 
in the course of Cancer development, during 
therapy or recurrence can be monitored (Phelps 
et al., 2002; Gambhir, 2002) by PET.  Applied that 
way, PET is a highly sensitive and minimally-
invasive technology. An additional strength of PET 
is that quantitative kinetic data of highly dynamic 
biochemistry can be acquired repetitively.  
However, due to the same decay type of the 
different radioactive tracers, it is only possible to 
trace one molecular species in a given imaging 
experiment or clinical scan. Single photon 
emission tomography (SPECT) also involves the 
detection and quantification of gamma-emitting 
radionuclides. This technique is commonly used in 
experimental oncology to track individual 
molecules or cells. The molecule or cell of interest 
is labelled with a gamma-ray-emitting nuclide 
such as, 

99m
Tc, 

111
In, 

123
I or 

125
I, injected into an 

animal and followed using sodium iodide gamma 
cameras or solid-state cadmium-zinc telluride 
(CZT) detectors (Groch, 2001). Gamma emitting 
nuclides are cheap and differ in their decay time, 
energy and mode of attachment and hence 
different nuclides are used for different 
applications. By placing Lead collimators between 
the animal and detectors, spatial information is 

obtained, which when obtained in various 
projections are finally tomographicaly 
reconstructed.  
 
 
MRI/MICROMRI AND FMRI 
 
When imaging an object by Magnetic Resonance 
Imaging (MRI), the object is placed in a strong 
magnetic field. This magnetic field aligns the spins 
of the hydrogen nuclei, predominantly in water 
and fat, in a direction parallel to the field. Then 
using a radio frequency pulse, the sample’s 
protons spins can be made to tilt and precess

 

(Nazarian et al., 2013).  A radio frequency 
receiver records the resulting signal, which is can 
readily be constructed to produce detailed 
pictures of organs, soft tissues, bone and virtually 
all other internal body structures (Curie et al., 
2013). At much higher magnetic field strengths, 
which improves resolution, the method is referred 
to as MicroMRI. Functional magnetic resonance 
imaging or functional MRI (fMRI) is a functional 
neuroimaging procedure based on MRI, and used 
to image brain activity in response to specified 
stimuli. When a stimuli requires a response in a 
particular area of the brain, metabolism and hence 
demand for blood flow and more oxygenated 
hemoglobin increases in that area. The ratio of 
oxygenated and deoxygenated brain is altered in  
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that region and hence an image taken will have a 
different contrast, especially when compared with the 
baseline measurements (Parrish et al., 2000). 
 
 
ULTRASOUND 
 
Detection of reflected sound waves (20-60 MHz; 2-10 
MHz in humans) as echoes by probes forms the basis of 
ultrasound imaging. A handheld probe that sends pulses 
of sound into a patient’s body is moved over the body 
using water-based gels. The gels are used to avoid 
intense sound reflections at the borderlines between 
ultrasonic probe and the patient’s skin resulting from air 
pockets. The depth of the tissue reflecting the sound 
waves is inferred from the time it takes for the echo to 
travel back to the probe. Computer Algorithms are then 
used to interpret these echo waveforms to construct an 
image (Jensen, 2007). Ultrasound major strengths are 
that it is less expensive compared to other techniques, it 
is more patient friendly e.g. there is no claustrophobia, 
and it is dynamic making real time observation possible 
which makes artifacts detection easier than in other 
techniques (Lento and Primack, 2008). A major drawback 
arises due to techniques’ dependence on body’s general 
constitution; resolution is compromised in obese and 
muscular patients for example

 
(Lento and Primack, 

2008). However, improvement of visualization and 
resolution of deeper structures is improving with recent 
refinement of tissue harmonics

 
(Rosenthal et al., 2001).  

 
 
CT/MICROCT AND MINI-CT 
 
X-ray computed tomography (CT) measures the 
absorption of X-rays as they pass through tissues. 
Intrinsic differences in absorption between bone, fat, air 
and water result in high-contrast images of anatomical 
structures in CT. Due to the CT relatively poor soft-tissue 
contrast and inability to differentiate between tumors and 
surrounding tissue, iodinated contrast agents, which 
perfuse different tissue types at different rates, are 
commonly used to delineate organs and tumors. 
Practically, a low X-ray source and a detector rotate 
around the subject, acquiring volumetric data.  
The detectors are typically charged coupled devices 
(CCD) and act to photo transduce incoming X-rays

 

(Kalender, 2006). Micro- and mini-CT are scaled down 
CT-imaging modalities for small animals, which in 
principle provide the same information about morphology 
and disease status or disease progression for animals as 
clinical-scale CT does for humans. However, several 
major differences compared to clinical CT scanning exist 
as reviewed by Bartling et al. (2007). For animal studies, 
microCT machines can be used which typically operate 
with higher energy X-rays when compared to human 
scanners. The  increase  in  energy  improves  resolution,  

 
 
 
 
but exposes the specimen to more ionizing radiation 
which has adverse health effects. A comparison of the 
three is shown in the Table 3. 

