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Hormesis is a biphasic dose (concentration)-response phenomenon characterized by low dose 
stimulatory and high dose inhibitory effects exerted by stressors on living organisms. Recently, there 
has been increased interest in the phenomenon and statistical models for its exploration in 
toxicological studies. The bilogistic model of Beckon et al. is one of such models for modeling biphasic 
dose-response relationships in toxicological studies. However, there is no explicit formula for the 
estimation of effective doses (EDK) with the model. In this study, a simple general approach was 
suggested to reparameterize the model, leading to a range of mathematical models for determination of 
effective doses at both stimulatory and inhibitory ranges in inverted U-shaped hormetic dose-response 
relationships. The reparameterized models were tested on experimental data from three different in 
vitro experimental systems obtained from literature and our experiment. They were successfully applied 
to test for significance of hormesis and estimate effective doses and their statistical properties. In 
addition, reparameterization of the model for a particular effective dose (EDK) did not affect estimation 
of other parameters (such as x1, x2, β1, β2 and M). The reparameterized models provided useful tools for 
adequate exploration of the tested hormetic dose-response relationships. The extended models could 
hopefully be versatile in characterization of variable hormetic dose response relationships in many 
toxicological disciplines.  
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INTRODUCTION 
 
Hormesis is a dose-response relationship characterized 
by a low dose stimulation and high dose toxicity of a 
stressor. This phenomenon has been reawakened after a 
long period of marginalization and controversies. Hormesis 

has been reported to be generalizable, occurring in all 
forms of organisms for many endpoints and induced by 
physical and chemical agents including heavy metals, 
herbicides, phenols, parthenin,  perfluorinated  carboxylic             
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Figure 1. The Brain and Cousens model (Equation 1) with arbitrary values to show effects of f parameter (a), b 
parameter (b) and e parameter (c) on the curves. The common parameter values are: c = 0.0, d = 1.0. For a, b= 3.5, e = 
0.02; for b, f = 70, e = 0.02 and for c, b = 3.5, f = 70. 

 
 
 
acids, antibiotics, mycotoxins, bacteriocins and ionic 
liquids (Mulkiewicz et al., 2007; Shen et al., 2009; Belz 
and Cedergreen, 2010; Migliore et al., 2010; Murado and 
Vázquez, 2010; Belz et al., 2011; Wang et al., 2011; Li et 
al., 2014; Wang et al., 2014; Nweke et al., 2015). 
Hormesis has attracted a renewed interest among 
toxicologists, resulting in the development of new tools to 
study and accumulate scientific reports on the 
phenomenon. Thus, there has been a growing interest in 
statistical models to study hormetic dose-response 
relationships. 

The literature contains a wide range of statistical 
models for characterizing hormetic dose-response 
relationships. The applications of these models in 
toxicological studies with emphasis on their strengths and 
weaknesses were reviewed by Nweke and Ogbonna 
(2017). The Brain-Cousens model (Equation 1) derived 
from the general monotonic log-logistic equation is one of 
the earliest and well-known dose-response models 
enabling hormesis (Brain and Cousens, 1989). 
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In Equation 1, y is the response, x is the dose 
(concentration), d represents the mean response of the 
untreated control, c is the response at infinite dose, f 
measures the rate of stimulation of the response at low 
dose (f > 0 is a necessary condition for the presence of 
hormesis), e and b lost their interpretations as the ED50 
and relative slope at ED50, respectively and thus have no 
straightforward biological meaning (Schabenberger et al., 
1999; Cedergreen et al., 2005). The influences of 
parameters f, e and  b  on  the  shape  of  the  curves  are 

shown in Figure 1. Notably, if the value of f is negative, 
the curve has a valley instead of a peak (Figure 1a). 

