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Zinc oxide nanoparticles (ZnO NPs) have received great attention due to their optical, physical, and 
antimicrobial properties. They have toxic effect against microbes without any effect on mammalians 
cells. They are used in several applications including extending the shelf life of food. The study aims to 
determine the minimum inhibitory concentrations of ZnO NPs against different aquaculture fish fungus 
species and their storage period. A total of 160 samples were collected from different types of 
aquaculture fish samples as follows: rabbitfish, bream, red mullet, saddle grouper, spangled emperor, 
gilthead seabream, mackerel fish, and Asian seabass. ZnO NPs activity against the isolated fungus 
species was evaluated by estimating minimum fungicidal inhibitory concentration and inhibition of 
fungal enzymes (amylase, protease, and lipase). The storage period of the fish in a package containing 
ZnO NPs was determined by estimating the sensory characteristics of the treated fish. The results 
obtained recorded the following fungus species from aquaculture fish samples: Aspergillus niger (gi: 
JX112703), Aspergillus oryzae, Aspergillus awamori, Penicillium species, Aspergillus tubingensis, 
Trichosporon montevideense, A. niger (gi: MG889596), and Byssochlamys spectabilis, respectively. 
This study is the first to apply ZnO NPs for fish preservation which have a powerful antifungal effect 
against all the isolated fungi. The study recommends using 3% ZnO NPs in fish packaging film; it 
inhibited most of the fungus species, extending the shelf life of most of the fish species to more than 15 
days. 
 
Key words: Zinc oxide nanoparticles, shelf life, fish preservation, minimum inhibitory concentration (MIC), 
antifungal, aquaculture fish fungus. 

 
 
INTRODUCTION 
 
Fish is an essential source of many necessary elements 
to human health such as protein, vitamins, and different 
nutrients (Khan et al., 2018). However, the average 
consumption of fish in Saudi Arabia is low, equivalent to 9 
kg  per  person  per   year;   while   in   Japan,   a  person 

consumes 60 kg per year. Saudi citizens have increased 
awareness about the importance of seafood and its 
reflection on human health. Saudi Arabia's aquaculture 
projects produce nearly 70,000 tons of fish, and the 
government  is  seeking  to  raise  production  to  600,000 
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tons by 2030 (Rahman et al., 2017). Most researches 
indicated that fish reared in a polluted aquatic 
environment have a high susceptibility to different 
illnesses and contamination than those reared in non-
polluted marine environments (Ngo et al., 2021). 
Depletion of aquatic oxygen, pH changes and the 
unusual increase of the aquatic organic content increase 
the microbial loads of fish (Cannas et al., 2020). 
Aquaculturing on polluted aquatic environment by 
chemical and/or biological contaminations affects the 
quality of harvested fish; it causes decreased 
metabolism, liver damage, ulceration, neoplasia, 
immunosuppression, hyperplasia in fish. It damages the 
epithelia, tail, fins and gills of fish. This decreases 
aquaculture production and/or results in production of low 
quality fish due to its high biological load. It also affects 
adversely the shelf life of fish (Javed et al., 2016; Ayalew 
and Fufa, 2018). The improper management, treatment 
and storage of fish lead to waste of about 50% of fish 
harvested annually (Chavan et al., 2011). The high distance 
between landing sites, markets, and consumption areas 
may cause a high economic loss. To reduce the wastage 
that occurs by oversupply and to prolong the storage life 
of fish, an effective novel technique for fish storage is 
required. The main cause of harvesting fish spoilage is 
fungal contamination, which appeared as discoloration, 
off-flavor, rotting, and textural quality of fish. This leads to 
loss of nutrient quality which causes huge economic loss 
and hazard to consumers’ health (Magwaza et al., 2017; 
Rico-Munoz et al., 2018). The most encountered fungal 
genuses are Aspergillus, Trichosporon, Penicillium, and 
Aspergillus species especially Aspergillus niger, 
Aspergillus oryzae, and Aspergillus tubingensis. 
Meanwhile, the presence of pathogenic fungi may cause 
immunocompromised handlers and consumers to have 
aspergillosis. This has encouraged scientists to develop a 
technique to control food borne microorganisms 
(CODEX, 2009; Derrick, 2009). The contamination of fish 
by fungi decreases its shelf life which leads to waste of 
about 60% of the fish aquaculturing cost (Tacon, 2020). It 
also has environmental and financial cost impact due to 
the difficulty of disposing the spoiled fish (White, 2013).   

Zinc oxide is used recently in food packaging and 
processing due to its safety, thermal stability and 
mechanical resistance. It improves the physical character 
of packaging materials (Duncan, 2011; Rajeshkumar, 
2019). The antimicrobial properties of this metal are 
exaggerated when used as nanoparticles especially in 
food technology (Qasim, 2011). Zinc oxide nanoparticles 
(ZnO-NPs) are one of the most effective food packaging 
substances due to their binding patterns and interactions 
properties, moisture absorption, monolayer moisture, and 
solubility (Crona et al., 2020). They also have excellent 
physical properties such as permeability, desorption, 
degree elongation, tensile strength, and mechanical 
properties as food packaging substances (Swain et al., 
2014; Paul et al., 2019). Few research works  have  been  

 
 
 
 
done on ZnO nanoparticles that spread through food. 
Although, the toxicological side effect of ZnO NPs needs 
more studies to determine their effects on food safety 
(Paul et al., 2019). Most scientists have studied the 
toxicity of ZnO NPCs. They found that they are non-toxic 
materials and have vital mineral supplement for the 
human body. They have selective toxicity against wide 
range of microbes that encourage their use as food 
additives (Stoimenov et al., 2002; Zhang et al., 2007). 
The US Food and Drug Administration (21CFR182.8991) 
reported ZnO as one of five safe Zn compounds (Bradley 
et al., 2011). 

