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The new nomenclature of Brassica has been suggested in a previous study by same authours where 
the symbols of A

r
, A

j
 and A

n
 represented the A genome in the Brassica rapa, Brassica juncea and 

Brassica napus, B
b
, B

j
 and B

c 
for the B genome of Brassica nigra (black mustard), B. juncea and 

Brassica carinata, C
o
, C

n
 and C

c
 for the C genome of Brassica oleracea, B. napus and B. carinata. 

Numerous efforts have focused on exploring novel B. napus (A
n
A

n
C

n
C

n
) breeding stocks by the 

hybridization between Brassica species. Thereafter, most interspecific hybrids in Brassicas could be 
considered as intersubgenomic hybrids. In this review, examples are shown from recent studies on the 
method for construction of new-typed B. napus with genome composition of A

r
A

r
C

c
C

c 
and A

r
A

r
C

n
C

n
, the 

meiosis and embryo sac development of new-typed B. napus, the appearance of intersubgenomic 
(A

n
A

r
C

n
C

c
 and A

r
A

n
C

n
C

n
) heterosis and the mechanism for production of intersubgenomic heterosis 

were described.  
 
Key words: New-typed B. napus, subgenome, intersubgenomic heterosis. 

 
 
INTRODUCTION 
 
In Brassicas, three diploid species, that is, Brassica rapa 
(AA, 2n = 20), Brassica nigra (BB, 2n = 16), Brassica 
oleracea (CC, 2n = 18) and three natural spontaneous 
amphidiploids species of Brassica napus (AACC, 2n = 
38), Brassica juncea (BBCC, 2n = 36) and Brassica 
carinata (AABB, 2n = 34) have been on existence. Lots of 
research revealed that the three amphidiploids species of 
Brassicas were derived from the interspecific crosses 
between three diploids (Morinaga, 1933, 1934; UN, 1935; 
Snowdon, 2007). B. napus was the most important oilseed 
Brassica crop in the world due to good production 
potential and resistances. B. napus accounts for about 
85% of oilseed rapeseed in China (Fu, 2000). B. napus 
was one of the specie that the heterosis was widely used, 
the first CMS male sterile line with practical value and the 
first hybrid variety that was successfully cultivated in 
China (Fan and Stefansson, 1986; Downey and 
Röbbelen, 1989; Fu, 2000). Lots of research revealed 
that   the  heterosis  has  a  relationship  with  the  genetic  
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diversity of the parents (Diers et al., 1996; Riaz et al., 
2001; Liu et al., 2002; Qian et al., 2005). The germplasm 
of B. napus was rather narrow compared with other 
species of B. rapa, B. oleracea and B. carinata for only 
about 400 years of domestication (Gómez-Campo, 1999). 
The narrow genetic basis limiting its potential for improving 
seed yield, otherwise, the A genome of B. rapa and C 
genome of B. carinata is rather different from A and C 
genome of B. napus (Prakash and Hinata, 1980; Hoenecke 
and Chyi, 1991; Song et al., 1995; Li et al., 2005, 2006). 
Introgression of A genome of B. rapa and C genome of B. 
carinata into B. napus would explore the genetic bases of 
B. napus. Recently, some efforts have been made to 
widen the germplasm of B. napus by introgressions of 
genomic components from the parental species (Chen 
and Heneen, 1989; Seyis et al., 2003; Qian et al., 2005).  
 
 
THE CONCEPT OF SUBGENOME OF BRASSICA 
 

Long years of evolution and artificial selection have made 
the A genome and C genome in B. napus somewhat 
different from the A genome in B. rapa and B. juncea, the  
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Figure 1. The letters of subgenome of Brassicas and their relationship. 

