
African Journal of Biotechnology Vol. 10(21), pp. 4380-4386, 23 May, 2011    
Available online at http://www.academicjournals.org/AJB 
DOI: 10.5897/AJB10.812 
ISSN 1684–5315 © 2011 Academic Journals  
 
 
 
 
Full Length Research Paper 
 

Alleviating effect of exogenous nitric oxide in cucumber 
seedling against chilling stress 

 
Xingwang Liu*, Lei Wang, Liying Liu, Yangdong Guo and Huazhong Ren 

 
College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China. 

 
Accepted 17 December, 2010 

 
Nitric oxide (NO) is a bioactive and a multifunctional gaseous molecule signal playing a central role and 
mediating variety of physiological processes in plants. In this study, the protective effect against 
chilling stress of exogenously applied sodium nitroprusside (SNP, a NO donor) in Cucumis sativus L. cv 
ZND407 and cv ZND461 was investigated. The SNP was sprayed over cucumber seedlings using 
different doses at 4°C. The results indicated that malondehyde (MDA) content was decreased however, 
soluble sugar and chlorophyll content increased upon treatment with 1.0 mmoll-1 SNP. Further 
investigations showed that treatment with NO donor stimulated the activities of various enzymes such 
as, superoxide dismutase (SOD, EC1.15.1.1), glutathione reducatse (GR, EC1.6.4.2), peroxidase (POD, 
EC.1.11.1.7) and catalase (CAT, EC.1.15.11). However, the soluble protein content did not change 
significantly under the NO treatment. The study indicated that exogenous NO at 1.0 mmoll-1 SNP 
enhanced chilling stress tolerance. In comparison with cvZND 461, cvZND407 had higher tolerance 
ability to chilling stress. 
 
Key words: Antioxidative enzymes, chilling stress, cucumber, nitric oxide (NO) osmotic adjustment; reactive 
oxygen species (ROS).  

 
 
INTRODUCTION 
 
Chilling is one of the most important abiotic stress factors 
affecting plant growth, development, spatial distribution 
and productivity (Levitt, 1980; Chinnus et al., 2007; Xia et 
al., 2009). Interestingly, the plants are continuously 
exposed to natural chilling and have therefore evolved 
many adaptive mechanisms (Wu, 2009). Cold acclimation 
is one of the crucial mechanisms by which plants acquire 
freezing tolerance prior exposure to low non-freezing 
temperatures. Most temperate plants can cold-acclimate 
and acquire tolerance to extracellular ice formation in 
their  vegetative  tissues  (Chinnus  et  al.,  2007).  Plants  
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suffering from chilling stress undergo common 
biochemical changes that involves the accumulation of 
reactive oxygen species (ROS) in mitochondria and 
chloroplast, which increases the cellular redox in favor of 
oxidized forms, thereby creating oxidative stress that can 
damage DNA, inactivate enzymes and cause lipid per-
oxidation (Shi et al., 2007). To protect cells and organelles 
from the damaging effects of ROS, complex antioxidant 
defense system have been evolved which comprises of 
enzymes such as superoxide dismutase (SOD), catalase 
(CAT), peroxidase (POD) and glutathione reeducate (GR) 
(Lee et al., 2000; Farooq et al., 2008). A large body of 
evidence has demonstrated that antioxidant systems play 
important roles in protecting plants against oxidative 
damage induced by low temperature. It has been 
reported that chilling caused significant decrease in the 
growth of cucumber roots, which are associated with 
increases in free radical production and membrane 
damage resulting from decrease in the activity of anti-
oxidant enzymes (Li et al., 2008; Zheng et al., 2009). The 
regulation of these antioxidants through an exogenous 
substance  might    mediate   the   activity   of  antioxidant  



 
 
 
 
enzymes in plant to improve chilling tolerance (Shi et al., 
2007). 