There was a surveillance shortage in fish spoilage 
fungus species in aquaculture fish generally and 
marketed fish species in Saudi Arabia. This encourages 
us to perform this study, which aimed to find additional 
knowledge to enhance proper control of the storage life of 
fish and fish product by determining the antifungal effect 
of different concentrations of ZnO NPs on different fish 
fungal contamination, the minimum inhibitory 
concentrations (MICs) of nanoparticles against fungal 
contamination of aquaculture fish sold in Jeddah, Saudi 
Arabia markets, and the storage period of fish using 
packages containing ZnO NPs. 
 
 
MATERIALS AND METHODS 
 

Sample collection  
 

A total of 160 samples were collected from 8 types of aquaculture 
fish (20 fish from each type): rabbitfish “Siganus rivulatus”, bream 
“Pagrus pagrus”, red mullet “Mullus surmuletus”, saddle grouper 
“Najil P. pessuliferus”, spangled emperor “Lethrinus nebulosus”, 
gilthead seabream “Sparus aurata”, mackerel fish 
“Scomberomorous commerson”, and Asian seabass “Lates 
calcarifer”.  The samples were freshly purchased and stored in ice 
box and refrigerated. All fish samples were collected from January 
to July 2021 and transferred to the laboratories of Collage of 
Science, University of Jeddah. 
 
 
Fungal Isolations and Identification  
 
The fish surface was disinfected by 1% formaldehyde; the fish was 
dipped into it from 1 to 5 min. Then, it was transferred to 70% 
alcohol, and washed with sterilized distilled water. About 1 g of the 
inner fish tissues were directly spread onto the Petri plates of potato 
dextrose agar (PDA) medium. Penicillin and streptomycin (50 mg/L) 
were added to the medium to avoid bacterial contamination. The 
medium was aseptically dispensed into sterile Petri dishes (Koh et 
al., 2000; Cao et al., 2015). Identification was done by observing 
the colony color and texture. It was stained with 0.05% trypan blue 
in lactophenol. Then, molecular identification was done by PCR 
detection (Javadi et al., 2012; Rico-Munzo et al., 2018). 
 
 
Nanoparticle substances  
 

Zinc Oxide NPs (70 ± 15 nm) were bought from Nano Gate 
(Creating New Scientific Horizons, Egypt). Original suspension of 
ZnO NP (12 mmol L

−1
) was then diluted using PDA to make 

different concentrations of ZnO NPs: 1, 2, 3,  and  5%  and  NP-free 



 
 
 
 
solution [control] (He et al., 2011). 
 
 

Antifungal test  
 
Autoclaved PDA media with ZnO NPs at different concentrations "1, 
2, 3, and 5%" were incubated at 25°C. Then, the antifungal activity 
was evaluated at the time intervals of 2, 4, 6, 9, and 12 days. The 
diameter of the fungus colonies was detected in triplicate plates as 
described previously (Fraternale et al., 2003). 
 
 
Microbial culture 
 
This was obtained by isolating pure fungus containing identified 
Aspergillus spp., Penicillium spp. and Byssochlamys spectabilis. It 
was tested for amylase production by starch plate method (Ross, 
1976), protease and lipase by skim milk agar (Zaitz et al., 2004). 
 
 

Amylase assay 
 
About 25 g of starch agar medium was suspended in 1000 ml 
distilled water. About 4 mm of fungal culture was cut on a labeled 
plate and then incubated at 25°C/48 h with a drop of iodine solution 
for 30 s. The color of the medium changed because amylase is a 
starch hydrolyzing enzyme (Ross, 1976). 
 
 

Protease assay  
 

About 51.5 g of skim milk agar plate was suspended in 1000 ml of 
distilled water. The fungi were inoculated separately. Hydrolysis 
results were obtained in the clear zones (zone of hydrolysis) around 
the fungal colonies at the end of the incubation at 25°C for 48 h (Ali, 
1992).  
 
 

Lipase assay   
 
Agar (2.5%) was added to 2% Tween 20-80 and 0.01% Victoria 
Blue B (or other indicators). About 1 cm of circular well around the 
different isolated fungi was grown at 30°C. Lipolytic microorganisms 
were picked out from the culture plates (Samad et al., 1989). 
 