 
 
 

C genome in B. oleracea and B. carinata (Inomata, 1985; 
Song et al., 1988). To distinguish the difference, the concept 
of subgenome was introduced to genus Brassicas. Thus, 
A

r
, A

n
 and A

j
 was used to represent the A genome in B. 

rapa, B. napus and B. juncea, B
b
, B

j
 and B

c 
for the B 

genome of B. nigra (black mustard), B. juncea and B. 
carinata while, C

o
, C

n
 and C

c
 was used for the C genome 

of B. oleracea, B. napus and B. carinata (Qian et al., 
2005; Li et al., 2004, 2006, 2007) (Figure 1). B. napus 
was the widely cultivated in the world, the limited geo-
graphical range of B. napus and its intensive breeding 
has led to a comparatively narrow genetic basis in this 
species. Numerous efforts have focused on exploring 
novel B. napus breeding stocks by the hybridization of B. 
rapa × B. oleracea or B. napus × B. juncea, B. carinata × 
B. nigra (Meng et al., 1998; Bing et al., 1996; Rahman, 
2001; Li et al., 2004). Thereafter, most interspecific 
hybrids in Brassica could be considered as intersub-
genomic hybrids, such as A

r
A

n
C

n
 (B.napus × B. rapa) and 

A
r
B

c
C

c
 (B. carinata × B. rapa).  

As shown in previous studies, the positive correlations 
between genetic distance between parents of hybrid and 
mid-parent heterosis has been demonstrated for seed 
yield in B. napus. If a new-typed B. napus, A

r
A

r
C

c
C

c
 or 

A
r
A

r
C

n
C

n 
with normal meiosis can be created by inter-

specific hybridization and molecular selection, the 
heterosis would be expected in the hybrid of A

r
C

c
C

n
C

c
 or 

A
r
A

n
C

n
C

n
 if hybridization is carried out between the new-

typed B. napus with genome composition A
r
A

r
C

c
C

c
 or 

A
r
A

r
C

n
C

n
 and the natural B. napus with genome 

composition of A
n
A

n
C

n
C

n
. 

 
 
THE METHOD FOR PRODUCING NEW-TYPED B. 
NAPUS  
 

Two kinds of intersubgenomic hybrids of A
r
A

n
C

c
C

n
 and 

A
r
A

n
C

n
C

n
 were produced by the hybridization between 

A
r
A

r
C

c
C

c
 × A

n
A

n
C

n
C

n
 and A

r
A

r
C

n
C

n
 × A

n
A

n
C

n
C

n
. The 

method for the production of new-typed B. napus with 
genome composition of A

r
A

r
C

c
C

c 
and A

r
A

r
C

n
C

n
 is as 

shown in Figure 2. 
 
 
The procedure for producing of new-typed B. napus 
with genome composition of A

r
A

r
C

n
C

n
 

 
Hybridization was made between B. napus (A

n
A

n
C

n
C

n
) 

and B. rapa (A
r
A

r
) and the trigenomic hybrids with 

genome composition of A
r
A

n
C

n
 were obtained (Liu et al., 

2002; Qian et al., 2003, 2005). The chromosome number 
of the trigenomic hybrids of A

r
A

n
C

n 
was 29 chromosomes, 

which had abnormal meiosis behavior, so the chromosome 
of the seeds obtained by self-crossing of trigenomic 
hybrids might varied. The plants with 38 chromosomes 
were obtained by chromosome checking of all the plants 
that were derived from self-crossing of trigenomic hybrids 
of A

r
A

n
C

n
. The plants with high ratio of A

r
/A

n
 were 

obtained by using amplified fragment length polymorphisms 
(AFLP) and simple sequence repeat (SSR) molecular 
markers (Figure 2I). Materials with 38 chromosome and 
high ratio of A

r
/A

n
 were also obtained by backcrossing 

between A
r
A

n
C

n
 and B. rapa (A

r
A

r
). The A

r
 ratio of 

individuals in F2 of A
n
A

n
C

n
C

n
 × A

r
A

r
 and BC1F2 varied 

from 28.2 to 69.6%, with an average of 60.5%. 
 
 
The procedure for producing of new-typed B. napus 
with genome composition of A

r
A

r
C

c
C

c
 

 
In order to obtain the new-typed B. napus with genome 
composition of A

r
A

r
C

c
C

c
, the breeding procedure shown 

in Figure 2II was conducted in previous studies (Li et al., 
2004,   2005,   2005,   2006,   2007).   Firstly,  trigenomic  
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Figure 2. The procedure for producing the new-typed B. napus. 