Nitrous oxide is a highly reactive gas which is a 
ubiquitous bioactive molecule that plays a central role as 
a signal in plant response to biotic and abiotic stresses 
(Nigel and Guo, 2005; Arasimowicz and Wieczorek, 2007).  
It has been increasingly evident that NO plays important 
roles in response to pathogen attack, programmed cell 
death, herbicides, and salt, drought and temperatures 
stress as well as heavy metal toxicity (Singh et al., 2008; 
Zhang et al., 2008). Diverse physiological processes are 
also regulated resulting from NO signalling in plants such 
as promotion in seed germination or reduction in seed 
dormancy, regulation of plant maturation and senescence, 
and mediation of stomatal movement for intermediate 
downstream of abscisic acid (ABA) signaling (Bethke, 
2006; Leitner et al., 2009; Guo et al., 2003; Qiao et al., 
2008). However, NO itself is a reactive nitrogen species 
and its effects on different types of cells have proven to 
be either as a potent oxidant or as effective antioxidant, 
depending on its concentration and location (Beligni and 
Lamattina, 1999; Qiao et al., 2008). 

Cucumber is one of the most popular members of the 
cucurbitaceae (vine crop) family. Like most cucurbits, the 
cucumber (cucumis sativus L.) is a warm-season horti-
cultural crop and has little or no frost tolerance and is 
planted in the world. In Northern China, cucumber can 
only be grown in sunlight-heated greenhouse during winter 
and early spring, to prevent damage by chilling and low 
light conditions (Zhang et al., 2009). Previous investi-
gations suggest that NO are able to alter the activities of 
some enzymes involved in scavenging ROS produced 
during different stress conditions such as drought, 
salinity, heavy metals and oxidative stress (Arasimowicz 
and Wieczorek, 2007; Zhao et al., 2004; Beligni and 
Lamattina, 2000). However, little is known about the 
responses of antioxidant enzymes against chilling stress 
which was induced by exogenous NO in vegetables, 
especially in cucumber. The objective of the present study 
is to assess the possible influence of various concen-
trations of exogenous NO treatment at 4 (±0.5) °C on 
antioxidant enzymes in leaves of two ecotype cultivars. 
 
 
MATERIALS AND METHODS 
 
Plant materials 
 
Seeds of cv ZND407 and cv ZND461 were obtained from the 
Department of Vegetable Science, China Agricultural University. Cv 
ZND407 is a chilling tolerant cultivar while cv ZND461 is sensitive to 
chilling. For all treatments, healthy seeds of similar sizes were 
used. Seeds were sterilized and allowed to germinate on filter 
papers under dark at 27°C for 48 h. Germinated seeds were sown 
in growth chambers in pots, filled with turf and vermiculite (2:1). The 
seedlings were developed at a photoperiod of 16 h (light intensity of 
520 umolm-2 s-1) at a temperature 24°C (day) and 20°C (night), and 
70% humidity. Three-leaf seedlings were used for NO spraying at 
four concentrations (0, 0.5, 1.0, and 2.0mmoll-1) 3 times every 24 h. 
After  3  days,  the  seedlings  were exposed to a cold chamber at 4  

 
 
 
 
(±0.5)°C under the normal continuous light (520 �molm-2 s-1) for 72 
h with a photoperiod of 14 h per day. The leaf samples were collected 
for analysis at 48 h. 
 
 
Chilling damage index  
 
Three-leaf stage seedlings were cultured at 4 (±0.5) °C. The chilling 
damage index was assessed visually every 12 h. The degrees of 
cold tolerance were measured based on the 6 grades criteria 
developed by Semeniuk et al. (1986). The different levels and their 
characteristics are as follows: Level 0: no symptom; level 1: 
chlorosis or crinkled at the edge of old leaves; level 3: chlorosis or 
crinkled at the edge of functional leaves with good new leaves; level 
4: chlorosis or crinkled and wilting of functional leaves with 
damaged new leaves; level 5: severe damage of new leaves, plants 
wilt or dead. Samples of all the symptoms are shown in Figure 3. 
Finally, chilling index (CI) for each candidate was calculated 
according to the following formula:  
 

 
 
 
Physiological assay 
 
Malondehyde (MDA) content was determined by the method based 
on Heath et al. (1968). Chlorophyll content was determined based 
on the protocol adapted from Winterlmans and Demts (1965). SOD 
activity was measured in terms of its capacity to inhibit photo-
chemical reduction of nitroblue tetrazolium (NBT) (Beauchamp and 
Fridovich, 1971; Singh et al., 2008).  

