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Moisture deficit stress, one of the abiotic stresses, affects sugarcane growth and development and 
reduces cane and sugar yields. Transcription Factors (TFs) are master regulatory proteins in all living 
cells which have the capability of activating or repressing transcription of stress responsive genes in 
order to activate the stress tolerance mechanism. Study of expression profiles of TF genes which 
regulate the expression of stress responsive genes help to elucidate the regulatory biology of stress 
tolerance. Expression of 17 sugarcane TF genes in moisture deficit stress sensitive and tolerant 
varieties under different moisture deficit stress conditions were quantified in quantitative real-time PCR. 
Expression of seven TF genes namely, WRKY, NAC, bZIP, DREB, G2 like, Homeobox and TUB showed 
significant difference between the stress tolerant and susceptible varieties under both moderate and 
severe moisture deficit stress conditions. In stress tolerant variety, of these seven TF genes, bZIP 
showed highest expression both under moderate (22.39 fold) and severe stress (13.45 fold) conditions 
than other TF genes. Expression of bZIP gene in moisture deficit stress susceptible variety was 
significantly low under moderate (1.09 fold) and severe (3.63 fold) moisture deficit stress condition. 
GRAS TF gene under moderate stress condition (4 fold) and Homeobox gene under severe stress 
condition (6.06 fold) showed highest expressions than other TF genes in moisture stress susceptible 
variety. These differentially expressed TFs among the moisture stress tolerant and sensitive varieties 
hold promise for improving abiotic stress tolerance in sugarcane through their use as the potential 
candidate genes in marker assisted selection and in genetic transformation. 
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INTRODUCTION 
 
Sugarcane is, an important industrial crop, used primarily 
for production of sugar and ethanol. It is being cultivated 
in  more   than   100   tropical   and  subtropical  countries 

(Waclawovsky et al., 2010). Sugarcane is a highly water 
demanding crop and significant extent of existing growing 
areas cannot meet the water requirement during the most
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critical water demanding formative growth stage of the 
plant (Naidu, 1978; Ramesh, 2000). Supplementary 
irrigation is not a favorable option due to the added cost 
component which adversely affects the profit margin of 
the farmers. Hence, development of moisture deficit 
stress tolerant varieties either through conventional 
breeding or genetic manipulation is the most sustainable 
solution (Moore, 1987; Jain and Chattopadhyay, 2010) to 
mitigate the adverse effects comes from abiotic stresses. 

Breeding for moisture deficit stress tolerance in 
sugarcane is complicated due to both the polyploid 
nature of the crop and the complexity of the trait (Swapna 
and Hemaprabha, 2010). Recent advancements in 
molecular tools help in identification of genetic factors 
involved in the responses of plants to moisture deficit 
stress. The available data indicate that moisture deficit 
stress tolerance is a complex physio-chemical process, in 
which many biological macro and micro molecules such 
as nucleic acids (DNA, RNA, microRNA), proteins, 
carbohydrates, lipids, hormones, ions, free radicals and 
mineral elements are involved (Bayoumi et al., 2008). 
Identification of genes which can regulate multiple 
biochemical and development pathways related to moisture 
deficit stress tolerance could be the best candidates to 
improve the performances of crops during moistures 
deficit stress. Among the stress responsive genes, TF 
genes are master regulatory proteins in all living cells. 
They often exhibit sequence specific DNA binding and 
are capable of activating or repressing transcription of 
multiple genes (Latchman, 2003). Interactions of TFs and 
cis elements in the promoter regions of stress responsive 
genes up-regulate the expression of many downstream 
genes and activate the stress tolerance mechanism 
(Agarwal and Jha, 2010). Hence, the ability of TFs to 
regulate the multiple biochemical and development 
pathways related to moisture deficit stress tolerance can 
be exploited to alter the performances of sugarcane 
during moisture deficit stress conditions. Information on 
the TFs which show differential expression under 
different moisture deficit stress conditions and 
quantification of the expression of TFs in susceptible and 
tolerant varieties are the prerequisites for understanding 
the regulatory biology of stress perception and 
modulation. This would help in identification of candidate 
genes which can be considered to target breeding for 
improved moisture deficit stress tolerance in sugarcane. 