Although the Brain-Cousens model has been used to 
describe hormetic dose-response relationships in 
toxicological studies, it has some drawbacks. The value 
of b in the model is restricted to greater than 1. At b < 1 
the model does not produce any dose-response curve 
(Figure 1b) (Cedergreen et al., 2005). Thus, the model 
cannot describe shallow dose-response curves. The 
Brain-Cousens model is also less suitable for data 
exhibiting a broad hormetic dose range and/or an early 
increase in response at low dose (Belz and Piepho, 
2012). In the Brain-Cousens model, the switching 
function for describing hormesis is linear and curve 
increases progressively from d. Thus, the model cannot 
describe the initial “no-effect” and pre-stimulation toxicity 
at low doses (Belz and Piepho, 2012; Beckon et al., 
2008). In addition, the Brain-Cousens model has no 
explicit expression for the ED50 and other effective doses. 
In order to solve this problem, the model was 
reparameterized to include ED50 and other effective 
doses as parameters in the model (Van Ewijk and 
Hoekstra, 1993; Schabenberger et al., 1999). The 
reparameterizations of Brain-Cousens model by 
Schabenberger et al. (1999) for determination of effective 
doses (EDK) and dose of maximum stimulation (M) are 
shown in Equations 2 and 3, respectively. 
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where K is the percentage inhibition and EDK is the dose 
of the effecter that elicited K inhibition of the response 
(such that K = 50 for ED50, K = -10 for ED-10 and K = 0 for 
LDS).  

These reparameterized models are used in toxicological 
studies to estimate the effective doses and their statistical 
properties (Nweke et al., 2015, 2016; Schabenberger et 
al., 1999; Zelaya and Owen, 2005; Zou et al., 2013). 

Due to the inadequacies of the Brain-Cousens model, 
Cedergreen et al. (2005) modified the model to introduce 
a six-parameter version (Equation 4). 
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In Equation 4, f is the hormesis parameter (f > 0 as a 
necessary condition for hormesis), parameters  c and d 
are defined as in Equation 1, while parameters α, b and e 
have no straightforward biological interpretation 
(Cedergreen et al., 2005). A reparameterization of 
Cedergreen-Ritz-Streibig model could be used for 
estimation of effective doses (EDK) and dose (M) at which 
maximum stimulation occurred by replacement of 
parameter f with the functions shown in Equations 5 and 
6, respectively.  
 
 

   K

K

100 K
1

100

1
exp

b
ED

d c d c
e

f

ED 

        
   

 
  
                     (5) 

 
 

 

1
exp

b

b b

M
b d c

ef
M M

M M b
e eM

 
   

   
 

              
                 (6) 

 
According to Cedergreen et al. (2005), the model is more 
robust in terms of variation of data and describing both 
very large and relatively small hormetic effects when 
compared to the Brain-Cousens model. The Cedergreen-
Ritz-Streibig model could better describe data sets 
characterized by early increase in response at low dose 
and a broad hormetic dose range (Belz and Piepho, 
2012). In addition, the model is more flexible than the 
Brain-Cousens model to describe dose-response 
relationships where there is toxicity before the initiation of 
stimulatory response. Belz and Piepho (2012) compared 
the utility of Brain-Cousens and Cedergreen-Ritz-Streibig 
models in describing the hormetic response of four plants  

Nweke et al.          453 
 
 
 
to fifteen chemical stressors and affirmed that the diverse 
hormetic dose responses cannot be described by a single 
model. Some hormetic dose-responses were better 
described by either Brain-Cousens model or Cedergreen-
Ritz-Streibig model. Interestingly, the data set describing 
the phytotoxic effect of 2-phenylethyl-isothiocyanate on 
root growth of Amaranthus hybridus could neither be 
appropriately fitted by the Cedergreen-Ritz-Streibig 
model nor the Brain-Cousens model (Belz and Piepho, 
2012). The improved flexibility of Cedergreen-Ritz-
Streibig model was attributed to the introduction of the 
parameter α (Zhu et al., 2013). Nevertheless, the value of 
α has to be fixed when the available data is not enough to 
determine the rate of increase statistically. In order to 
allow for explicit determination of effective doses and 
their statistical properties, Belz and Piepho (2012) 
reparameterized the original equation. The Cedergreen-
Ritz-Streibig model has been widely used to especially 
describe herbicide hormesis in plants (Cedergreen et al., 
2007; 2009; Cedergreen and Olesen, 2010; Belz and 
Leberle, 2012).  