A key advantage of CT is its high spatial resolution, 12 
to 50 μm (Weissleder, 2002; Meng, 2006) which is 
needed to visualize fine anatomical details. CT can also 
be combined with functional imaging technologies that 
provide dynamic and metabolic information. The radiation 
dose of CT, however, is not negligible and this limits 
repeated imaging in human studies due to health risks

 

(Thomasson et al., 2004). 
 
 
OPTICAL MICROSCOPY APPROACHING TO 
NANOSCOPY 
 
Optical microscopy could be regarded as the most 
significant tool to visualize objects that are usually 
invisible to the naked eye. It’s a technique with the 
capability to measure surface morphology and localize 
molecular and protein distributions in vivo. Through 
microscopy, our knowledge about the ‘micro-world’ has 
been greatly enhanced. Technological improvement, 
coupled with the advent of green fluorescent protein 
(GFP)  leading to rise of fluorescence microscopy has 
been a major step forward in the study of living cells.  
Traditional fluorescence microscopy suffered from the 
need to use high energetic laser light, hence 
photobleaching the samples and detection of out of focus 
excitations, further impairing the resolution already limited 
by Abbes equation.  Improvement of traditional 
fluorescence microscopy, has led to development of new 
microscopy techniques such as multi-photon and 
confocal and microscopy to deal with the two drawbacks 
of traditional microscopy respectively (Yuste, 2005). 
Following continuous and ongoing research, in effort to 
break the diffraction barrier, other techniques like 
stimulated emission depletion (STED) (Betzig et al., 
2006), photo-activated localized microscopy (PALM) 
(Hess et al., 2006; Betzig et al., 2006) and stochastic 
optical reconstruction microscopy (STORM) (Rust et al., 
2006) has been developed. These methods have 
improved resolution to, 30 to 50 nm for STED and 10 to 
40 nm for PALM/STORM (Heilemann et al., 2008, Huang, 
2008; Meyer et al., 2008). In STED  microscopy two 
pulsed lasers are used, one laser pulse is chosen to have 
the wavelength that excites fluorophores, and a second 
donut shaped laser pulse that depletes fluorescence 
follows instantaneously. The wavelength of the second 
laser is tuned to be longer than the fluorescence 
emission. Consequently, photons from the second laser 
induce electrons to drop to a lower energy level 
(stimulated emission) averting typical fluorescence, and 
hence achieving emission depletion. The final result 
would be a very small area (center of the donut shaped 
depleting beam) from where the fluorescence is detected.  
This area is smaller  than  a  diffraction-limited  spot.  The  



 
 
 
 
principle behind STORM and PLAM is the ability to 
stochastically switch on and off (Huang et al., 2009; 
Huang et al., 2010)  a small subset of fluorescent 
molecules, the only difference is that PALM uses photo-
activatable fluorescent proteins and STORM uses photo-
switching of pairs of cyanine dyes (Bates et al., 2007; 
Rust et al., 2006; Heilemann et al., 2008).  If the number 
of activated fluorophores is kept low enough so that the 
distance between the molecules is larger than the 
resolution limit, each fluorophore molecule can be 
localized. A super-resolved image is then obtained by the 
superposition of many wide-field images containing 
information on the location of different single molecules 
(Hess et al., 2006; Betzig et al., 2006; Rust et al., 2006). 