 

Determination of the storage period of fish using packages 
containing NPs  
 

Red Sea fish (about 300 g) was purchased and transferred into a 
sterile glass container under sanitized conditions. It was packaged 
with polyethylene (PE) films previously prepared with different 
concentrations of ZnO (1, 2, 3, and 5%), which were sprayed on the 
PE surface ("10×150 cm"). It was left to dry at room temperature 
(26°C). Each 100 g of fish was wrapped by each package film 
concentration, stored under dark and cool conditions (4°C) and 
compared to the fish wrapped by uncoated PE film package. The 
shelf life of each fish type was observed and the fungal growth was 
tested by using PDA. The fish were incubated between 
28±2°C/examined daily for 7, 14, and 18 days and 
18±2°C/examined daily for 18 days. The experiments were 
repeated at least 5 times using each concentration for results 
confirmation (Ebrahimiasl and Rajabpour, 2015; Al-Naamani et al., 
2016). 
 
 

Sensory evaluation of treated fish  
 

Four  samples  of  different  fish  treatments were  covered  in  small 
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dishes. The samples were evaluated for the following parameters:  
acceptability by odor intensity, appearance, flavor and after cooking 
taste, juiciness, tenderness, off-flavor, and off-odor. An eight-point 
of scoring scale (8 = extremely intense/tender/juicy, 7 = very 
intense/tender/juicy, 6 = moderately intense/tender/juicy, 5 = slightly 
intense/ tender/juicy, 4 = slightly bland/tough/dry, 3 = moderately 
bland/tough/dry, 2 = very bland/tough/dry, 1 = extremely 
bland/tough/dry) was applied for odor and flavor intensity, 
tenderness, and juiciness, respectively (Sallam, 2007). 

 
 
Statistical analysis  
 
The statistical program, SPSS version 16 for window was used for 
the determination of means, standard error, and analysis of 
variance (ANOVA) using the one way (mean at the significance 
level of (P<0.05). Statistical significance was tested at the 5% level 
of significance in this study (SPSS 16, 2007). 

 
 
RESULTS 
 
Prevalence of different fungal genera in the examined 
fish samples 
 
The total positive result was 147/160 (92%) from the total 
examined samples, while the negative result was about 
13/160 (8%). The positive prevalence results were found 
in (Table 1) Aspergillus niger (gi:JX112703) followed by 
A. oryzae, Aspergillus awamori and Penicillium spp., A. 
tubingensis, Trichosporon montevideense, and A. niger 
(gi:GM889596). The fungus with the lowest incidence 
was B. spectabilis. The different types of fungi found in 
the different fish species are arranged as follows: Asian 
seabass “L. calcarifer” and A. oryzae. In the case of Red 
Sea bream “P. pagrus”, the fungus species with the 
highest incidence was A. niger (gi:JX112703). Rabbitfish 
“S. rivulatus” had A. niger (gi:JX112703). Spangled 
emperor “L. nebulosus” reported the highest incidence of 
Penicillium spp. Gilthead seabream “S. aurata” samples 
reported A. oryzae. Mackerel fish “Scomberomorous 
commerson” samples had A. niger (gi:JX112703). Red 
mullet “M. surmuletus” samples reported T. 
montevideense. Saddle grouper “Najil P. pessuliferus” 
samples reported A. niger (gi:JX112703). 
 
 
Identification of isolated fungal genera 
 
Figure 1 describes the isolated fungal species with their 
phylogenetic molecular tree and most related genera. 
Aspergillus niger (gi:JX112703) colonies were spherical, 
had thick walls, densely black to dark brown conidia, and 
white mycelia. Microscopically, A. niger (gi:JX112703) 
spores appeared as dark brown/carbon black. It was 
grouped into 5 groups with 100% genetic similarity. A. 
niger (gi:MG889596) colonies had compact white base; 
they have condensed black conidial heads which enlarge 
and roughen with maturity. A. niger (gi:MG889596) is  a 
filamentous fungus that looks like a plant structure. It was 
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Table 1. Prevalence of different fungal Spoilage species isolated from fish samples. 
 

Fish type 

Fungus Types 

Aspergillus species 

Penicillium spp. 
Byssochlamys 

spectabilis 

Trichosporon 

montevideense 
A. niger 

(gi:JX112703) 

A. niger 

(gi:MG889596) 
A. awamori A. oryzae A. tubingensis 

Asian seabass “Lates calcarifer” 4 (20) 2 (10) 4 (20) 6 (30) 4 (20) 2 (10) 3 (15) 2 (10) 

 Bream “Pagrus pagrus” 10 (50) 3 (15) 5 (25) 1 (05) 0 (00) 2 (10) 0 (00) 5 (25) 

Rabbitfish “Siganus rivulatus” 13 (65) 0 (00) 4 (20) 2 (10) 4 (20) 0 (00) 2 (10) 0 (00) 

Spangled emperor “Lethrinus nebulosus” 5 (25) 4 (20) 3 (15) 2 (10) 4 (20) 6 (30) 0 (00) 0 (00) 

Gilthead seabream “Sparus aurata” 0 (00) 0 (00) 0 (00) 13 (65) 2 (10) 6 (30) 0 (00) 0 (00) 

Mackerel fish “Scomberomorous commerson” 4 (20) 0 (00) 1 (05) 0 (00) 1 (05) 2 (10) 0 (00) 0 (00) 

Red mullet “Mullussurmuletus” 2 (10) 1 (05) 1 (05) 0 (00) 0 (00) 0 (00) 0 (00) 5 (25) 

Saddle Grouper “Najil P. pessuliferus” 3 (15) 1 (05) 0 (00) 3 (15) 0 (00) 0 (00) 0 (00) 0 (00) 

Total 41/147 (28.0) 11/147 (8.0) 18/147 (12.3) 27/147 (18.4) 15/147 (9.4) 18/147 (12.3) 5/147 (3.4) 12/147 (8.2) 

 
 
 
grouped into 5 groups with 100% genetic similarity. 

