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Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In 
this review we briefly summarise potential roles of selected enzymes such as amylase, 
arylsulphatases, β-glucosidase, cellulose, chitinase, dehydrogenase, phosphatase, protease and 
urease in the ecosystem. We also highlight areas where further research is needed to increase our 
understanding of other possible role(s) of enzymes and factors that may affect their activities in the 
ecosystem.  
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INTRODUCTION 
 
Soil enzymes play key biochemical functions in the 
overall process of organic matter decomposition in the 
soil system (Burns, 1983; Sinsabaugh et al., 1991). They 
are important in catalysing several important reactions 
necessary for the life processes of micro-organisms in 
soils and the stabilisation of soil structure, the 
decomposition of organic wastes, organic matter 
formation and nutrient cycling (Dick et al., 1994). These 
enzymes are constantly being synthesised, accumulated, 
inactivated and/or decomposed in the soil, hence playing 
an important role in agriculture and particularly in 
nutrients cycling (Tabatabai, 1994; Dick, 1997). The 
activities of these enzymes in soils undergo complex 
biochemical processes consisting of integrated and 
ecologically-connected synthetic processes, and in the 
immobilisation and enzyme stability (Khaziyev and Gulke, 
1991). In this regard, all soils contain a group of enzymes 
that determine soil metabolic processes (McLaren, 1975) 
which, in turn, depend on its physical, chemical, 
microbiological and biochemical properties. The enzyme 
levels in soil systems vary in amounts primarily due to the 
fact that each soil type has different  amounts  of  organic  
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matter content, composition and activity of its living 
organisms and intensity of the biological processes 
(Stevenson, 1986).  In practice, the biochemical reactions 
are brought about largely through the catalytic 
contribution of enzymes and variable sub-strates that 
serve as energy sources for micro-organisms (Kiss et al., 
1978). These enzymes may include amylase, 
arylsulphatases, β-glucosidase, cellulose, chitinase, 
dehydrogenase, phosphatase, protease and urease 
released from plants (Miwa et al., 1937), animals (Kanfer 
et al., 1974), organic compounds and micro-organisms 
(Dick and Tabatabai, 1984; James et al., 1991; 
Richmond, 1991; Hans and Snivasan, 1969; Shawale 
and Sadana, 1981) and soils (Cooper, 1972; Gupta et al., 
1993; Gareshamurthy et al., 1995). 

A better understanding of the role of these soil enzyme-
es activity in the ecosystem will potentially provide a 
unique opportunity for an integrated biological assess-
ment of soils due to their crucial role in several soil 
biological activities, their ease of measurement, and their 
rapid response to changes in soil management practices 
(Dick, 1994; Dick, 1997; Bandick and Dick, 1999). 
Studies indicate that high enzyme activity signals mineral 
element limitation in the ecosystem (Sinsabaugh et al., 
1993; Ndakidemi, 2006). Although there have been 
extensive studies on soil enzymes (Lizararo et  al.,  2005;  
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Mungai et al., 2005; Wirth and Wolf, 1992; Ross, 1976; 
Perucci and Scarponi, 1984), little has been reported on 
their roles in agricultural development. To better under-
stand the roles of these enzymes’ activity and efficiency, 
nine enzymes in soils were reviewed for agricultural 
development. 
 
 
AMYLASE 
 
Amylase is a starch hydrolysing enzyme (Ross, 1976). It 
is known to be constituted by α-amylase and β-amylase 
(Pazur, 1965; King, 1967; Thoma et al., 1971). Studies 
have shown that α-amylases are synthesised by plants, 
animals and micro-organisms, whereas, β-amylase is 
mainly synthesized by plants (Pazur, 1965; Thoma et al., 
1971). This enzyme is widely distributed in plants and 
soils so it plays a significant role in the breakdown of 
starch. Research evidence suggests that several other 
enzymes are involved in the hydrolysis of starch, but of 
major importance are α-amylase which converts starch 
like substrates to glucose and/or oligosaccharides and β-
amylase, which converts starch to maltose (Thoma et al., 
1971).  