Hence, the present experiment was designed to identify 
the differentially expressed TFs and study the differences 
in their levels of expression under different moisture 
deficit stress conditions in sugarcane genotypes reported 
as moisture stress tolerant and sensitive. 

 
 
MATERIALS AND METHODS 

 
Two sugarcane varieties reported as moisture stress tolerant (Co 
94008) (Gomathi and Vasantha, 2010) and moisture stress 
sensitive (Co 775)  (Hemaprabha  and  Swapna,  2012;  Manel  and  

 
 
 
 
Sumangala, 2017) were grown in pots filled with sterilized sand 
(single bud setts per pot) under greenhouse condition without light 
or temperature control. The experiment was arranged in a completely 
randomized design, with six biological replications for unstressed 
and stressed plants. All plantlets were maintained under same growth 
condition and equally watered (250 ml per pot) in alternate days 
with 25% of Hoagland solution per pot (Hoagland and Arnon, 1950). 
After 2 months of growth, four replications of each variety were 
subjected to moisture deficit stress by withholding the irrigation 
(stressed) and rest of the plants were regularly irrigated (unstressed). 
The water content of the sand was measured by gravimetric 
methods to observe the moisture reduction during the experimental 
treatment (Black, 1965). Root samples of two biological replicates 
of stressed and unstressed plants were collected separately 8 
(moderate stress) and 10 days (severe stress) after withholding the 
irrigation (Rodrigues et al., 2009) and stored at -80°C. 
 
 

Preparation of cDNA 
 

Total RNA was isolated from stressed and unstressed root samples 
of each biological replicates separately using TRIzol reagent 
according to the instructions given by manufacture (SIGMA-
ALDRICH PVT. LTD.USA). The quantity and quality of total RNA 
were checked using NanoDrop ND-1000 spectrophotometer 
(NanoDrop Technologies, USA) and 1% formaldehyde Agarose gel 
electrophoresis. Single stranded cDNA was prepared by using High 
Capacity cDNA Reverse Transcription kit (cat#4374966, Ambion, 
USA) as per the protocol given by manufacturer. 

The sequences of available forty-one sugarcane transcription 
factor families (http://grassius.org/browse 
family.html/species=Sugarcane) were selected for quantification of 
expression. The similarity portion of the sequence of the members 
of TF families were identified and targeted for designing the primer 
pairs. The Primer3plus software (http://frodo.wi.mit.edu/cgi-
bin/primer3plus/primer3plus_www.cgi) was used for designing the 
primer pairs and they were synthesized at Sigma-Aldrich Pvt. Ltd. 
(Germany) after confirming the specificity by BLAST searching 
them against SUEST database. 
 
 

qRT-PCR and data analysis 
 

Genomic DNA of sugarcane varieties, Co 94008 and Co 775 were 
used as the template and Polymerase Chain Reactions (PCR) were 
performed to confirm the applicability of the primers.  

The Eppendrof master cycler realplex machine and its default 
program (95°C for 10 min, followed by 40 amplification cycles, 95°C 
for 15 s, 59-62°C for 20 s and 68°C for 20 s) were employed in 10 
μl reaction mixture consisting of 1.0 ng cDNA, 200nM of each gene-
specific primer and 5 μl of 2x SYBR green reagents (Cat.#4368706, 
Ambion, USA). Expression levels of TFs were quantified using 
ΔΔCt method (Livak and Schmittgen, 2001). Sugarcane 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene 
(GAPDH F: 5’ CACGGCCACTGGAAGCA 3’ and GAPDH R: 
5`TCCTCAGGGTTCCTGATGCC 3’) reported as a stable gene in 
moisture stress studies (Ling et al., 2014) was used as the 
reference gene for normalization. Two each of technical and 
biological replications from each treatment were used to avoid the 
handling errors and to confirm the reproducibility of the results. 
Significant differences in gene quantitation between the stress and 
unstressed conditions and genotypes were analyzed on the basis of 
T-test sat α = 0.05 using Microsoft Excel program. 