GR activity was determined by the oxidation of NADPH at 340 
nm and based on the classic method adapted from Foyer and 
Halliwell (1976). POD activity was determined by the guaiacol 
method according to Zhang et al. (2008). CAT was measured as the 
decline in absorbance at 240 nm due to decline of H2O2 extinction 
rate (Singh et al., 2008). Total soluble sugar was determined using 
anthrone reagent and glucose as standard (Ozaki et al., 2009). 
Soluble protein content was measured using bovine serum albumin 
(BSA) as standard according to the Bradford (1976). Standard 
curve was prepared using BSA as standard (Mandal et al., 2009). 
 
 
Statistics  
 
Each treatment was replicated three times with 10 seedlings. Values 
presented are means ± standard deviation (SD). Statistical analy-
ses were performed by analysis of variance (ANVOA) using the 
Statistical Analysis System (SAS) software (SAS Instituted, Cary, 
NC). Differences between treatments were separated by the 
Duncan test at a 0.05 probability level. 
 
 
RESULTS  
 
The 48 h NO treatment at 4 (±0.5°C) decreased chilling 
damage indices (CI) in both cvZND407 and cvZND461 at 
different extent compared to the control seedlings. How-
ever with increasing NO concentration, the CI increased 
initially and then decreased. At different NO concen-
trations, CI of cv ZND407 decreased 22.96, 43.86 and 
24.58%, respectively and that of cv ZND461 decreased 
34.17, 50.63 and 10.12%, respectively compared to the 
control  (Table  1).  However, the CI reached the lowest at  

 
 

CI =� (each level × number of plants with corresponding level)
(each level × number of plants with corresponding level) / the highest level × total number of inoculated plants 
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Table 1. Chilling damage index in cucumber leaves affected by NO 
spraying 
  

Concentration of 
NO (mmoll

0.00
0.50
1.00
2.00

 

Mean value ± SD (n = 3). Data with different letters are significantly 
different at the 5% level.

 
 

 
Figure 1. Effect of different concentration treatment with SNP on the content of Chlorophyll (a+b) (a), MDA (b), total 
soluble sugar (c) and total soluble protein in Cucumber seedling leaves under chilling stress. 

 
 
 
the exogenous NO concentration of 1.0 mmoll
the ecotype seedlings. 

The CI of cv ZND407 was lower than that of 
ZND461. Similarly, the cold tolerance of cv ZND
better than that of cv ZND461 under treatment with exo
genous NO. It was determined that 1.0 mmoll
NO treatment was the optimal concentration to enhance 
tolerance in cucumber seedlings. 

Chilling damage index in cucumber leaves affected by NO 

Concentration of 
NO (mmoll-1) 

Chilling damage index 
cvZDN407 cvZND461 

0.00 0.57 ± 0.010a 0.79 ± 0.020a 
0.50 0.44 ± 0.030bc 0.52 ± 0.003c 
1.00 0.32 ± 0.010d 0.39 ± 0.264d 
2.00 0.43 ± 0.009bc 0.71 ± 0.010b 

Mean value ± SD (n = 3). Data with different letters are significantly 
different at the 5% level. 

Effect of different concentration treatment with SNP on the content of Chlorophyll (a+b) (a), MDA (b), total 
soluble sugar (c) and total soluble protein in Cucumber seedling leaves under chilling stress.  

ation of 1.0 mmoll-1 in both 

407 was lower than that of cv 
cv ZND407 was 

461 under treatment with exo-
genous NO. It was determined that 1.0 mmoll-1 exogenous 
NO treatment was the optimal concentration to enhance 

Effect of NO on content of MDA in leaves of 
cucumber seedlings under chilling stress
 
The MDA is a measure of lipid peroxidation. The MDA 
values decreased significantly (p < 0.05) after 48 h at 4 (± 
0.5)°C treatment (Figure 1b). The MDA content in cucum
ber seedlings during chilling stress and sodium 
nitroprusside  (SNP)  treatment decreased significantly (p 

 

Effect of different concentration treatment with SNP on the content of Chlorophyll (a+b) (a), MDA (b), total 

Effect of NO on content of MDA in leaves of 
cucumber seedlings under chilling stress 

The MDA is a measure of lipid peroxidation. The MDA 
significantly (p < 0.05) after 48 h at 4 (± 

0.5)°C treatment (Figure 1b). The MDA content in cucum-
ber seedlings during chilling stress and sodium 

treatment decreased significantly (p  



 
 
 
 

 
Figure 2. Effect of different concentration treatment with SNP on the content of SOD (a), GR(b), POD(c) and CAT(d) in 
cucumber seedling leaves under chilling stress.  