Studies have, however, indicated that the roles and 
activities of α-amylase and β-amylase enzymes may be 
influenced by different factors ranging from cultural prac-
tices, type of vegetation, environment and soil types 
(Ross, 1968; Rose and Roberts, 1970; Pancholy and 
Rice, 1973; Rose, 1975a). For example, plants may 
influence the amylase enzyme activities of soil by directly 
supplying enzymes from their residues or excreted 
compounds, or indirectly providing substrates for the 
synthetic activities of micro-organisms. Greater under-
standing the role(s) and other chemical, biological, 
physical and agronomic factors influencing functioning of 
amylase enzymes in the soil will further define the  signifi-
cance of these enzymes in the soil, and enable proper 
management techniques to be devised to maximise the 
benefits that may be derived from such enzymes. 
 
 
ARYLSULPHATASES 
 
It has been established that sulphur uptake in plants is in 
the form of inorganic sulphate (SO4) and its availability 
depends on its mineralisation or mobilisation (Williams, 
1975; Fitzgerald, 1976) from aromatic sulphate esters (R-
O-SO3

-). This is due to the fact that certain proportions of 
sulphur in different soil profiles are bound into organic 
compounds and are indirectly available to plants. In this 
regard, its availability will depend on the extracellular 
hydrolysis of these aromatic sulphate esters or intra-
cellular oxidation of soluble organic matter absorbed by 
the micro-organisms to yield energy and carbon skele-
tons for biosynthesis by which some SO4-S are released 
as a by-product (Dodgson et al., 1982). All these 
processes are  dependent  on  arylsuphatases  enzymes  

 
 
 
 
(Stickland and Fitzgerald, 1984; Fitzgerald and Stickland, 
1987). Arylsulphatases are typically widespread in nature 
(Dodgson et al., 1982) as well as in soils (Tabatabai and 
Bremner, 1790a, b; Cooper, 1972; Spier et al., 1980; 
Gupta et al., 1993; Ganeshamurthy et al., 1995). They 
are responsible for the hydrolysis of sulphate esters in 
the soil (Kertesz and Mirleau, 2004) and are secreted by 
bacteria into the external environment as a response to 
sulphur limitation (McGill and Colle, 1981).  Its occur-
rence in different soil systems is often correlated with 
microbial biomass and rate of S immobilisation (Klose et 
al., 1999; Klose and Tabatabai, 1999; Vong et al., 2003). 
The role of this enzyme in the hydrolysis of aromatic 
sulphate esters (R-O-SO3

-) to phenols (R-OH) and 
sulphate, or sulphate sulphur (SO4

-2  or SO4-S) is shown 
in the following simple chemical equation (Spencer, 1958; 
Tabatabai, 1994):  
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Studies have shown that the release of sulphate from 
soluble and insoluble sulphate esters in the soil is 
affected by various environmental factors (Burns, 1982) 
such as heavy metal pollution (Tyler, 1981); pH changes 
in the soil solution (Acosta-Martinez and Tabatabai, 
2000); organic matter content and its type (Tabatabai and 
Bremner, 1971; Ladd, 1978; Sarathchandra and Perrott, 
1981; Dalal, 1982); the concentration of organic sulphate 
esters (Dogson and Rose, 1976); the extent to which 
organic sulphate esters are protected against enzymatic 
hydrolysis such as sorption to particles surfaces in soils, 
and the activity persistence of extracellular arylsul-
phatases in the soil. 

Considering the importance of S in plant nutrition, a 
better understanding of the role(s) of arylsulphatases in S 
mobilisation in agricultural soils is critical. So far, very 
little is known about specific microbial genera or species 
that play an important role in the soil organosulphur circle 
(Kertesz and Mirleau, 2004) in which arylsulphatases is 
the key enzyme. Researchers may also establish other 
unknown factors that affect activities of these enzymes in 
the ecosystem. 
 