 
 

RESULTS AND DISCUSSION 
 

Phenotypic  changes  such  as  leaf   rolling,   wilting  etc.
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Table 1. Details of specific primers used for detection of transcription factors and amplicon size. 
 

TF name Forward primer sequence
5` - 3`

 Reverse primer sequence 
5` - 3`

 Tm (°C) 
Expected amplicon size 

(bp) 
Observed amplicon 

size (bp) 

ALFIn like GCCTCTGGTTGTCATATGTCTT AAGGCCAAGAGGTTCCATTT 51.4 120 100 - 200 

AP2 EREBD TCAAGCAGCAGCAGAGGTAA TCGGTGCTCATCTCCTTCTT 51.8 121 100 - 200 

ARF  TGGGGAGTTACGTGTTGGAG TGCAAGAACACCAAGATGCA 51.7 110 100 

ARR-B   CCCAGCTTTGACCTCCCTG CTCCTCGACGGTCATCTCC 55.4 191 100 - 200 

BBR- BPC CACTGGTGTTGGTATGGTGG ACCAAAGCCTAAGAAGCCTAAG 53.0 159 100 - 200 

bZip CAATGACCCTAGCAGACCCT GTGGATTTGCAGCAACGGTA 52.8 153 100 – 200 

E2F-DP  TCAAAATTCCGCCACACACA GATGTCCCATACGCCTAGCT 51.7 197 200 

G2 –like  ATTCAGAAGTACCGGCTGCA TGCTCATCCATTTCCGCTTG 51.8 202 200 

GRAS   ACTGTTCTGATGGCACCTGA TCCCTTAGCCGTTTCTCTGG 52.8 209 200 

GRF   ATCTCCCCTCCTCCCCTG CAGGAAGGAGGATTGGGGAC 50.4 172 200 

Homeobox ACATGATCTGGGGCAACTGA TACAGGCACAATTGGACCCT 51.8 165 100 – 200 

MYB   GTTCCCTGCATGCTGAAACA GGAACATTCACGGACACACC 52.8 233 200 – 300 

TCP   GCTCATCCGTAACGCCAAG CTGCTCGGACGGCTCAGT 54.1 116 100 - 200 

TUB   AGATGTCTCGGCATGCTG ACCTCTCCTCCTGATCCTCC 53.1 108 100 

DREB CACACAATCCAAGGGGCTTC TGCCTCGTCTCCTTGAACTT 66.6 207 200 

NAC AAGTGAAAAGCTCCCCTCGA TTTTCCCTCCTCTGGCTCTG 65.0 173 100 – 200 

WRKY GCGGGACCCCAGCTTCAAG CCACGCCATGTCAAGCCGC 71.4 209 200 

 
 
 
undergone by the moisture stress tolerant and 
sensitive varieties and reduction of the moisture 
content of sand potting medium during the 
experimental period were recorded (data not 
shown). A total of 17 primer pairs mentioned in 
Table 1 were designed to quantify the expression 
of TFs and their feasibility was checked in PCR 
with genomic DNA of the selected sugarcane 
varieties (Co 94008 and Co 775).  Since all the 
primer pairs showed amplifications with genomic 
DNA (Plate 1a), their expressions were further 
quantified in qRT-PCR. Melting curve analyses for 
each primer pair were performed and confirmed 
the occurrence of specific amplification peaks and 
the absence of primer-dimer formation. Further, 
specificity of amplicons were confirmed by loading 
the qRT-PCR products on 4% Agarose gel and all 

the selected TF genes showed the expected size 
of the amplicons (Plate 1b). 
 