A. awamori colonies appeared as visible 
peripheral growth, and had smooth surface (light-
yellow); they had several conidia which are black, 
whitish-yellow, and dark brown with wavy slight 
surface. Microscopically, A. awamori appeared as 
single and aggregated colonies that resemble 
plant-like filamentous fungi. It was grouped into 7 
groups with 99% genetic similarity. A. oryzae 
colony surface appeared as olive-green or green; 
it has white conidia and white mycelia. 
Microscopically, A. oryzae colonies appeared as 
pale grey to black; they have conidial heads with a 
coarse wall and short column. A. oryzae was 
grouped into 6 groups with 100% genetic similarity. 

Macroscopically, A. tubingensis colonies 
appeared as yellow at the beginning and became 
flat, granular, and bright to dark yellow-green with 
radial grooves. They are finely wrinkled, globular, 
and have warty conidia. Microscopically, A. 
tubingensis appeared as single aggregated pale 
yellowish-green colonies; they have radiated 
conidia  heads  with  coarse  roughened  wall  and 

loose columns. A. tubingensis was grouped into 4 
groups with 99% genetic similarity. 
Macroscopically, Penicillium spp. colonies have 
woolly texture. Initially, their color is white then 
turns to yellowish or pinkish; they have olive-gray 
or white conidia. Microscopically, Penicillium spp. 
has branched hyaline or simple conidia with cup-
shaped phialides; they have brush-like clusters at 
the tips, which are known as “penicilli”. Penicillium 
spp. were grouped into 4 groups with 99% genetic 
similarity. Macroscopically, B. spectabilis 
appeared as wheat-colored conidia with wrinkled 
yellowish to light brown; it has wooly to downy 
texture, and brown to pale surface. 
Microscopically, the individual aggregate of B. 
spectabilis has branched hyaline with brush like 
tip; it is ovoid with elongated, solitary chains. B. 
spectabilis was grouped into 8 groups with 99% 
genetic similarity. T. montevideense 
macroscopically appeared as dense pure white 
mycelia and conidia. From the PDA plate it 
appeared as light-yellow wrinkled reverse with 
globose  vesicle    and    radiated    conidia   head. 

Microscopically, T. montevideense appeared as 
yeast-like colonies with septate hyphae, 
arthroconidia, and budding cells. T. 
montevideense was grouped into 4 groups with 
99% genetic similarity. 
 
 
Effect of ZnO nanoparticles on the different 
types of isolated fungi (in vitro) 
 
The effect of different concentrations of ZnO NPs 
(1, 2, 3, and 5%) on the isolated fungi (in vitro) 
was compared to that of antifungal drug on the 
fungal species (Table 2 and Figure 2). The results 
revealed that 5% concentration of ZnO NPs was 
more effective than the antifungal drug followed 
by 3, 2, and 1%, respectively. 5% ZnO NPs 
inhibited 2.90 cm A. niger (gi:JX112703), which 
was the highest. This is followed by 3% ZnO NPs 
which inhibited 2.50 cm A. niger (gi:JX112703). 
The antifungal drug inhibited about 2.30 cm A. 
niger (gi:JX112703).  2% ZnO NPs inhibited 2.20 
cm  A. niger (gi:JX112703). 1% ZnO NPs inhibited  
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Figure 1. Phylogenetic molecular tree of the selected isolate and the most related gene isolate and the most related gene. 

 
 
 
about 1.90 cm A. niger (gi:JX112703), which was the 
lowest inhibition effect. Nearly similar effect was detected 
against A. niger (gi:MG889596); the inhibition effect 
began gradually with 5% ZnO NPs inhibiting  about 2.80 
cm A. niger (gi:MG889596), 3% ZnO NPs inhibited 2.20 
cm A. niger (gi:MG889596). 2% ZnO NPs and the 
antifungal drug had similar inhibition against the fungus 
(about 2.00 cm). The lower inhibition zone was measured 
with 1% ZnO NPs, which inhibited 1.70 cm A. niger 
(gi:MG889596).  

About 2.30 cm A. awamori was inhibited by 5% ZnO 
NPs, which was the highest inhibition effect followed by 
3% ZnO NPs and the antifungal drug which inhibited 2.00 
cm of the fungus. 2% ZnO NPs inhibited about 1.90 cm of 
the fungus. The lowest inhibition zone was measured 
with 1% concentration of ZnO NPs, which inhibited 1.7 
cm of the fungus. A. oryzae was one of the most resistant 
fungi although1.90 cm was inhibited by 5% ZnO NPs; 
while the inhibition zone was 1.80 cm in the case of 3% 
ZnO NPs and the antifungal drug. Lower inhibition zone 
measured by 2 and 1% was as follows: 1.50 and 1.30 
cm, respectively. A. tubingensis was one of the lower 
resistant fungi. The inhibition effect was about 1.90, 1.70, 
1.60, 1.40 and 1.30 cm in case of 5, 3, 2 and 1% ZnO 
NPs, and antifungal drug, respectively. 