 
β-GLUCOSIDASE 
 
β-glucosidase is a common and predominant enzyme in 
soils (Eivazi and Tabatabai, 1988; Tabatabai, 1994). It is 
named according to the type of bond that it hydrolyses. 
This enzyme plays an important role in soils because it is 
involved in catalysing the hydrolysis and biodegradation 
of various β-glucosides present in plant debris decom-
posing in the ecosystem (Ajwa and Tabatabai, 1994; 
Martinez and Tabatabai, 1997). Its final product is glu-
cose, an important C energy source of life to microbes in 
the  soil  (Esen,  1993).  There  is  considerable  evidence  



 

 
 
 
 
suggesting that a significant fraction of enzyme activity 
measured in soil originates from abiontic enzymes 
(enzymes of biological origin no longer associated with 
living cells) excreted into the soil solution or immobilised 
enzymes of microbial origin sorbed to clays or humic 
colloids (Skujins, 1976; Hayano and Katami, 1977; Busto 
and Perez-Mateos, 1995; 2000; Hayano and Tubaki, 
1985; Hopes and Burns, 1987). 
β-glucosidase is characteristically useful as a soil qua-

lity indicator, and may give a reflection of past biological 
activity, the capacity of soil to stabilise the soil organic 
matter, and can be used to detect management effect on 
soils (Bandick and Dick, 1999; Ndiaye et al., 2000). This 
has greatly facilitated its adoption for soil quality testing 
(Bandick and Dick, 1999). Generally, β-glucosidase acti-
vities can provide advanced evidence of changes in 
organic carbon long before it can be accurately measured 
by other routine methods (Dick, 1994; Dick et al., 1996; 
Wick et al., 1998). Several researchers have however 
also reported its phytopathological effects in the ecosys-
tem (Davis et al., 1953; Sherrod and Domsch, 1970; 
Melouk and Horner, 1973). For example, some of the 
aglycons are known to be the precursors of the toxic 
substances which cause soil sickness where plants are 
grown as monocrops (Patrick, 1955; Borner, 1958).  
β-glucosidase enzyme is very sensitive to changes in 

pH, and soil management practices (Dick et al., 1996; 
Acosta-Martinez and Tabatabai, 2000; Kuperman and 
Carreiro, 1997; Bergstrom et al., 1998; Leiros et al., 
1999; Bandick and Dick, 1999; Madejon et al., 2001). 
Acosta-Martinez and Tabatabai (2000) reported β-gluco-
sidase as sensitive to pH changes. This property can be 
used as a good biochemical indicator for measuring 
ecological changes resulting from soil acidification in 
situations involving activities of this enzyme. β-glucosi-
dase enzyme is also known to be inhibited by heavy 
metal contamination such as Cu and several others 
(Haanstra and Doelman, 1991; Deng and Tabatabai, 
1995; Wenzel et al., 1995). For instance, studies have 
shown that plant debris did not decomposed or show β-
glucosidase activities when exposed to heavy metal 
polluted soils (Watson et al., 1976; Geiger et al., 1993). 
Consequently, more understanding of the β-glucosidase 
enzyme activities and factors influencing them in the 
ecosystem may contribute significantly to soil health 
studies.  
 