 
 
 

hybrids (A
r
B

c
C

c
) were obtained by reciprocal crosses 

between B. carinata (B
c
B

c
C

c
C

c
) and B. rapa (A

r
A

r
), the 

trigenomic hybrids had the expected 27 chromosomes 
(Figure 3a, 3b). The trigenomic hybrids were treated with 
colchicine in the seeding stage and the hexaploid 
(A

r
A

r
B

c
B

c
C

c
C

c
, 2n = 54) were produced (Figure 3c). To 

generate the pentaploid hybrids with A
r
A

n
B

c
C

c
C

n
 genomic 

composition, the hexaploid (A
r
A

r
B

c
B

c
C

c
C

c
) were used as 

female parents to pollinate the natural cultivars of B. 
napus (A

n
A

n
C

n
C

n
). The hybrid of hexaploid × A

n
A

n
C

n
C

n
 

were identified to be pentaploid (A
r
A

n
B

c
C

c
C

n
) with 46 

chromosomes (Figure 3d). The A
r
A

n
B

c
C

c
C

n
 hybrids were 

preferred self-crossed and the laggards appeared in 
profusion at anaphase I and anaphase II. GISH analysis 
showed that the B

c
 chromosomes could be lost in meiosis 

(Figure 3e). It indicated that the materials with 38 
chromosomes without B

c
 chromosomes could be 

produced (Figure 3f).  
Thousands of the plants with 38 chromosomes were 

performed molecular analysis. The results revealed that 
about 50% of the genomic components in new-typed B. 
napus were replaced by A

r 

and C
c
 subgenome of B. rapa 

and B. carinata (Li et al., 2007). The molecular marker 
analysis also showed that different material from the 
same combination of B

c
B

c
C

c
C

c
 × A

r
A

r
 had different 

genetic background (Li et al., 2007). The hybridization 

was again made between different materials with different 
genetic background and the ratio of A

r
 and C

c
 was 

increased to 80% in new-typed B. napus as expected, 
that is, the new typed B. napus was almost with the 
genome composition of A

r
A

r
C

c
C

c
. The new-typed B. 

napus lines with normal meiosis behavior, normal embryo 
sac development process and good pollen fertility (Figure 
4) indicated that those new-typed B. napus had balanced 
genetic basis (Li et al., 2006, 2007).  
 
 
THE PERFORMANCE OF INTERSUBGENOMIC 
HETEROSIS IN B. napus 
 
Hhybridization was made between A

r
A

r
C

n
C

n
 × A

n
A

n
C

n
C

n
 

and ArArCcCc × AnAnCnCn and the intersubgenomic hybrids 
of A

r
A

n
C

n
C

n
 and A

r
A

n
C

c
C

n
 were obtained, the filed experi-

ment showed that those intersubgenomic hybrids exhibited 
high heterosis potential.  

As for the intersubgenomic hybrids of A
r
A

n
C

n
C

n
, strong 

seed yield heterosis was observed among partial intesub-
genomic hybrids. Qian et al. (2005) revealed that about 
90% of 129 intesubgenomic hybrids of ArAnCnCn exceeded 
their respective tester lines, whereas 75 and 25% of 
combinations surpassed Zhongyou 821 and Huaza 4 of 
two widely cultivated cultivars in China,  respectively. The  
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Figure 3. The chromosome identification of trigenomic hybrid, hexaploid, pentaploid and tetraploid by GISH. The DNA 
from the B. nigra (B

b
B

b
) was used as the probe. a and b represent the chromosome constitution from somatic and pollen 

mother cells of trigenomic hybrids (A
r
B

c
C

c
), respectively; c and d represent the hexaploid (A

r
A

r
B

c
B

c
C

c
C

c
) and pentaploid 

(A
r
A

n
B

c
C

c
C

n
), respectively; e represent the meiosis at anaphase I of pentaploid, indicating that the B

c
 chromosome might 

be lost during meiosis; f represent the plants without the B
c
 chromosomes. Image from Li et al. (2005 and 2004). 