 
 
 
< 0.05) when compared to those with chilling stress only, 
but without the SNP treatment. The values decreased by 
27.2% and 27.6% in the two cultivars 
cvZND461, respectively. However, upon higher concen
tration of supplement with SNP (2.0 mmoll
an increase in the MDA content. This could alleviate the 
effects of chilling stress but the effect was not significant 
at higher NO concentration. Both 0.5mmoll-1

SNP can protect the integrity of the plasma membrane 
from damage due to chilling-induced stress. However, the 
SNP concentration of 1.0 mmoll-1 SNP is found to be the 
best.  
 
 
Effects of NO on chlorophyll content in leaves of 
cucumber seedlings under chilling stress 
 
Under chilling stress, NO treatment slightly increas
chlorophyll (a+b) content (p < 0.05) (Figure 1a) (data of 
chlorophyll-a  and  chlorophyll-b  were  not shown). At 1.0 

Effect of different concentration treatment with SNP on the content of SOD (a), GR(b), POD(c) and CAT(d) in 
cucumber seedling leaves under chilling stress.   

0.05) when compared to those with chilling stress only, 
but without the SNP treatment. The values decreased by 
27.2% and 27.6% in the two cultivars cvZND407 and 

461, respectively. However, upon higher concen-
tration of supplement with SNP (2.0 mmoll-1), there was 
an increase in the MDA content. This could alleviate the 
effects of chilling stress but the effect was not significant 

1 and 1.0mmoll-1 
SNP can protect the integrity of the plasma membrane 

induced stress. However, the 
SNP is found to be the 

Effects of NO on chlorophyll content in leaves of 
cucumber seedlings under chilling stress  

Under chilling stress, NO treatment slightly increased the 
chlorophyll (a+b) content (p < 0.05) (Figure 1a) (data of 

not shown). At 1.0 

mmoll-1 level, the cvZND407 and 
34.9%, 18.3% respectively compared to
control. At the same time, NO treatment alleviated the 
effects of chilling stress on cucumber seedling leaves.
 
 
Effects of NO on antioxidant enzymes in leaves of 
cucumber seedlings chilling stress
 
There was a significant increase in th
oxidant enzymes (SOD, GR, POD and CAT) in the leaves 
exposed to NO treatment (Figures 2a, b, c and d). In 
general, the induction of these enzymes after 0.5 mmoll
SNP to 2 mmoll-1 SNP treatments
cvZND407 and cvZND461 when compared
control. Activity of SOD was measured at 48 h after 
chilling stress. Upon SNP addition, the activity of SOD 
increased significantly only at 1.0 mmoll
cvZND407and cvZND 461 (Figure 3a). The activity of 
SOD changed when cvZND407 and 

 

Effect of different concentration treatment with SNP on the content of SOD (a), GR(b), POD(c) and CAT(d) in 

407 and cvZND461 increased 
34.9%, 18.3% respectively compared to the non-treatment 
control. At the same time, NO treatment alleviated the 
effects of chilling stress on cucumber seedling leaves. 

Effects of NO on antioxidant enzymes in leaves of 
cucumber seedlings chilling stress 

here was a significant increase in the activities of anti-
oxidant enzymes (SOD, GR, POD and CAT) in the leaves 
exposed to NO treatment (Figures 2a, b, c and d). In 
general, the induction of these enzymes after 0.5 mmoll-1 

treatments was higher in both 
461 when compared to the untreated 

control. Activity of SOD was measured at 48 h after 
chilling stress. Upon SNP addition, the activity of SOD 
increased significantly only at 1.0 mmoll-1 SNP in both 

461 (Figure 3a). The activity of 
407 and cvZND461 seedlings  
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Figure 3. Cucumber accession No.1 and 2 displayed after being treated with different concentrations of (a) NO and (b) 
CK. 