 
CELLULASES  
 
Cellulose is the most abundant organic compound in the 
biosphere, comprising almost 50% of the biomass 
synthesised by photosynthetic fixation of CO2 (Eriksson 
et al., 1990). Growth and survival of micro-organisms 
important in most agricultural soils depends on the 
carbon source contained in the cellulose occurring in the 
soils (Deng and Tabatabai, 1994). However, for carbon to 
be released as an energy source  for  use  by  the  micro-  
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organisms, cellulose in plant debris has to be degraded 
into glucose, cellobiose and high molecular weight 
oligosaccharides by cellulases enzymes (White, 1982). 
Cellulases are a group of enzymes that catalyse the 
degradation of cellulose, polysaccharides build up of β-1, 
4 linked glucose units (Deng and Tabatabai, 1994). It has 
been reported that cellulases in soils are derived mainly 
from plant debris incorporated into the soil, and that a 
limited amount may also originate from fungi and bacteria 
in soils (Richmond, 1991). Currently, it is generally 
accepted that the cellulases system comprises of three 
major types of enzymes. They include: endo-1, 4- β-
glucanase which attacks the cellulose chains at random, 
exo-1, 4- β-glucanase which removes glucose or 
cellobiose from the non-reducing end of the cellulose 
chains, and β-D-glucosidase which hydrolyses cellobiose 
and other water soluble cellodextrins to glucose. 
Previously, several hypotheses were proposed about the 
mechanisms involved in the degradation of cellulose by 
the cellulases (Rees et al., 1950; Rees, 1975; White, 
1982; Wood, 1991) although none of them has been fully 
accepted. 

Demonstrating the effects of increasing concentrations 
of fungicides on cellulases activities, Petkar and Rai 
(1992) showed that there was a decreasing effect with 
fungicides captan, cosan, thiram, zinels and sandolex. 
More recently, Arinze and Yubedee (2000) reported that 
fungicides benlate, calixin and captan inhibited cellulase 
activity in Fusarium monoliforme isolates. Captatol 
inhibited cellulose activity in the sandy loam soil (Atlas et 
al., 1978), and chlorothalonil showed a clear reduction in 
cellulase activity under flooded or non-flooded conditions 
(Vicent and Sisler, 1968).  

Studies have shown that activities of cellulases in 
agricultural soils are affected by several factors. These 
include temperature, soil pH, water and oxygen contents 
(abiotic conditions), the chemical structure of organic 
matter and its location in the soil profile horizon (Rubidge, 
1977; Gomah, 1980; Tabatabai, 1982; Klein, 1989; Deng 
and Tabatabai, 1994; Alf and Nannipieri, 1995), quality of 
organic matter/plant debris and soil mineral elements 
(Burns, 1978; Hope and Burns, 1987; Klein, 1989; 
Sinsabaugh and Linkins, 1989; Deng and Tabatabai, 
1994) and the trace elements from fungicides (Deng and 
Tabatabai, 1994; Petkar and Rai, 1992; Arinze and 
Yubedee 2000; Atlas et al., 1978; Vicent and Sisler, 
1968). Srinivasulu and Rangaswamy (2006) reported a 
significantly more stimulatory effect of cellulases in black 
soil than red soil. Several mechanisms have been 
proposed in the degradation of cellulose by cellulases 
(Rees et al., 1950; Rees, 1975; White, 1982, Wood, 
1991). For instance, chitin in the presence of cellulose 
induces the synthesis of chitinase and other cell wall lytic 
enzymes which promote the release of the intramural β-
glucosidase into the medium. All these findings suggest 
that activities of cellulases can be used to give preli-
minary indication of some of  the  physical  chemical  pro- 
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perties of soil, thus, easing agricultural soil management 
strategies. Since cellulases enzymes play an important 
role in global recycling of the most abundant polymer, 
cellulose in nature, it would be of critical importance to 
understand this enzyme better so that it may be used 
more regularly as a predictive tool in our soil fertility 
programmes. More information on the role of this enzyme 
is needed since it is affected by different factors which 
may jeopardise its involvement in the decomposition of 
cellulolytic materials in the soil for microbial use and 
improved soil health in agricultural ecosystems.  
 