Penicillium spp. has the highest inhibition  effect: 5  and  

3% ZnO NPs inhibited it by 2.80 and 2.50 cm. The 
inhibition zone was equal in the case of the antifungal 
and 2% ZnO NPs concentration, which inhibited 1.90 cm 
of the fungus. The lowest inhibition effect was recorded in 
1% ZnO NPs which inhibited 1.80 cm of the fungus. 5, 3, 
and 2% ZnO NPs had the highest inhibition effect against 
B. spectabilis (3.20, 2.50, and 2.20 respectively). 
Antifungal drugs recorded the same inhibition zone (1.50 
cm) with 1% ZnO NPs.  5, 3, and 2% ZnO NPs inhibited 
T. montevideense by 2.80, 2.50, and 2.00 cm; while 1.90 
and 1.50 cm was inhibited by the antifungal drug and 1% 
ZnO NPs, respectively. 
 
 
Effect of ZnO NPs on isolated fungal enzymes 
 
ZnO NPs affect the growth of fungi by attacking their cell 
structure and/or fungal enzymes. Table 3 shows the 
effect of adding ZnO NPs on amylase enzyme secreted 
by different fungal species in the case of Aspergillus spp. 
The fungal growth was about 14 mm in the control 
samples, while the growth decreased to 4 mm after the 
antifungal drug (1, 2, 3 and 5%) was added. The amylase 
activity decreased by about 19 mm in Aspergillus spp. 
plates, while it decreased to 8 mm only in the antifungal 
drug. 7 mm  amylase was inhibited after adding 1 and 2%  
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Table 2. Effect of ZnO nanoparticles on different types of isolated fungi (in vitro). 
 

Fungus 

1%  2%  3%  5%  A. F 

Minimum 

(cm) 

Maximum  

(cm) 

Mean  

(cm) 

S.E.  

± 

 Minimum  

(cm) 

Maximum  

(cm) 

Mean  

(cm) 

S.E.  

± 

 Minimum  

(cm) 

Maximum  

(cm) 

Mean  

(cm) 

S.E.  

± 

 Minimum  

(cm) 

Maximum  

(cm) 

Mean  

(cm) 

S.E.  

± 

 Minimum  

(cm) 

Maximum 

 (cm) 

Mean  

(cm) 

S.E. 

± 

Aspergillus niger (gi:JX112703) 0.0 3.0 1.9a 1.1  1.8 4.00 2.2a 1.0  0.0 4.5 2.5b 1.2  0.5 4.6 2.9b 1.3  2.0 3.0 2.3a 1.1 

Aspergillus niger )gi:MG889596 0.0 2.8 1.7a 0.9  0.3 3.4 2.0a 0.9  0.0 4.1 2.2b 1.1  0.2 4.5 2.8c 1.3  0.5 2.0 2.0a 0.8 

Aspergillus awamori 0.0 3.1 1.7a 0.9  0.0 3.0 1.9a 0.9  0.3 3.2 2.0b 1.0  0.6 3.7 2.3b 1.1  1.8 2.1 2.0b 0.9 

Aspergillus oryzae 0.0 3.0 1.3a 0.8  0.0 2.6 1.5a 0.6  0.0 2.7 1.8b 0.9  0.0 3.6 1.9b 0.8  0.8 3.0 1.8b 1.0 

Aspergillus tubingensis 0.0 2.3 1.3a 0.7  0.0 2.5 1.4a 0.5  0.0 2.3 1.7a 0.6  0.0 3.5 1.9b 0.8  0.4 3.0 1.6b 0.7 

Penicillium spp. 0.0 2.5 1.8a 0.8  0.0 2.7 1.9a 0.8  0.7 3.8 2.5b 1.3  1.0 4.1 2.8b 1.3  1.6 2.5 1.9a 0.9 

Byssochlamys spectabilis 0.0 2.7 1.5a 0.5  0.0 3.5 2.2b 1.0  1.0 3.7 2.5c 1.3  0.0 4.2 3.2d 1.7  1.4 3.0 1.5a 0.5 

Trichosporon montevideense 0.0 2.0 1.5a 0.6  0.0 2.8 2.0b 0.9  0.0 3.0 2.5c 1.2  0.0 3.5 2.8c 1.2  1.7 2.2 1.9b 0.8 
 

Means followed by a different letter in the line are significantly different (p>0.05). 

 
 
 
ZnO NPs; it was completely inhibited after adding 
3 and 5% ZnO NPs. Penicillium spp. growth 
decreased by about 11 mm in the control case, 
while it decreased to about 4 mm after adding 
ZnO NPs. The amylase activity decreased from 
15 mm in the control and to 9 mm after adding 1 
and 2% ZnO NPs.  3 and 5% ZnO NPs reduced 
the amylase activity by about 8 and 4 mm, 
respectively. B. spectabilis decreased to about 15 
mm in the control plates, which it decreased to 4 
mm in all other treatments. Amylase activity of B. 
spectabilis was 20 mm in the control and 
antifungal case. It was about 25 mm after adding 
1 and 2% ZnO NPs, while it decreased to 19 and 
12 mm, respectively after adding 3 and 5% ZnO 
NPs. 