 
 
 

strong heterosis was confirmed by reevaluating 2 out of 
the intesubgenomic hybrids of A

r
A

n
C

n
C

n
 and by surveying 

hybrids between 20 lines of the new-typed of B. napus in 
BC1F5. The heterosis was from 29.17 to 95.83% and the 
amount of mid-parental heterosis varied from 21.73 to 
86.50%, with an average of 43.15% for seed yield (Qian 
et al., 2005).  

As for intersubgenomic hybrids of A
r
A

n
C

c
C

n
. Li et al. 

(2006) revealed that most of the intersubgenomic hybrids 
of A

r
A

n
C

c
C

n
, derived from the hybridization between new-

typed B. napus (ArArCcCc) with natural B. napus (A
n
A

n
C

n
C

n
), 

were grown vigorously from the seeding stage to the 
flowering stage (Figure 5). Seed yield of intersubgenomic 
hybrids was better than the control and obviously, over-
standard heterosis on average were observed. Three 
lines of new-typed B. napus was selected from the F5 
generation to hybridized to five tester cultivars in order to 
test the potential of intersubgenomic hybrids on seed 
production. About 50% of intersubgenomic hybrids 
showed high parent heterosis (HPH) of 11.98% on the 
average and HPH values of two combinations was over 

40%. Chen et al. (2008) revealed that the mid-parent 
heterosis value for seed yield exceeded 40% in their 
studies and the high-parent heterosis value for seed yield 
was over 50% in some intersubgenomic hybrids. Chen et 
al. (2008) also observed that eight out of nine tested 
hybrids showed significant higher seed yield than that of 
their parents. 

The above mentioned phenomena suggested the strong 
heterosis potential of the intersubgenomic hybrids of 
A

r
A

n
C

n
C

n
 and A

r
A

n
C

c
C

n
. 

 
 
THE POSSIBLE MECHANISM FOR PRODUCTION OF 
HETEROSIS IN INTERSUBGENOMIC HYBRIDS 
 
Interaction between different genomes of Brassicas might 
be the reason for production of heterosis. Liu et al. (2002) 
revealed that some DNA fragments of A

r
 were signifi-

cantly associated with biomass production in trigenomic 
hybrids (A

r
A

n
C

n
), but those DNA fragment had no direct 

relationship with the hetsrosis of yield. Qian et  al.  (2005)  
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Figure 4. Observation of the embryo sac development and the pollen tube elongation in new-typed B. napus. a−d represents the 
development of embryo sac in one partial new-typed B. napus. a = 1-nucleate aposporous embryo sac, b = 2-nucleate aposporous 
embryo sac, c = 4-nucleate embryo sac, d = 8-nucleate embryo sac. e−f represents pollen germination and pollen tube elongation in one 
new-typed B. napus, e = the pollen grains germinated normally, f = the pollen tube passes through the pistillar chord. Arrow shows the 
pollen tube; g = pollen tube reaches the ovary and releases the contents (arrow). Image from Li et al. (2007). 

 
 
 

detected that some DNA segments that introgressed from 
A

r
 had positive effects on seed  yield  of  intersubgenomic 

hybrids of A
r
A

n
C

n
C

n
. Li et al. (2006) indicated that seed 

yield of intersubgenomic hybrids of ArAnCcCn was positively 
correlated with the genomic proportion of A

r
, C

c
 and A

r
 + 

C
c
 in the new-typed B. napus. The above mentioned 

phenomena suggested that the increasing subgenome 
portion of A

r 
and C

c
 in the new-typed B. napus might 

further strengthen the intersubgenomic heterosis for seed 
yield.  