 
CHITINASE 
 
Chitinase or chitinolytic enzymes are key enzymes 
responsible for the degradation and hydrolysis of chitin 
(poly β-1-4-(2-ncetamido-2-deoxy)-D-glucoside). They 
are also considered as the major structural component of 
many fungal cell walls that use the hyperparasitism 
mechanisms against pests/pathogen attack, (Bartinicki-
Garcia, 1968; Chet and Henis, 1969; Chet and Henis, 
l975; Chet, 1987). These biological agents also reduce 
disease producing agents by using other mechanisms 
such as antibiosis or competition mechanisms (Parl, 
1960). This agriculturally important enzyme is produced 
or released by various organisms including plants and 
micro-organisms (Deshpande, 1986). For example, in 
plants, the chitinase enzyme is induced and accumulated 
in response to microbial infections and it is thought to be 
involved in the defence of plants against pathogen 
infections (Boiler et al., 1983; Boiler, 1985). Its presence 
in different forms in the ecosystem has demonstrated its 
effectiveness in the control of soil-borne diseases such 
as Sclerotium rolfsii and Rhizoctonia solani in beans and 
cotton, respectively (Ordentlich et al., 1988; Shapira et 
al., 1989). Biological control of damping off caused by R. 
solani was achieved by applying antagonistic fungi and 
bacteria isolated from coastal soils with chitinase 
activities (Ordentlich et al., 1988; Gal, 1992; Tweddel et 
al. 1994). One of the mechanisms proposed involves lytic 
enzymes that cause the degradation of cell walls of 
pathogenic fungi (Sneh, 1981; Elad et al., 1982; Hadar et 
al., 1983; Ordentlich et al, 1988; Chet et al., 1990; Singh 
et al., 1999). As biological control of most pathogenic 
diseases is increasingly gaining popularity in recent times 
due to their environmental friendliness, better under-
standing of the chitinolytic enzymes is likely to uncover 
more application avenues for this enzyme in agricultural 
systems and, consequently, increase plant growth and 
final yields.  
 
 
DEHYDROGENASE 
 
The dehydrogenase enzyme activity is commonly used 
as an indicator of biological activity in soils (Burns, 1978). 
This enzyme is considered to exist as an  integral  part  of  

 
 
 
 
intact cells but does not accumulate extracellularly in the 
soil. Dehydrogenase enzyme is known to oxidise soil 
organic matter by transferring protons and electrons from 
substrates to acceptors. These processes are part of 
respiration pathways of soil micro-organisms and are 
closely related to the type of soil and soil air-water condi- 
tions (Doelman and Haanstra, 1979; Kandeler et al., 
1996; Glinski and Stepniewski, 1985). Since these 
processes are part of respiration pathways of soil micro-
organisms, studies on the activities of dehydrogenase 
enzyme in the soil is very important as it may give 
indications of the potential of the soil to support bioche-
mical processes which are essential for maintaining soil 
fertility.  

With regard to soil air-water relationships, studies have 
shown that dehydrogenase enzyme was greater in 
flooded compared to non-flooded soil (Dkhar and Mishra, 
1983; Baruah and Mishra, 1984; Benckiser et al., 1984; 
Tiwari et al., 1989). The increase in this enzyme after 
flooding was also related to decreased redox potential 
(Okazaki et al., 1983; Pedrazzini and McKee, 1984). A 
study by Brzezinska et al. (1998) suggested that soil 
water content and temperature influence dehydrogenase 
activity indirectly by affecting the soil redox status.  

After flooding the soil, oxygen present is rapidly 
exhausted so that a shift of the activity from aerobic to 
anaerobic micro-organisms takes place. Such redox tran-
sformations are closely connected with respiration activity 
of soil micro-organisms. They may serve as indicators of 
the microbiological redox systems in soils and can be 
considered a possible measure of microbial oxidative 
activity (Glinski and Stepniewski, 1985; Gunnison, et al., 
1985; Skujins, 1973; Casida, 1977; Tabatabai, 1982; 
Trevors, 1984). The relationship between dehydrogenase 
activity and redox potential (Eh) as well as Fe2+ content 
may also be used to illustrate the reactions of soil micro-
organisms to the changes in soil environment. For 
instance, lack of oxygen may trigger facultative 
anaerobes to initiate metabolic processes involving 
dehydrogenase activities and the use of Fe (III) forms as 
terminal electron acceptors (Bromfield, 1954, Galstian, 
1974), a process that may affect iron availability to plants 
in the ecosystem (Benckiser et. al., 1984). Some studies 
have shown that reducing conditions in the soil were 
associated with high Fe2+ concentration in the soil 
solution and a significant increase of extra plasmatic Fe 
in roots of maize due to intense stimulation of microbial 
growth and dehydrogenase activities in the ecosystem 
(Fiedler et. al., 2004). 