Table 3 reported the effect of adding ZnO NPs 
on protease enzyme secreted by different fungal 
species (Aspergillus spp.). The fungal growth was 
about 9 mm in the control, 1, 2 and 3% ZnO NPs 
samples, while the growth decreased to 8 mm 
after adding the antifungal drug and 5% ZnO NPs. 
The protease activity was not detected in 
Aspergillus spp. plates. The growth of Penicillium 
spp. was about 12 mm in the control case, while it 

was about 4 mm in the case of antifungal drug 
and all concentrations of ZnO NPs. The protease 
activity decreased from 16 mm in the control case 
to 6 mm in 1 and 2% ZnO NPs; while the 
antifungal, 3 and 5% ZnO NPs completely 
inhibited it. B. spectabilis was about 10 in the 
control plates, which decreased to 4 mm in all 
other treatments. Protease activity of 
Byssochlamys spectabilis was 13 mm in the 
control, while it decreased to 8, 7, 6 and 0 mm in 
the antifungal drug, 1, 2, 3 and 5% ZnO NPs, 
respectively. 

Table 3 shows the effect of adding ZnO NPs on 
lipase enzyme secreted by different fungal 
species (Aspergillus spp.). The fungal growth was 
about 13 mm in the control and 3% samples; 
while the growth decreased to 12 mm after adding 
antifungal drug, 1 and 2% samples. The lowest 
growth recorded was about 11 mm in 5% ZnO 
NPs concentration. The lipase activity was not 
detected at all in Aspergillus spp. plates. The 
growth of Penicillium spp. was about 14 mm in the 
control case, while it was about 4 mm in the case 
of antifungal drugs and all concentrations of ZnO 
NPs. The lipase activity decreased from  21 mm in 

the control case to 11, 10, 10, 9 and 6 mm in case 
of the antifungal drug, 1, 2, 3 and 5% ZnO NPs, 
respectively. B. spectabilis recorded about 16 mm 
in the control plates, which decreased to 4 mm in 
all other treatments. Lipase activity of B. 
spectabilis was 22 mm in the control and 20 mm 
with antifungal case; it  was about 18, 18, 17 and 
16 mm after adding 1, 2, 3 and 5% ZnO NPs, 
respectively. 
 
 
Effect of adding ZnO NPs to different fish 
types packages on their shelf life 
 
Table 4 and Figures 3 to 10 show the effect of 
adding different concentrations of ZnO NPs  on 
the shelf life of different fish species samples in 
comparison with the control samples under 
refrigeration temperature. In the case of Asian 
seabass “L. calcarifer”, bream “P. pagrus”, 
rabbitfish “S. rivulatus”, their shelf life extended 
from 3 days in the control sample to about 4, 5, 
10, and 18 days after adding 1, 2, 3 and 5% ZnO 
NPs concentrations, respectively. The shelf life of 
saddle grouper “Najil P. pessuliferus” was extended 



Elsharawy  et al.          243 
 
 
 

 
 

Figure 2. Antifungal effect of different ZnO NPs concentration against isolated fungus. C = Control, AF = Antifungal 
Concentration, 1% = 1% ZnO NPs Concentration, 2% = 2% ZnO NPs Concentration, 3% = 3% ZnO NPs Concentration, 5% 
= 5% ZnO NPs Concentration. 

 
 
 
to about 2 days in the control and 1% samples, 3 days in  
2% ZnO NPs concentration,  9 days and 15 days in 3 and 
5%  ZnO NPs, respectively. 

It was observed that the saddle grouper “Najil P. 
pessuliferus” samples were the least affected by adding 
different concentrations of ZnO NPs, which got to 2 
weeks in 5% concentration. The shelf life of almost all the 
fish types was affected positively by the addition of 
different concentrations of ZnO NPs. 
 
 
DISCUSSION 
 
The different fungus species are arranged as follows: 
28% A. niger (gi:JX112703), 18.4% A. oryzae, 12.3% A. 
awamori and Penicillium spp., 9.4% . tubingensis, 8.2% 
T. montevideense, 8.0% A. niger (gi:MG889596), and 
3.4% B. spectabilis. Most other studies reported that A. 
niger as the primary spoilage fungi affected different fish 
species. Park et al. (2014) found about 95.21% of fish 
fungal spoilage caused mainly by A. niger; about 33.3% 
A. niger, which is considered the most predominant 
fungal isolates (Odu and Ameweiye, 2003). On the other 
hand,  lower   results   were  reported  by  Samaha  et  al. 