Allelic combinations present in hybrids might result in 
the alteration of allele expression profiles, production of 
novel allelic interactions, genesis of beneficial adapta-
tions in the hybrids and give rise to heterotic phenotypes 
(Springer and Stupar, 2007; Chen et al., 2008). Chen et 
al. (2008) also found that the introgression of A

r
 and C

c
 

subgenome of B. rapa (A
r
A

r
) and B. carinata (B

c
B

c
C

c
C

c
) 

could lead to considerable differences in the gene 
expression profiles of the partial new-typed B. napus 
(A

r/n
A

r/n
C

c/n
C

c/n
) compared with their parents. By 

comparing with the additive effects that appeared in rice 
and wheat and the dominance and overdominance 
effects that appeared in maize (Xiong et al., 1998; Tian 
and Dai, 2004; Sun et al., 2004), Chen et al. (2008) 

considered that dominance and overdominance effects 
were prominent in the intersubgenomic hybrids. 
About 15.04 and 0.66% of the transcript-derived frag-
ments (TDFs) that differentially expressed between the 
intersubgenomic hybrids and their parents showed 
significant correlation with at least one or over two of 
analyzed traits of yield. This indicated that allelic variation 
introduced from A

r
/C

c
 subgenome may lead to many 

positive allelic combinations in the intersubgenomic 
hybrids (Chen et al., 2008). Some TDFs, such as Copia-like 
TDF, were activated in new-typed B. napus. It indicated 
that the DNA methylation and chromatin remodeling 
might be involved in the production of intersubgenomic 
heterosis (Hirochika et al., 2000; Zilberman et al., 2007; 
Chen et al., 2008). Further research revealed that 12 
TDF-markers were mapped to 12 different linkage groups 
within the one DH population constructed by Qiu et al. 
(2006),.Four of these TDFs were located within the 
confidence intervals of eight quantitative trait loci (QTLs) 
for yield-related traits, which could explain the phenotype 
variation from 4.41 to 13.45% in the TN DH population 
(Figure 6). The genes or ESTs (TDFs) were also mapped 
within the confidence intervals of QTLs for the target 
traits in rice, rapeseed and maize (Mao et al., 2004; Liu et 
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Figure 5. Intersubgenomic hybrids growing at different developmental stages. a represent the seed setting of new-typed B. napus, b, c 

and d represent the intersubgenomic hybrids growing at seeding, flowering and maturing stages, respectively (arrow and arrow heads 
represent the control and intersubgenomic hybrids, respectively). Image from Li et al. (2006). 

 
 
 

al., 2005; Huang et al., 2006; Ju et al., 2006). 
 
 
OUTLOOK 
 
 
The genetic analysis showed that the different new-typed 
B. napus were with richful genetic diversity compared 
with their parents. It indicated that introgression of A

r
 

genome of B. rapa and C
c
 genome of B. carinata could 

significantly diversify the genetic basis of the rapeseed 
and play an important role in the evolution of B. napus. 
The intersubgenomic heterosis was strong in most 
combination of new-typed B. napus × natural B. napus. In 
fact, the new-typed B. napus was not completely the 

new-typed for only about 50% of A
n
 and C

n
 genome in 

the natural B. napus was replaced by A
r
 and C

c
 of B. rapa 

and B. carinata. The intersubgenomic heterosis could be 
increased by increasing A

r
 and C

c
 in the new-typed B. 

napus. The efforts for production of new-typed B. napus 
with much higher ratio of A

r
 and C

c
 are in process.  
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Figure 6. The TDF-markers map to yield-related QTL regions on linkage maps. Markers showed in bold are the TDF-derived 

markers. TN, RIL and BC represent the TN DH population, the HT RIL population and its derived RIL-BC1 population, 
respectively. The bars (or ellipses) and their label indicated the QTL and their corresponding confidence intervals in different 
population and environments. ‘‘DL’’ signifies Dali county of Shanxi province, ‘‘DY’’ corresponds to Daye City, ‘‘JZ’’ Jingzhou 
City, ‘‘WH’’ Wuhan City of Hubei Province in China and the numbers following these abbreviations show the seeding year. bn 
represents the first branch number per plant; ft,  the flowering time; ph plant height; mt mature time; sn seed number per pod. 
Image from Chen et al. (2008). 
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