 
 
 
were exposed to 2.0 mmoll-1 SNP; however, the change 
in the activity was not significant. 

Activity of GR, POD and CAT were enhanced after SNP 
treatment (Figure2b, 2c and 2d). Compared to SOD 
activity, the variation of GR activity with various treat-
ments showed similar changes. However, the activity of 
GR increased compared to SOD. The changes of POD 
activity (Figure 2c) was similar to GR. Noticeable changes 
were observed in POD activity among different treat-
ments. 

As shown in Figure 2d, the CAT activity in NO-treatment 
seedlings increased 60.7% in cvZND407 and 60.1% in 
cvZND461 under 1 mmoll-1 SNP treatment, respectively, 
and at 0.5mmoll-1 SNP treatment they increased at 39.3 
and 41%, respectively. Therefore, NO may alleviate the 
effect of antioxidant thereby enhancing the ability of 
eliminating free radicals in leaves. 
 
 
Effect of NO on total soluble sugars and proteins in 
leaves of cucumber seedlings under chilling tress 
 
The soluble sugar content increased significantly upon 
SNP treatment compared to the control (Figure 1c). Soluble 

sugar content in cvZND407 and cvZND461 at 1 mmoll-1 

SNP treatment increased by 164 and 1100%, respectively 
compared to the control. However, at 2 mmoll-1 SNP 
treatment, the soluble sugar content decreased signifi-
cantly in both cvZND407and cvZND461.  

The protein content (Figure 1d) in the leaves followed a 
similar pattern as the soluble sugar content. The protein 
in leaves increased with increasing concentrations (0, 
0.5, 1.0 and 2.0 mmoll-1). But no significant changes were 
observed in soluble proteins among different treatments. 
 
 
DISCUSSION  
 
SNP, a widely used exogenous NO donor (Delledonne et 
al., 1998), is one of the compounds with the ability to 
reduce the damaging effects of various plant stresses 
(Uchida et al., 2002). NO can alter various plant pro-
cesses and against different stresses (Nigel and Guo, 
2005; Bethke, 2006; Arasimowicz and Wieczorek, 2007). 

Application of NO increased chlorophyll content in pea 
and potato (Leshem et al., 1997; Laxalt et al., 1997; Beligni 
and Lamattina, 2002). In the present work, 0.5 and 1.0 
mmoll-1  SNP   obviously   increased   chlorophyll  content  



 
 
 
 
(Figure 1a), suggesting that the exogenous NO could 
markedly alleviate the oxidative stress generated by chilling 
stress on seedlings. NO protects chlorophyll retention by 
maintaining iron availability and by alleviating chlorophyll 
decay in leaves under osmotic and oxidative stress con-
ditions. 

Excessive ROS cannot only cause photo-oxidative 
damage to chlorophyll but also induce overproduction of 
MDA, a marker of lipid peroxidation or plasma membrane 
in plant cells (Zhang et al, 2010). Our results show that 
spraying NO can decrease the MDA content in cvZND407 
and cvZND461 (Figure 1b). The results were consistent 
with Leshem et al. (1997), indicating a protective role of 
NO at low concentrations by reacting with lipid radicals 
and stopping the propagation of lipid oxidation. 

Chlorophyll and MDA have been used as important 
indicators for several physiological and biochemical 
parameters of plants under diverse stresses due to a 
decrease in membrane integrity and lipid peroxidation 
(Zhang et al, 2009). Applying NO might not only influence 
membrane oxidation system to enable seedlings to be 
adaptive to chilling stress but also increase activity of 
oxidant enzymes, especially by GR and CAT. 