 
Differential expression of TFs in moisture 
stress tolerant and susceptible varieties 
 
Differential expressions of TFs probably govern 
expression of stress-inducible genes either 
cooperatively or independently, and may constitute 
gene network in various responses for abiotic 
stresses (Joshi et al., 2016). Therefore, the TFs 
might play a role in the differential responses of 
moisture stress tolerant and susceptible varieties 
to moisture deficit stress. In this study, significant 
difference in expression of seven TF genes 
namely  WRKY,  NAC,  bZIP,    DREB,    G2   like, 

Homeobox and TUB were found between tolerant 
(Co 94008) and sensitive (Co 775) varieties under 
moderate and severe stress conditions (Table 2). 

Among the differentially expressed TFs, bZIP 
showed the highest expression under moderate 
(22.39 fold expression) and severe (13.45 fold 
expression) stress condition. To date, several 
bZIP TFs have been functionally characterized, 
including those shown to be responsive to abiotic 
stress in rice (Lu et al., 2009) and Arabidopsis 
(Uno et al., 2000). For example, over-expression 
of OsbZIP23 or OsbZIP72 enhances the drought 
tolerance of rice and these two TFs are involved 
in ABA-dependent drought signal transduction (Lu 
et al., 2009). In this study also, higher expression 
of bZIP were recorded in moisture stress tolerant 
genotype   than    the    sensitive    genotype.  The
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Plate 1. (A) Fractionation of PCR products generated from amplification of 
genomic DNA with the primers targeted the DREB gene, (B) Fractionation of 
qRT-PCR products generated from NAC and ARR-B primers on 4% agarose gel.  
L: Ladder, C: unstress condition, M: moderate stress condition and S: severe 
stress condition. 

 
 
 
expression pattern of miRNA of bZIP factor in sugarcane 
indicated that tolerant plants adjust their transcriptome to 
increase the bZIP factor, which may activate the 
transcription of drought-related genes (Agustina et al., 
2013). 

Over-expression of the NAC transcription factor family 
members in Arabidopsis showed up regulation of several 
stress inducible genes in the transgenic plants and 
significant increase in drought tolerance (Tran et al., 
2004). In the present study also, NAC TF gene showed 
significant up regulation than the unstressed  condition  in 

both the sugarcane varieties (Figures 1 and 2). Further, 
expression of NAC gene was significantly high in 
moisture stress tolerant variety than susceptible variety. 

DREB is a known ABA independent abiotic stress 
responsive TF that is expressed predominantly in 
moisture stressed root (Liu et al., 1998; Sakuma et al., 
2002). Over expression of DREB gene and enhancement 
of moisture stress tolerance were reported in Arabidopsis 
(Liu et al., 1998), tobacco (Kasuga et al., 2004), rice (Oh 
et al., 2005) and potato (Behnam et al., 2006). Up-
regulation   of  DREB   TF   in   moisture   stress   tolerant

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 1: A - Fractionation of PCR products generated from amplification of genomic DNA with the 

primers targeted the DREB gene, B - Fractionation of qRT-PCR products generated from NAC and 

ARR-B primers on 4% agarose gel.  

L: Ladder, C: unstress condition, M: moderate stress condition and S: severe stress condition 
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Table 2. Relative changes in the expression of transcription factors under stressed condition in Co 94008 and Co 775 sugarcane 
varieties 
 

TF Family 

Co 94008 Co 775 
Calculated T value 

Fold expression Fold expression 

C M S C M S M S 

GRAS 1 4 2 1 4 4 1.14 14.91** 

GRF 1 0 0.06 1 0 0.03 UD 3.38* 

G2 –like 1 0.19 0.08 1 1.41 1.18 19.58** 12.09** 

Homeobox 1 4 5.66 1 3.03 6.06 134.35** 6.44** 

TUB   1 1 0.86 1 0.38 0.47 8.05** 6.97** 

WRKY 1 1.4 0.68 1 3.4 1.01 135.19** 14.95** 

NAC 1 4.12 1.94 1 1.43 1.33 66.03** 32.06** 

bZIP 1 22.39 13.45 1 1.09 3.63 81.80** 211.31** 

DREB 1 3.35 1.68 1 1.39 0.39 55.96** 56.08** 
 

Table t value (5%, df: 3) = 3.18*, Table t value (1%, df: 3) = 5.84** 
Where; UD: Transcripts undetectable, C: Unstress condition, M: Moderate stress condition and S: Severe stress condition. 