(2015) who found  fungal fish spoilage as follows: 24% A. 
niger and 48% Penicillium spp. Greco et al. (2015) found 
that A. niger predominated (57%) followed by Penicillium 
spp. (12.84%) in fish samples. While, Iqbal and Saleemi 
(2013) found fungal spoilage of fish in Punjab by 
Aspergillus spp. (78.5%) and Penicillium spp. (3.5%). 
Akwuobu et al. (2019) recorded also that the main fungal 
genera that contaminated fish sold in Makurdi were 
Aspergillus (28.6%), and Penicillium spp. (18.2%). 

Aspergillus spp. causes a disease known as 
“aspergillosis”, which appeared as cough, fever, 
breathlessness, or chest pain. The incidence of infection 
can be more common between immunosuppressed 
patients or those who suffer another pulmonary condition. 
Several species of Aspergillus spp., which often 
contaminate food, are A. niger, A. oryzae, A. awamori, 
and A. tubingensis (Singapurwa et al., 2018; Akwuobu et 
al., 2019). Byssochlamys spp. mostly occurs in compost, 
air, and different food items. Generally, this fungus 
accommodates heat above 85°C and microaerophilic 
condition results in mycotoxins production such as 
deoxynivalenol and vomitoxin (Casas-Junco et al., 2017). 

Polluted aquaculturing has effect on the immunity of 
fish.  This  results  in  the  rapid  death  of fish and makes 
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Table 3. The mean value of the effect of addition of ZnO NPs on different fungus species enzymes activity. 
 

ZnO nano. 
Concentration 

Amylase Enzyme Activity (mm)  Protease Enzyme Activity (mm)  Lipase Enzyme Activity (mm) 

Aspergillus spp. Penicillium spp. 
Byssochlamys 

spectabilis 
 

Aspergillus spp. Penicillium spp. 
Byssochlamys 

spectabilis 
 

Aspergillus spp. Penicillium spp. 
Byssochlamys 

spectabilis 

G C.Z G  C.Z G  C.Z   G C.Z  G  C.Z G C.Z  G C.Z  G  C.Z G  C.Z 

Control 14 19 11 15 15 20  9 0.0 12 16 10 13  13 0.0 14 21 16 22 

Antifungal 4 8 4 9 4 20  8 0.0 4 0.0 4 8  12 0.0 4 11 4 20 

1% 4 7 4 9 4 25  9 0.0 4 6 4 7  12 0.0 4 10 4 18 

2% 4 7 4 9 4 25  9 0.0 4 6 4 7  12 0.0 4 10 4 18 

3% 4 0.0 4 8 4 19  9 0.0 4 0.0 4 6  13 0.0 4 9 4 17 

5% 4 0.0 4 4 4 12  8 0.0 4 0.0 4 0.0  11 0.0 4 6 4 16 
 

Inoculums disc 4 mm; G: Growth, C.Z: Clear zone. 

 
 
 
fish get spoiled rapidly after catch. This is due to 
high fungal and bacterial opportunist including the 
lower nutritive value of fish caused by stress 
syndrome from the different aquatic pollutants 
(Bukola and Zaid, 2015).  

ZnO NPs have antimicrobial effect by 
disintegrating the cell wall of microbes via lysis. 
The morphology of the micro fungus changes after 
treatment. ZnO NPs have potent antifungal effect 
(Shen et al., 2015). The high fungicidal effect of 
ZnO NPs in this study may be due to their small 
size (Rajiv et al., 2013; Jeong et al., 2014). ZnO 
NPs may affect the permeability membrane of the 
microbial cells, releasing the membrane proteins 
and lipids. This results in the death of the microbial 
cell (Padalia and Chanda, 2017). The properties of 
ZnO NPs used for the development of fungicides 
have become an urgent issue in medicine and 
microbial food control (Kairyte et al., 2013). 
Padalia and Chanda (2017) reported that ZnO 
NPs have very effective antifungal activity; they 
have better effect than standard antibiotic 
amphotericin B. Rajeshkumar (2019) had similar 
results that fungal inhibition effect correlated 
inversely with size and concentration of ZnO NPs 
and    concluded     that   ZnO    NPs    acted   very  

impressively against the fungal pathogens. 
Amylases are the most vital extracellular 

enzymes which hydrolyze the molecules of starch 
resulting in diverse products such as dextrin and 
composed of glucose unit (Gupta et al., 2003).  
Amylase can be obtained from several fungi. 
Several studies reported that fungal origin 
amylases are more stable (Sanghvi et al. 2011).  
Malaikozhundan et al. (2020) reported almost 
similar results that ZnO NPs greatly inhibited the 
microbial amylase activity to about 25 and 25 
µg/mL

−1
; protease activity was inhibited and lipases 

activity was inhibited to 25 µg/mL
−1

. Lower results 
were reported by Namasivayam et al. (2016) 
where microbial enzyme activity was inhibited by 
metal nanoparticles, which revealed a broad 
surface plasmon peak presented at 430 nm. 
Nanoparticles are extremely stable for many 
months after the reaction. The enzyme was not 
inhibited at all by the tested concentrations. As in 
the control samples, there was no significant 
difference in the enzyme activity (P>0.05), which 
revealed 6.02, 6.18, 6.23, 6.53, 6.88 μ/ml and 
4.52, 4.50, 4.68, 4.72 μ/ml, respectively. Also, 
Verma and Verma, (2018) recorded amylase 
produced by the fungi as follows:  Penicillium  spp. 

had the highest amylase production 1(0.93 cm) 
followed by Aspergillus spp. (0.6 cm); Kathiresan 
and Manivannan (2006) recorded Penicillium spp. 
produced maximum amylase (136 U/ml). Sharma 
and Shukla (2008) reported that maximum 
amylase was produced by Aspergillus spp. (185 
U/ml).  