Another model proposed for description of hormetic 
dose-response relationships is the bilogistic model 
(Equation 7) of Beckon et al. (2008). 
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In Equation 7, parameters d and c are as defined in 
Equation 1 and the parameter Max is the theoretical 
maximum (not ymax) that would be approached 
asymptotically by the rising component of the equation in 
the absence of the descending component (or vice 
versa), β1 represents the rising slope (+), x1 is the dose at 
midpoint of the rising curve, β2 represents the falling 
slope (-), x2 is the dose at midpoint of the falling curve. 
The bilogistic model plotted with arbitrary values of the 
parameters is as shown in Figure 2. The bilogistic model 
can be viewed as a modification of the Brain-Cousens 
model, by introduction of a logistic weighting function at 
hormesis region which describes the rising curve of the 
dose-response model. The model reduces to log-logistic 
model if any of the slope parameters is zero, thus 
allowing simple statistical test for hormesis. The bilogistic 
model provided better description of hormetic dose-
response relationships than the Brain-Cousens model 
when tested with empirical data (Beckon et al., 2008). 
The parameter Max is only a theoretical maximum and 
not the actual maximum effect that would be approached 
by the upslope in the absence of the downslope. 
Therefore, there is disagreement between the fitted Max 
and its corresponding theoretical interpretation. This 
limitation  has  been  highlighted  by Zhu et al. (2013) and  
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Figure 2. Arbitrary hormesis curve from the bilogistic model of 
Beckon et al. (2008) for c = 4, d = 100, Max = 132 (Max ≠ 
Maximum y), x1 = 300, β1 = 2, x2= 1350 and β2 = -8 showing x 
at maximum response (M), the limiting dose for stimulation 
(LDS), ED-10 and ED50 for an inverted U-shaped hormetic dose 
response curve.   

 
 

 
the model was therefore adjudged as inappropriate for 
describing hormetic data in their study. However, they 
acknowledged that the bilogistic model is statistically 
sound and performed better than the Brain-Cousens and 
Cedergreen-Ritz-Streibig models with respect to the data 
under review. 

The bilogistic model comprises one logistic ascending 
curve and one logistic descending curve similar to the 
descending curve of Brain-Cousens and Cedergreen-
Ritz-Streibig models. Thus, the model is particularly 
suited for hormetic data having logistic dose-response 
relationship at low doses.  In addition, the bilogistic model 
provides considerable improvements when modeling data 
that include a wide range of doses from well below to well 
above the dose corresponding to maximum response 
(Beckon et al., 2008). The bilogistic model, like the 
original    Brain-Cousens   and   Cedergreen-Ritz-Streibig  

 
 
 
 
models, has no explicit parameter for the effective doses. 
The Brain-Cousens and Cedergreen-Ritz-Streibig models 
have been extended to allow estimation of effective 
doses (Van Ewijk and Hoekstra, 1993; Schabenberger et 
al., 1999; Belz and Piepho, 2012). However, there has been 
no similar extension of the bilogistic model. According to 
Zhu et al. (2013), mathematical manipulation is not suitable 
for the bilogistic model because of its complexity and 

multiparametric nature. Reparameterization of models for 
the purpose of estimating effective doses has been 
discouraged to promote the use of bisection method 
based on monotone functions (Cedergreen et al., 2005; 
Zhu et al., 2013). Nonetheless, the computation of effective 
doses and their standard errors by a combined application 
of bisection and delta methods has its limitations. Applying 
the delta method, Cedergreen et al. (2005) could not 
estimate the limiting dose of stimulation (LDS) which is 
the dose at which hormesis vanishes (ED0). In addition, 
the dose for maximum stimulation (M) was obtained 
without standard errors and confidence intervals. Thus, 
use of reparameterized function can be a more 
convenient tool for estimating effective doses in biphasic 
dose-responses. Reparameterization of the Cegergreen-
Ritz-Sreibig model has been shown to be applicable to 

calculation of arbitrary effective doses at both stimulatory 
and inhibitory ranges (Belz and Piepho, 2012, 2015). 