GR activity has been documented to associate with the 
alteration of the oxidized/reduced glutathione (GSSG/GSH) 
ratio which is more decisive in determining plants that are 
resistant to abiotic and biotic stresses than GSH content 
(Wang et al., 2009). GSH has a redox thiol group which is 
involved in the redox regulation of the cell cycle and has 
therefore been considered to play a key role against 
oxidative stress (Lozano et al., 1996). GR activity is 
increased in leaves with exogenous NO treatment. Leaves 
showed high GR activity at 1.0 mmoll-1 SNP (fig 2b). The 
GR activities also increased at different levels of NO 
treatment with some fluctuation, suggesting GR may be 
activated to regulate the oxidant status of GSH after the 
plant was treated with low temperature-induced stress.  

Catalase is one of the important enzymes involved in 
the removal of toxic peroxides (Verma and Dubey, 2003). 
Increase in the catalase activity was observed upon NO 
treatment followed by chilling stress, which suggests a 
possible removal of H2O2 and toxic peroxides. The CAT 
activity was also reported to be increased in cucumber 
roots under salt stress (Shi et al, 2007), and in rice 
seedlings under Cd stress (shah et al, 2001) upon 
exogenous spraying of SNP. However, Ruan et al (2002) 
found that CAT activities in wheat leaves displayed a 
decline in their activity. Clark et al. (2000) speculated that 
NO reversibly inhibited tobacco CAT activity by directly 
interacting with the iron atom in the heme moiety, forming 
an iron-nitroxy complex. The contradictory observations 
indicate the dual role NO might depend on the 
concentration of NO as well as environmental conditions.  

Both CAT and POD functions as effective quenchers of 
ROS (Levitt, 1980). In this study, spraying of exogenous 
NO enhanced POD activity, however the increase was 
not  significant  in both cvZND407 and cvZND461 (Figure 

 
 
 
 
2c) when compared to the increases in CAT activity. 
These results suggested that CAT can serve as a better 
intrinsic defense tool to resist low temperature-induced 
oxidative damage in cucumber seedlings than POD. 

SOD is one of the important components of the reactive 
oxygen species scavenging system in the plant cell 
(Levitt, 1980). Our results showed that leaves exhibit 
significant increase in the activity of SOD compared to 
the control (Figure 2a). Similar results had been reported 
when plants were exposed to salt and stress (Shi et al., 
2007; Singh et al., 2009) suggesting that NO could 
increase SOD which responds to stresses by affecting 
de-novo synthesis of the enzymic protein and reducing 
the injury from chilling stress. The elevated activities of 
GR, CAT, SOD and POD due to NO treatment enabled a 
more balanced redox state, thereby sustaining higher 
survival rate of seedlings under chilling stress. Thus, it 
could be concluded that NO regulated the antioxidant 
system by rapidly responding to chilling stress. Moreover, 
osmotic substances such as soluble sugar and protein 
also affect seedlings tolerance to stress. The soluble 
sugar content in cucumber leaves treated by exogenous 
SNP increased sharply. Interestingly, soluble sugar con-
tent in cvZND407 at 1.0 mmoll -1 SNP treatment was 1.6-
fold compared to the control and in cvZND461 was 11-
fold compared to control (Figure 1c). Similar results were 
observed in Arabidopsis rosettes, with a significant 
increase in the degree of freezing tolerance that occurs 
within 1 day at 2°C being positively correlated with soluble 
sugar content (Wanner and Junttila, 1999) and that the 
heterosis of leaf freezing tolerance generated by crossing 
between different ecotypes is positively correlated with 
leaf sugar content (Rohde et al., 2004).  

Soluble protein metabolism is an important metabolic 
pathway against chilling stress (Sarhan and Perras, 
1987). Our results showed that under the chilling stress 
soluble protein in the leaves treated with NO had no 
significant changes (Figure 1d ), suggesting a limited 
regulatory role associated with the metabolic changes 
known to occur during the onset chilling stress. 

In conclusion, exogenous NO at 1.0 mmoll-1 SNP is 
able to significantly improve the tolerance of cucumber 
seedlings subjected to chilling stress. NO exerted its 
protective effect through the activation of some anti-
oxidative enzymes and osmotic adjustment substances. 
Application of exogenous NO during the growth of 
vegetable plants under chilling stress can be used to 
decrease plant stress conditions. However, the molecular 
mechanisms involved in the antioxidative adaptation are 
still poorly understood and the signaling pathways 
involved needs further investigation. 
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