Freshness is one of the parameters used to 
judge the quality of fish and can be determined by 
using the sensory analysis method. Sensory 
analysis is simple, fast, and provides immediate 
quality information about the tested fish products. 
The sensory characteristics of fish are obvious to 
the fish consumers and are essential for the 
consumption of fish and its products (Reineccius, 
1991). Results observed that the saddle grouper 
“Najil P. pessuliferus” samples were the least 
affected after adding ZnO NPs (different 
concentrations); it got to 2 weeks after adding  5% 
ZnO NPs. The shelf life of almost all the types of 
fish was affected positively by the addition of 
different concentrations of ZnO NPs. 

Researchers reported that ZnO NPs molecules 
must penetrate or be in contact with microbial cells 
to perform their inhibitory activity (Mohd et al., 
2019). Similar results of ZnO NPs effect on the cell  
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Table 4. Effect of addition of ZnO NPs to different fish types package on their shelf life. 
 

Types of fish Control (day) 1% (day) 2% (day) 3% (day) 5% (day) 

Asian seabass “Lates calcarifer” 3 4  5  10  18  

 Bream “Pagrus pagrus” 3 4  5 10  18  

Rabbitfish “Siganus rivulatus” 3 4  5  10  18  

Spangled emperor “Lethrinus nebulosus” 2 3  5  10  18  

Gilthead seabream “Sparus aurata” 2 3  4  10  18  

Mackerel fish “Scomberomorous commerson” 2 3  4 10  18 

Red mullet “Mullussurmuletus” 2 3  4 10  18  

Saddle Grouper “Najil P. pessuliferus” 2 2 3  9 15  
 
 
 

 
 

Figure 3. Effect of addition of ZnO NPs on “Asian seabass” fish sensory 

characters.  
 
 
 

wall of microbes were given by Shawky et al. (2014). 
They noticed that the antimicrobial effect of ZnO NPs 
occurred in 2 ways: firstly, H2O2 was formed on ZnO NPs 
surface due to the hydrogen bond between the hydroxyl 
group of fungi cellulose molecules and the atom of 
oxygen of ZnO NPs, resulting in the inhibition of the 
fungal growth; secondly Zn

2+
 was released leading to cell 

membrane damage and interaction with intracellular 
contents (Moraru et al., 2003). 

Similar antifungal activities of ZnO NPs inhibited 
different   fungal   growth.  They    increased   with  higher  

contraction of ZnO NPs, especially 200 and 300 ug/ml; 
they had about 7 to 15 mm inhibition diameter (Hassan et 
al., 2014). This inhibition effect was clearer against 
Aspergillus spp. (1.013296 μg/ml) and fluconazole which 
were 0.001-0.56 and 0.062-128 μg/ml, respectively. ZnO 
NPs changed the microbial cell structure of the fungi 
including the cell membrane, leading to leakage of the 
cytoplasm and distribution of the fungal cells. ZnO NPs 
can inhibit conidial development and damage 
conidiophores or hyphae (He et al., 2011). 

The  daily  dietary intake  of  zinc  for  adults   is   about 
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Figure 4. Effect of addition of ZnO NPs on “Bream” fish sensory 
characters.  

 
 
 

 
 
Figure 5. Effect of addition of ZnO NPs on “Rabbitfish” fish 
sensory characters. 
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Figure 6. Effect of addition of ZnO NPs on “Spangled emperor” fish 
sensory characters.  

 
 
 

 
 

Figure 7. Effect of addition of ZnO NPs on “Gilthead Seabream” 
fish sensory characters. 
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Figure 8. Effect of addition of ZnO NPs on “Mackerel” fish 
sensory characters.  

 
 
 

 
 

Figure 9. Effect of addition of ZnO NPs on “Red mullet” fish 
sensory characters.  
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Figure 10. Effect of addition of ZnO NPs on “Saddle Grouper” fish 
sensory characters. 

 
 
 
40 mg, which is equivalent to 143 ml of liquid egg daily in-
take of 0.28 mg of ZnO per ml (Hassan et al., 2014). 
According to the National Research Council, the 
recommended dietary allowances (RDA) for humans are 
about 15,000 and 12,000 mg/different for healthy men 
and women (Yilmaz and Aksoy, 2006). Sensory attributes 
of fish including their juiciness, appearance or 
tenderness, odor, flavor, aftertaste, and acceptability 
scores were significantly decreased (P<0.05) with 
prolonged storage time (Sallam, 2007). 
 
 
Conclusion 
 

It is concluded that there is a gradual increase in the 
fungal growth with increased ZnO NPs concentration in 
all tested fish species, especially at 3 and 5% 
concentration. It is recommended to use 3% concentration 
of ZnO NPs to improve the safety of fish and prolong their 
shelf life up to 15 days. 
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