A wide range of hormetic dose-response patterns 
which cannot be described by a particular hormesis 
model are usually generated in toxicological studies. 
Each model has its own strengths and weaknesses. 
Therefore, application of a specific model is dependent 
on the uniqueness of the data under analysis. The 
bilogistic model has been shown to be superior to Brain-
Cousens and Cedergreen-Ritz-Streibig models in 
modeling some hormetic dose-responses (Beckon et al., 
2008; Belz and Piepho, 2012). Undoubtedly, the model 
presents an additional statistical tool for the analysis of 
biphasic dose-response relationships where other models 
may fail. It is therefore important to reparameterize the 
model for determination of effective doses and hormesis 
quantities. This would present expanded possibilities and 
help to get rid of the bias inherent in using other models 
for a specific dose-response pattern where the bilogistic 
model will be more appropriate. Hence, the purpose of 
the present work was to provide a general method for 
reparameterization of the bilogistic model to allow for the 
estimation of effective doses (EDK) at both stimulatory 
and inhibitory ranges and the dose at which maximum 
stimulation occurred (M). Using hormetic dose-responses 
for illustration, the modeling approach was applied to 
characterize inverted U-shaped curves.  
 
 
MATERIALS AND METHODS 
 
Reparameterizations 
 
The  bilogistic  hormesis  model  (Beckon  et  al.,   2008)   does  not  



 
 
 
 
include any effective dose as a parameter in its original form. Thus, 
this study extended the model to generate other functions that 
expressed it in terms of parameters that correspond to the effective 
doses of dose-response relationships. The bilogistic model was 
reparameterized to incorporate the arbitrary effective doses (EDK 
including ED-10 [K= -10}, ED50 [K= 50] and ED0 [K = 0] also called 
LDS) and the dose at which the maximum stimulatory effect 
occurred (M) by applying the defining relationship described by 
Schabenberger et al. (1999). 
 
 
Reparameterization for EDK  
 
The defining relationship for an arbitrary effective dose (EDK) for K 
% inhibition of response is: 
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Solving Equation 8 for Max, a general expression for EDK (Equation 
9) was obtained, which can be used to determine any arbitrary EDK 
by substituting Max into Equation 7. 
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Rewriting Equation 9 for ED-10 (K = -10 representing the 
concentration that elicited 10% stimulation and -10% inhibition. In 
inverted U-shaped curves, it is also the value of x at y =110% of 
control), LDS (K = 0) and ED50 (K = 50), Equations 10, 11 and 12, 
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respectively were obtained. 
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Substituting Max (in Equations 10 to 12) into the original bilogistic 
model (Equation 7), leads to extended functions allowing for 
hormesis and in which ED-10, LDS, and ED50 can be incorporated. 
 
 
Reparameterization for M 
 
In order to obtain the expression for the dose M, at which maximum 
stimulatory effect occurred, Equation 7 was differentiated with 
respect to x to obtain the first derivative of the function. In order to 
achieve this, Equation 7 was first simplified as Equation 13 and 
differentiated with respect to x. 
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         

      

                  
         

   2 1 2 1 21 1
2 1 2 1 2M x x M

               
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Table 1. Syntax for reparameterization of Beckon et al. (2008) model for estimation of arbitrary effective doses. 
 

Effective  
doses 

Parameter to 
be replaceda 

Model expression y[x]= c+(((d-c)+((Max-d)/(1+((x1/x)^β1))))/( 1+((x2/x)^β2))) 

ED-10 max = (((d-c)*(0.1+(1.1*(( x2/ED-10)^β2))))*(1+(( x1/ED-10)^β1)))+d 
LDS max = ((d-c)*((x2/LDS)^β2)*(1+((x1/LDS)^β1)))+d 
ED50 max = (0.5*(d-c)*(((x2/ED50)^β2)-1)*(1+((x1/ED50)^β1)))+d 
   