 
 
 

 
 

Figure 1. Real time PCR data for expression of transcription factors under stressed and control condition in sugarcane variety Co 
94008, where: C: unstress condition, MR: moderate stress condition and SR: severe stress condition. 

 
 
 
sugarcane varieties than sensitive was observed by 
Agustina et al. (2013) and the expression patterns of 
DREB in this experiment were also in accordance with 
the earlier reports. In this study also, DREB TF gene 
showed differential expression between sensitive and 
tolerant varieties under moisture deficit stress condition. 
Under moderate stress condition, it showed 3.35 fold up 
regulation in tolerant variety and 1.39 in sensitive variety. 
Though, this gene was down regulated under severe 
stress condition compared to  moderate  stress  condition 

in both varieties, expression in moisture stress tolerant 
variety Co 94008 showed higher expression than the 
sensitive variety. Hence, this gene may also contribute to 
moisture stress tolerance in Co 94008 variety. 

Homeobox, a family of TFs are found only in plants and 
its over-expression increases tolerance to water stress 
(Dezar et al., 2005). Higher levels of expression of 
Homeobox were observed in tolerant genotype than 
sensitive genotype under moisture stress (Agustina et al., 
2013). In  the  present study, up regulation of expressions  
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Figure 2. Real time PCR data for expression of transcription factors under stressed and control condition in sugarcane variety 
Co775, where: C: unstress condition, MS: moderate stress condition and SS: severe stress condition 

 
 
 
of Homeobox TF was recorded for both the varieties 
under stress conditions and its expression were 
significantly different between the tolerant and sensitive 
variety (Table 2). Hence, Homeobox may also play a role 
in enhancing moisture stress tolerance in tolerant variety. 

Several WRKY proteins were shown to be involved in 
plant drought and salinity stress responses in various 
species such as rice, tobacco and Arabidopsis (Golldack 
et al., 2011; Wu et al., 2009; Qiu and Yu 2009; Song et 
al., 2010). As an example, over-expression of 
OsWRKY11 under the control of HSP101 promoter led to 
enhanced drought tolerance, as shown by the slower 
leaf-wilting and increased survival rate of green plant 
parts (Wu et al., 2009). Further, previous research had 
demonstrated that WRKY proteins may act as activators 
or repressors of ABA stress hormone which plays 
essential role in plant responses to abiotic stress 
signaling (Chen et al., 2011). Ren et al. (2010) reported 
that over-expression of some WRKY proteins do not 
result in drought tolerance, thus they may need either co-
factors or some posttranslational modifications to activate 
the downstream genes for stress tolerance. Recently, two 
research groups (Shang et al., 2010; Chen et al., 2010) 
reported the function of a group of structurally related 
WRKY proteins, in ABA signaling. Shang et al. (2010) 
showed that some WRKY proteins (WRKY40 in 
Arabidopsis) act as a central negative regulator among 
the WRKY proteins and could directly inhibit the 
expression of several important ABA responsive genes 
such as ABF, ABI, DREB, MYB and RAB, by directly 
binding to the W-Box sequences upstream of their 
promoters. Some WRKY genes (WRKY18 and WRKY60 
in Arabidopsis) have a positive effect on plant ABA 
sensitivity  and   increase   plant   sensitivity    to    abiotic 

stresses (Chen et al., 2010). In this experiment, WRKY 
gene showed the lower expression in tolerant variety 
(1.40 fold under moderate and 0.68 fold under severe 
stress) and higher in sensitive variety (3.40 fold under 
moderate and 1.01 fold under severe stress). Hence, it 
may enhance the sensitivity to moisture stress by playing 
the main role in ABA signaling. 