Additionally, dehydrogenase enzyme is often used as a 
measure of any disruption caused by pesticides, trace 
elements or management practices to the soil (Reddy 
and Faza, 1989; Wilke, 1991; Frank and Malkomes, 
1993), as well as a direct measure of soil microbial 
activity (Skujins, 1978; Trevors, 1984; Garcia and 
Hernandez, 1997). It can also indicate the type and sig-
nificance of pollution  in  soils.  For  example,  dehydroge-  



 

 
 
 
 
nase enzyme is high in soils polluted with pulp and paper 
mill effluents (McCarthy et al., 1994) but low in soils 
polluted with fly ash (Pitchel and Hayes, 1990). Similarly, 
higher activities of dehydrogenases have been reported 
at low doses of pesticides, and, lower activities of the 
enzyme at higher doses of pesticides (Baruah and 
Mishra, 1986). As most areas of the world are often pollu- 
ted by different industrial bio-chemical products, better 
understanding of the role of this enzyme in environmental 
science will open greater possibilities of using it as a 
diagnostic tool for better ecosystem assessment and 
amelioration.  
 
 
PHOSPHATASES 
 
Phosphatases are a broad group of enzymes that are 
capable of catalysing hydrolysis of esters and anhydrides 
of phosphoric acid (Schmidt and Lawoski 1961). In soil 
ecosystems, these enzymes are believed to play critical 
roles in P cycles (Speir and Ross, 1978) as evidence 
shows that they are correlated to P stress and plant 
growth. Apart from being good indicators of soil fertility, 
phosphatase enzymes play key roles in the soil system 
(Dick and Tabatai, 1992; Eivazi and Tabatabai, 1997; 
Dick et al., 2000). 

Land plants have evolved many morphological
 
and 

enzymatic adaptations to tolerate low phosphate 
availability. This includes transcription activity of acid 
phosphatases, which tend to increase with high P stress 
(Tarafdar and Jungk, 1987; Goldstein,

 
1992; Duff et al., 

1994; del Pozo et al., 1999; Haran et
 
al., 2000; Baldwin et 

al., 2001; Miller et al., 2001; Li
 
et al., 2002).  For example, 

when there is a signal indicating P deficiency in the soil, 
acid phosphatase secretion from plant roots is increased 
to enhance the solubilisation and remobilisation of 
phosphate, thus influencing the ability of the plant to cope 
with P-stressed conditions (Muchhal et al., 1996; Daram 
et al.,

 
1999; Kai et al., 2002; Karthikeyan et al., 2002; 

Mudge et
 
al., 2002; Versaw and Harrison, 2002; Nakas et 

al., 1987; Chrost, 1991; Hayes et al., 1999; Li et al., 
1997).  

The amount
 
of acid phosphatase exuded by plant roots 

has been shown to differ between crop species and 
varieties, (Ndakidemi, 2006; Izaguirre-Mayoral and 
Carballo, 2002) as well as crop management practices 
(Ndakidemi, 2006; Patra et al., 1990; Staddon et al., 
1998; Wright and Reddy, 2001). For instance, research 
has shown that legumes secrete more phosphatase 
enzymes than cereal (Yadav and Tarafdar,