M max = 

(((1+((x1/M)^β1)+((x2/M)^β2)+((x1/M)^β1)*((x2/M)^β2))*((c*(x2^β2)*β2*(M^(-β2-1)))+(c*(x1^β1)*(x2^ 
β2)*(β1+β2)*(M^(-β1-β2-1)))+(d*(x1^β1)*(M^(-β1-1)))))-
(((c*((x2/M)^β2))+(c*((x1/M)^β1)*((x2/M)^β2))+(d*((x1/M)^β1)))*(((x1^β1)*β1*(M^(-β1-1)))+((x2^β2)* 
β2*(M^(-β2-1)))+((x1^β1)*(x2^β2)*(β1+β2)*(M^(-β1- β2-1))))))/(((x1^β1)*β1*(M^(-β1-1)))+((x2^β2)* 
β2*(M^(-β2-1)))+((x1^β1)*(x2^β2)*(β1+β2)*(M^(-β1- β2-1)))) 

 
aParameter max to be replaced in the model expression, LDS = limited dose for stimulation, ED50 = effective dose (50%), ED-10 = effective dose (-
10%); M = maximum stimulatory dose. 
 
 
 
The first derivative of the function must equal zero at maximum 
stimulation (x=M). Thus, the defining relationship as shown in 
Equation 14 was obtained. Solving Equation 14 for Max gives 
Equation 15. By substituting Max (in Equation 15) into Equation 7, a 
7-parameter hormesis dose-response model for the incorporation of 
M into the bilogistic model was obtained. Although these models 
appear complex, they can easily be coded into a nonlinear 
regression package using syntaxes shown in Table 1.  
 
 
The hormesis data 
 
Three sets of hormetic dose-response data from three different 
experimental systems were used in this study to evaluate the 
original and the reparameterized models. The dose-response data 
include: (1) the biphasic effects of penicillin on growth of 
Staphylococcus species (Beckon et al., 2008). The growth of 
Staphylococcus sp. at different concentrations of penicillin was 
transformed relative to the control response (% of control) as 
described by Nweke and Ogbonna (2017), (2) the biphasic effects 
of 1-hexyl-3-methyl-imidazolium chloride ([HMIM]Cl) on firefly 
luciferase activity after 15-min exposure (Zhu et al., 2013). The 
relative luminescence units (RLUs) of the luciferase exposed to 
[HMIM]Cl were measured with SpectraMax M5 microplate reader 
(Molecular Devices Inc., USA) with a 96-well microplate (Zhu et al., 
2013). The data were transformed to percent inhibition by 
multiplying the relative ratios by 100 and then converted to an 
inverted U-shaped dose-response relationship (% of control) by 
subtracting the percent inhibition from 100 as described elsewhere 
(Nweke and Ogbonna, 2017) and (3) the biphasic effects of 4-
chlorophenol (4-CP) on Providencia vermicola dehydrogenase 
activity. The assay was based on reduction of 2,3,5-
triphenyltetrazolium chloride to triphenyl formazan in response to 
varying concentrations of 4-CP. The data were generated in our 
laboratory using 24-h dehydrogenase activity assay as described 
by Nweke et al. (2014). The concentration-effect data were 
transformed relative to control as described by Nweke and 
Ogbonna (2017). 
 
 
Dose-response modeling 
 
As mentioned earlier, the Beckon et al. (2008) model (Equation 7) 
reduces to log-logistic model if any of the slope parameters (β1 and 
β2) is zero, thus allowing simple statistical test for hormesis.  The 
growth  of    Staphylococcus    sp.,    firefly    luciferase    activity   or 

dehydrogenase activity in P. vermicola as a function of 
concentrations of penicillin, [HMIM]Cl or 4-CP respectively were 
fitted into the original model (Equation 7) using user-defined 
function in TableCurve 2D v. 5.01 curve fitting software by least 
squares minimization of residuals to test for the statistical 
significance of hormesis. In all data, the 95% confidence interval of 
the slopes β1 and β2 did not include zero indicating significant 
hormetic effects of the respective substance on the tested 
response. The parameters of the model were estimated freely 
without constraint at the first instance. The data were also fitted to 
Equation 7 without constraint on c while d was fixed at 100% and 
then with c and d fixed at 0 and 100%, respectively. The initial 
values of x1, x2, c and d used in the curve fitting were graphically 
deduced from x-y data plots. The initial values of Max, β1 and β2 