An additional innovative microscopic technique that 
achieves resolution at the nano-scale (< 10 nm) is the 
Förster Resonance Energy Transfer (FRET). The 
technique has been reviewed extensively by Sekar and 
Periasamy (2003), and Roy et al. (2008) among others. 
The technique is based on resonance energy transfer 
whereby, an excited donor fluorophore in close proximity 
(< 10 nm) to an acceptor fluorophore, whose absorption 
spectrum overlaps with the emission spectrum of the 
donor, non-radiatively transfers some of its excited state 
energy to the acceptor in a manner dependent on dipole-
dipole resonance coupling (Pietraszewska and Gadella, 
2010).  Hence a positive FRET occurrence estimates that 
the two fluorophores are within 10 nm (Berney and 
Danuser, 2003).  With a confocal microscope, one way 
FRET is performed is by acceptor-bleaching method as 
described in earlier publications by former colleagues 
(Orthaus et al., 2008; Orthaus et al., 2009) in use to study 
the structure of the human Kinetochore. Recently, the 
technique has demonstrated, to be a valuable tool in our 
study the centromeric chromatin (Llères et al., 2009).  
This is the chromatin site where the kinetochore structure 
is anchored by the presence of CENP-A histone and 
longer links made possible by the CENP-C terminal tails 
as we have reported in Abendroth et al. (2015). A 
combination of the STORM and FRET in the study 
kinetochore structure and centromeric chromatin is 
expected to be a major breakthrough in understanding of 
these highly dynamic structures in the cell cycle.  
 
 
BIOLUMINESCENCE IMAGING  
 
Bioluminescence imaging (BLI) is a technique similar to 
Fluorescence Optical imaging, the difference is that here, 
the few photons being measured emanate from cells that 
have been genetically engineered to express luciferases 
(Sato et al., 2004). Luciferases are enzymes that catalyze 
the oxidation of a substrate to release photons of light 
(Greer and Szalay, 2002). These enzymes are isolated 
from a variety of species for example, luciferase from the 
firefly catalyze the oxidation of luciferin, whereas 
luciferase from the sea pansy Renilla reniformis  catalyze  
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the oxidation of coelenterazine causing the release of a 
photon (Sadikot and Blackwell, 2005). Because 
mammalian tissues do not naturally emit 
bioluminescence, in vivo BLI has considerable appeal 
because images can be generated with very little back-
ground signal. Credit to genetic engineering, a number of 
luciferases that results to a spectral shift of released 
photons have been created (Loening et al., 2010). This, 
coupled with high sensitive optical filters, imaging of two 
or more cellular proteins, or their mutants can be tracked 
simultaneously. BLI is inexpensive, a good alternative of 
PET imaging, however,   it is not likely to be used in a 
clinical setting, because it can only monitor transgenically 
modified tumour cells and because it is difficult to detect 
photons released from deep tissues (Weissleder, 2002). 
 
 
FLUORESCENCE-MEDIATED TOMOGRAPHIC 
IMAGING 
 
In this technique, fluorescently labeled probe of interest is 
exposed to light from different sources. The resultant 
fluorescence is detected by various detectors positioned 
in a spatially defined order in an imaging chamber. The 
obtained information is reconstructed using an algorithm, 
giving a 3-D reconstructed tomographic image that 
makes it useful for clinical measurements. The potential 
of FMT for laboratory use is great since it does not 
require radioactive labeling and it can make use of the 
increasing number of fluorescent tags (Ntziachristos and 
Weissleder, 2003). As a major strength of this technique, 
it has been demonstrated that a combination of 
measurements of fluorescent and of intrinsic contrast can 
provide self-calibrated tomographic data that could yield 
absolute fluorochromes concentration reconstructions

 

(Ntziachristos et al., 2002). In addition the technique can 
do in vivo observations

 
(Ntziachristos et al., 2002). 

 
 
CONCLUSION 
 
A review of the diverse imaging techniques used for 
diagnosis and research has been presented though the 
list is not exhaustive. It is very clear that no single 
technique can achieve everything that needs to be 
observed, each technique has its own strengths as well 
as limitations. These unique strengths and drawbacks 
dictate where and when to apply a technique e.g. 
ultrasound for its low associated risks is applied in 
viewing fetus, but it is of no use to image lungs and 
bones for example because of the very high reflections at 
air-tissue and bone-tissue interfaces. Another major 
factor that makes each technique unique is the 
resolution. This is a consequence of biological systems 
being complex, and so is the radiation interaction with 
these systems. Infact there is a resolution gap between 
techniques  that  are  suitable  for  experimental  research  
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and clinical imaging, that is, there is a gap between 
anatomic and microscopic scales. To address the 
resolution gaps, a combination of imaging techniques is 
recommended and indeed these combinations are being 
tried out. For example there have been successful 
attempts to bridging fluorescence microscopy and 
electron microscopy. Another example is the combination 
of PET and CT scanners which makes it possible to 
acquire metabolic information recorded with higher 
resolution anatomical CT images. 
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