 
2001). This 

may probably be due to a higher requirement of P by 
legumes in the symbiotic nitrogen fixation process as 
compared to cereals. In their studies, Li et al. (2004) 
reported that chickpea roots were also able to

 
secrete 

greater amounts of acid phosphatase than maize.  
The ability to solubilise soil mineral elements by these 

phosphomonoesteraces is  expected  to  be  a  higher  in  
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biologically-managed systems because of a higher quan-
tity of organic C found in those systems. In fact, the 
activity of acid and alkaline phosphatases was found to 
correlate with organic matter in various studies (Guan 
1989; Jordan and Kremer, 1994; Aon and Colaneri, 
2001). Another factor that influences the rate of syn-
thesis, release and stability of this enzyme is the soil pH 
(Eivazi and Tabatabai, 1977; Juma and Tabatabai, 1977; 
Tabatabai, 1994; Martínez and Tabatabai, 2000). For 
example, phosphomonoesteraces inducibility and their 
exudation intensity by plant roots and micro-organisms 
are determined by their orthophosphate need, which is in 
turn affected by soil pH (Skujins, 1976). It is, therefore, 
anticipated that management practices that induce P 
stress in the rhizosphere may also affect the secretion of 
these enzymes in the ecosystem (Ndakidemi, 2006).  

To date, there have been few studies examining the 
influence of management options in the ecosystem on 
phosphatases activity in soil where most crops are 
grown. Understanding the dynamics of enzyme activities 
in these systems is crucial for predicting their interactions 
as their activities may, in turn, regulate nutrient uptake 
and plant growth. 
  
 
PROTEASE 
 
Proteases in soil play a significant role in N mineralisation 
(Ladd and Jackson, 1982), an important process 
regulating the amount of plant available N (Stevenson, 
1986) and plant growth. This enzyme in the soil is 
generally associated with inorganic and organic colloids 
(Burns, 1982; Nannipieri et al., 1996). Protease activities 
have been reported to occur partly in soil as a humo-
carbohydrate complex (Mayaudon et al., 1975; Batistic et 
al., 1980) from arable soil (Ladd, 1972; Mayaudon et al., 
1975; Hayano et al., 1987); from solid municipal waste 
compost (Rad et al., 1995), and from forest or permanent 
grassland soils (Nannipieri et al., 1980, 1982, 1985). The 
amount of this extracellular enzyme activity may be 
indicative not only of the biological capacity of soil for the 
enzymatic conversion of the substrate, which is indepen-
dent of the extent of microbial activity, but might also 
have an important role in the ecology of micro-organisms 
in the ecosystem (Burns, 1982).  

Protease activities are affected by several biotic and 
abiotic factors. For example, low concentrations of 
neutralised soil humic acids (l-100 pg mL-1) inhibit some 
and stimulate other protease activity by mechanisms 
involving primarily humic acid carboxyl groups (Ladd and 
Butler, 1969a, b; Butler and Ladd, 1969b). The enzyme 
pronase is inhibited irrespective of the charge of the 
substrate hydrolysed, suggesting that decreased activity 
results from humic acid combining with enzyme rather 
than with substrate (Ladd and Butler, 1969b). Further-
more, quantitative considerations of the effects of humic 
acid and substrate concentrations on pronase hydrolysis  
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of carbobenzoxy-glycyl leucine indicates that inhibition is 
not due to the combination of humic acid and substrate 
anions (Ladd and Butler, 1969a). 

There is a need to study the properties and factors 
affecting naturally-occurring enzyme complexes such as 
those involving protease enzymes in the soil ecosystem 
as they may reveal some unknown role(s) in soil fertility 
management.  
 
 
UREASE 
 
Urease enzyme is responsible for the hydrolysis of urea 
fertiliser applied to the soil into NH3 and CO2 with the 
concomitant rise in soil pH (Andrews et al., 1989; Byrnes 
and Amberger, 1989). This, in turn, results in a rapid N 
loss to the atmosphere through NH3 volatilisation (Fillery 
et al., 1984; Simpson et al., 1984, 1985; Simpson and 
Freney, 1988). Due to this role, urease activities in soils 
have received a lot of attention since it was first reported 
by Rotini (1935), a process considered vital in the 
regulation of N supply to plants after urea fertilisation.  