were manually adjusted until the predicted curve became close to 
the observed data. Subsequently, all parameters were 
automatically optimized to best initial parameter estimates in 
TableCurve 2D software. The values of ED-10, LDS, ED50 and M 
were estimated by reparameterization according to Equations 10, 
11, 12 and 15, respectively using graphically-anticipated initial 
parameters as optimized in TableCurve 2D. The ED-10 has two 
possible values, one on the left side of M (ED-10L) and another on 
the right side of M (ED-10R). In order to differentiate the two ED-10 
values, constraint was applied to limit value below or above M. The 
model parameters were estimated with d fixed at 100% and with c 
and d fixed at 0 and 100%, respectively while fitting ED-10, LDS, 
ED50 and M reparameterizations. The value of ymax was computed 
from the mean value of M and other parameters by using the M 
reparameterization.  

In order to compare the bilogistic model of Beckon et al. (2008) 
with Brain-Cousens and Cedergreen-Ritz-Streibig models, the 
hormesis data were also fitted with the two models in their original 
forms using TableCurve 2D as described earlier. Models were 
compared based on three goodness-of-fit statistics: Adjusted 
coefficient of determination (R2adj), root mean squared error 
(RMSE) and Akaike information criterion (AIC). The calculation of 
R2adj was implemented in TableCurve 2D V5.01. The RMSE was 
calculated as shown in Equation 16.  
 
  2Residual
RMSE

n m





                                                         (16) 
 
where residual is the difference between the observed and 
predicted responses, n is the number of observations and m is the 
number of model parameters. 
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Figure 3. Observed (data points) and predicted (lines) effects of: (a) penicillin on the growth of Staphylococcus species (Beckon 
et al., 2008), (b) 1-hexyl-3-methyl-imidazolium chloride [HMIM]Cl on firefly luciferase activity (Zhu et al., 2013), and (c) 4-
chlorophenol on P. vermicola dehydrogenase activity. Predictions were according to the Brain and Cousens (1989) model 
(Equation 1) [dashed line], Cedergreen et al. (2005) model (Equation 4) [dotted line] and Beckon et al. (2008) model (Equation 
7) [solid line]. Parameters c and d were fixed at 0 and 100, respectively. 

 
 
 
The AIC values were generated by performing nonlinear regression 
in SAS 9.2 statistical software. In addition, the effective doses and 
the dose at maximum stimulation (M) for all the dose-response 
relationships were also calculated by fitting the data into the 
reparameterized Brain-Cousens (Equations 2 and 3) and 
Cedergreen-Ritz-Streibig (Equations 5 and 6 substituted into 
Equation 4) models. The values obtained from the three models 
were compared using Duncan post-hoc tests implemented with IBM 
SPSS Statistics 25.  
 
 
RESULTS  
 
Figure 3 shows the three data sets as observed 
responses as well as responses predicted from the 
original Brain-Cousens (Equation 1), Cedergreen-Ritz-
Streibig (Equation 4) and bilogistic (Equation 7) models. 
All the three hormesis data sets were well fitted by each 
of the three models and detected significant hormetic 
effects of penicillin, 1-hexyl-3-methyl-imidazolium chloride 
and 4-CP on the growth of Staphylococcus sp., firefly 
luciferase activity and dehydrogenase activity in P. 
vermicola, respectively.  The Brain-Cousens and 
Cedergreen-Ritz-Streibig models can be reduced to 
monotonic sigmoidal model if f equals zero. The values of 
f (p < 0.01) in both models for all the data sets did not 
include zero. In all the data sets, 95% confidence interval 
of the slopes and the p values (p < 0.01) showed that β1 
and β2 did not include zero indicating significant hormetic 
effects of the respective substance (Table 2). The Brain- 
Cousens model could fit the data sets fairly well with the 
lowest adjusted R2 which were greater than 
0.97(penicillin data), 0.95 ([HMIM]Cl data) and 0.98 (4-
CP data). The bilogistic model of Beckon et al. (2008) 
had the lowest RMSE for all the data sets (Figure 4). With 
the exception of 4-CP data set, the  bilogistic  model  had 