Over-expression of the members of MYB TF family in 
different plant species showed increased tolerance to 
different abiotic stresses such as drought, chilling and 
freezing (Vannini et al., 2004; 2007; Pasquali et al., 
2008). In the present study, MYB gene showed higher 
expression in tolerant genotype than sensitive genotype. 
MYB may act as enhancer of moisture stress tolerance. 
Further, expression of GRAS and GRF TF genes 
significantly differed between susceptible and tolerant 
varieties only under severe stress condition. The GRAS 
gene showed same level of expression in both varieties 
under moderate stress conditions (4 fold) and it was 
significantly low in Co 94008 (2 fold expression) than Co 
775 (4 fold expression). These GRAS TFs are known to 
play a crucial role in diverse plant growth and 
development, ranging from gibberellic acid signaling, root 
radial patterning, light signal transduction and axillary 
shoot meristem formation (Hirsch and Oldroyd, 2009). 
Despite their important regulatory roles in Arabidopsis, 
the biological properties of GRAS members are largely 
unknown. One of GRAS TFs namely, OsGRAS23, has 
been identified in rice that is involved in drought stress 
response through regulating expression of stress-
responsive genes (Xu et al., 2015). The functions of a 
number of identified GRAS genes and their role in 
moisture stress tolerance have not been characterized. 

Expression  of  GRF  TF   gene   under   severe   stress 



 
 
 
 
condition was significantly low in Co 775 (0.03) than 
moisture stress tolerant Co 94008 (0.06) variety. The 
GRF transcription factors are involved in cell proliferation 
and strongly expressed in actively growing and 
developing tissues, such as shoot tips, flower buds, and 
roots, but weakly in mature stem and leaf tissues (Kim et 
al., 2003). Shunwu et al. (2012) reported that GRF TF 
was expressed under drought condition in rice. However, 
the functions of GRF genes related to drought resistance 
are unknown. Further studies on the functions of GRF 
genes will make obvious the role of this transcription 
factor in moisture stress tolerance. 

Of the TFs which show significant differential 
expression between drought susceptible and tolerant 
varieties, expression of Homeobox showed increase with 
prolonged moisture deficit stress. Five TFs namely, 
GRAS, WRKY, NAC, bZIP and DREB showed up 
regulation of expression under moderate moisture deficit 
stress and down regulation under severe stress condition 
in tolerant variety Co 94008. It is presumed that the 
genes expressed during the course of gradual stress in 
tolerant species are responsible for altering the cellular 
metabolism, leading to adaptation under severe stress 
(Govind et al., 2009). These TFs genes may also provide 
the necessary induction to the plant to adapt and survive 
under severe stress. 
 
 

Conclusion 
 

Roots are the primary site of perception and injury, for 
several types of water limiting stresses including salinity 
and drought, in many circumstances; it is the stress 
sensitivity of the root that limits the productivity of the 
entire plant (Atkin et al., 1973; Steppuhn and Raney, 
2005). Further, TFs are regulators of transcription and 
have the potential for coordinated regulation of genes 
relevant to stress tolerance (Xiong and Zhu, 2002). In this 
study, the bZIP TF gene out of the identified TFs: WRKY, 
NAC, bZIP, DREB, G2 like, Homeobox and TUB, 
reported from the analysis of Co 94008 and Co 775 
varieties, may play an important role in moisture deficit 
stress tolerance in sugarcane. This information will be a 
valuable starting point for further research on these 
genes to check their potential as candidate genes to use 
as the targeted genes in moisture stress tolerance 
breeding programs. Further, the information generated 
may aid in isolation of most specific regulatory TFs and 
their promoters in future. 
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