Often, urea is the main source of N in many crops 
including flooded or irrigated rice and maize in many 
parts of Africa and Asia (Stangel, 1984; Buresh et al., 
1988; Byrnes and Amberger, 1989; Van Cleemput and 
Wang, 1991). Despite the importance of this fertiliser, its 
efficiency has been reported as low (Mikkelsen et al., 
1978; Fillery et al., 1986; Vlek and Byrnes, 1986) due to 
substantial N lost to the atmosphere through 
volatilisation, a process mediated by the urease enzyme 
(Fillery et al., 1984; Simpson et al., 1984, 1985; Simpson 
and Freney, 1988; Byrnes and Amberger, 1989).  

Soil urease originates mainly from plants (Polacco, 
1977) and micro-organisms found as both intra- and 
extra-cellular enzymes (Mulvaney and Bremner, 1981; 
Blakeley and Zerner, 1984; Burns, 1986; Mobley and 
Hausinger, 1989). The stability of this enzyme in the 
system is affected by several factors. For example, 
studies have shown that extracellular urease associated 
with soil organo-mineral complexes is more stable than 
urease in the soil solution (Burns, 1986) and those 
humus-urease complexes extracted from soil are highly 
resistant to denaturing agents such as extreme 
temperatures and proteolytic attack (Nannipieri et al., 
1978). On the other hand, urease extracted from plants 
or micro-organisms is rapidly degraded in soil by 
proteolytic enzymes (Burns et al., 1972a; Pettit et al., 
1976; Zantua and Bremner, 1977). This suggests that a 
significant fraction of ureolytic activity in soil is carried out 
by extracellular urease, which is stabilised by immobili-
sation on organic and mineral soil colloids.  

Urease activity in soils is influenced by many factors. 
These include cropping history, organic matter content of 
the soil, soil depth, soil amendments, heavy metals, and 
environmental factors such as temperatures (Tabatabai, 
1977; Bremner and Mulvaney, 1978; Yang et al., 2006). 
For example, studies have shown that urease was very  

 
 
 
 
sensitive to toxic concentrations of heavy metals (Yang et 
al., 2006). Other studies with soil samples taken from 
horizons of different soil profiles revealed decreased 
activities with increased soil depth. The differences were 
attributed to decreases in soil organic matter content with 
depth (Hoffmann, 1959; Myers and McGarity, 1968; Ross 
and Roberts, 1968; Skujins, 1967). The effect of tempera- 
ture on urea hydrolysis has received considerable 
research attention (Gould et al., 1973; Dalal, 1975; 
Bremner and Mulvaney, 1978; Tomar and Mackenzie, 
1984; Kissel and Cabrera, 1988). Generally, urease 
activity increases with increasing temperature. It is 
suggested that higher temperatures increase the activity 
coefficient of this enzyme. Therefore, it is recommended 
that urea be applied at times of the day when tempe-
ratures are low. This is because during such times the 
activation energy is low, thus, resulting in minimum loss 
of N by the volatilisation process. 

Since urease plays a vital role in the hydrolysis of urea 
fertiliser, it is important to uncover other unknown factors 
that may reduce the efficiency of this enzyme in the 
ecosystem. A better understanding of this enzyme would 
provide more effective ways of managing urea fertiliser 
especially in high rainfall areas, flooded soils and irriga-
ted lands as well as where urea fertiliser is vulnerable to 
urease enzyme.  
 
 
CONCLUSION 
 
Understanding other possible roles of soil enzymes is 
vital to soil health and fertility management in ecosys-
tems. These enzymes may have significant effects on soil 
biology, environmental management, growth and nutrient 
uptake in plants growing in ecosystems. Their activities 
may, however, be influenced by unknown cultural 
management practices. Research efforts should focus on 
discovering new enzymes from microbial diversity in the 
soil, the most appropriate practices that may positively 
influence their activities for improved plant growth as well 
as improving the biological environments in order to 
sustain sustain other life types. 
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