the lowest AIC values in all the data sets. Judging from 
the plots and residuals, the bilogistic model provided a 
better description of the three hormesis data especially at 
low doses. At high doses, described by the downward 
curve (x ≥ M), the responses predicted from the three 
model tend to overlap indicating insignificant differences 
between them (Figure 3). Generally, the order of 
goodness-of-fit of the bilogistic model for the hormesis 
data was, effects of ionic liquid on luciferase activity > 
effects of 4-chlorophenol on P. vermicola dehydrogenase 
activity > effects of penicillin on the growth of 
Staphylococcus sp. 

The parameters and their statistical properties as 
derived from the original model are shown in Table 2. 
Applying constraint on parameters c and d has bearing 
upon the estimated values of other parameters. In 
Staphylococcus sp. and luciferase data sets, the 
estimated value of Max increased when d was fixed at 
100% and c allowed to be determined iteratively (Table 
2). In addition, this reduced the values of β1, increased 
the value of β2 and increased the value of x1. Conversely, 
in the P. vermicola data, fixing d at 100% and allowing c 
to be determined iteratively reduced the value of Max, 
increased the value of β1, reduced the value of β2 and 
reduced the value of x1. Generally, allowing c to be 
determined resulted to a better goodness-of-fit in terms of 
the R2. However, unrealistic negative values of c were 
produced in Staphylococcus and luciferase data sets. In 
P. vermicola data set, positive value of c was determined. 
This is because the response did not tend to zero with 
increasing concentrations of 4-CP.      

The model parameters and their statistical properties 
derived from the ED-10, LDS, ED50 and M 
reparameterizations are shown in Tables 3 to 5. 
Generally,  allowing   c  to  be  determined  improved  the
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Table 2. Model parameters and their statistical properties derived from original Beckon et al. (2008) model. 
 

Parameter 
Data setsa 

Staphylococcus species† Luciferase‡ Providencia vermicola 

c= 0     
c (%) fixed  0 0 0 
d (%) 101.355 ± 2.293** (96.622 – 106.089) 102.697 ± 3.187** (96.187 – 109.206) 95.663 ±  4.104** (87.281  – 104.046) 
Max (%) 171.341 ± 8.054** (154.719  – 187.963) 150.266 ± 3.137** (143.859 – 156.674) 213.691 ± 53.974* (103.461  – 323.921) 
x1  0.0056 ± 0.0004 (U/mL)** (0.0004  – 0.006) 0.0040 ± 0.0005 (M)** (0.003 – 0.005) 0.0596 ± 0.0196 (mM)* (0.020  – 0.100) 
β1  4.212 ± 0.985 (%mL/U)* (2.178  – 6.246) 1.586 ± 0.353 (%/M)** (0.864 – 2.308) 2.217 ± 0.671 (%/mM)* (0.847  – 3.587) 
x2  0.0253 ± 0.0009 (U/mL)** (0.023  – 0.027) 0.074 ± 0.001 (M)** (0.071 – 0.076) 0.2087 ± 0.0408 (mM)** (0.125  – 0.292) 
β2  -3.591 ± 0.245 (%mL/U)** (-4.097  – -3.086) -3.901 ± 0.177 (%/M)** (-4.263 – -3.539) -2.118 ± 0.182 (%/mM)** (-2.489  – -1.747) 
R2 (R2 adj) 0.9916 (0.9894) 0.9959 (0.9950) 0.9937 (0.9924) 
    
d =100    
c (%)  -66.978 ± 31.621* (-132.240  – -1.716) -9.379 ± 2.806* (-15.111 –  -3.647) 6.648 ± 2.100* (2.360 –  10.937) 
d (%) fixed 100 100 100 
Max (%) 221.999 ± 52.565** (113.511  – 330.486) 155.777 ± 3.660** (148.303  – 163.251) 169.286 ± 8.664** (151.591– 186.981) 
x1  0.0065 ± 0.0008 (U/mL)** (0.005  – 0.008) 0.0044 ± 0.0006 (M)** (0.003  –  0.006) 0.0457 ± 0.0039 (mM)** (0.038 – 0.054) 
β1  3.154 ± 0.595 (%mL/U)** (1.926  – 4.382) 1.272 ± 0.127 (%/M)** (1.012 – 1.532) 3.223 ± 0.533 (%/mM)** 2.134 – 4.312 
x2  0.0274 ± 0.0028 (U/mL)** (0.022  – 0.033) 0.0758 ± 0.0013 (M)** (0.073  –  0.079) 0.2456 ± 0.0119 (mM)** 0.221 – 0.270 
β2  -1.848 ± 0.527 (%mL/U)* (-2.936  – -0.761) -3.333 ± 0.186 (%/M)** (-3.714  –  -2.953) -2.731 ± 0.232 (%/mM)** -3.205 – -2.257 
R2 (R2 adj) 0.9977(0.9971) 0.9972 (0.9966) 0.9948 (0.9937) 
    
c = 0,  d = 100    
c (%) fixed  0 0 0 
d (%) fixed 100 100 100 
Max (%) 172.375 ± 8.358** (155.161  – 189.588) 151.722 ± 2.913** (145.780 – 157.663) 188.967 ± 18.210** (151. 828 –226.106) 
x1  0.0055 ± 0.0004 (U/mL)** (0.005  – 0.006) 0.0038 ± 0.0005 (M)** (0.003 – 0.005) 0.0517 ± 0.0068 (mM)** (0.038  – 0.066) 
β1  3.971 ±  0.822 (%mL/U)** (2.278  – 5.664) 1.375 ± 0.155 (%/M)** (1.059 – 1.691) 2.881 ± 0.514 (%/mM)** (1.832 – 3.931) 
x2  0.0252 ± 0.0009 (U/mL)** (0.023  – 0.027) 0.0734 ± 0.0011 (M)** (0.071 – 0.076) 0.2295 ±  0.0220 (mM)** (0.185 – 0.274) 
β2  -3.575 ± 0.242 (%mL/U)** (-4.074  – -3.077) -3.870 ± 0.169 (%/M)** (-4.215 – -3.525) -2.199 ± 0.158 (%/mM)** (-2.521 – -1.878) 
R2 (R2 adj) 0.9915 (0.9897) 0.9958 (0.9951) 0.9934 (0.9923) 

 
aData are given as mean ± standard error with 95% confidence interval in parentheses. †Data from Beckon et al. (2008). ‡Data from Zhu et al. (2013). 
**P < 0.0001for the estimated parameters. *P < 0.01for the estimated parameters 
 
 
 
goodness-of-fit characteristics in all the data sets. The 
reparameterization of the bilogistic model did not affect 
the goodness-of-fit characteristics. The values of the 
adjusted R2

 remained same with all reparameterizations for 
a particular hormesis data. In addition, reparameterization 
of the model for a particular effective dose did not affect 
estimation of other parameters (such as x1, x2, β1, β2and 
M). In each hormesis data, the values of each parameter 
either remained same or varied insignificantly (p > 0.05) 
in different model reparameterizations. 

The goodness-of-fit statistics for the hormesis data 
fitted to the hormesis models in their original forms are as 
shown in Figure 4. The comparison of effective doses 
derived from the three hormesis models for the three data 
sets are shown in Table 6. The ED50 of penicillin, 1-hexyl-
3-methyl-imidazolium chloride and 4-CP derived from the 
bilogistic model were 0.032 ± 0.001 U/ml,  0.088  ±  0.001 

M and 0.365 ± 0.008 mM, respectively. The dose of 
maximum stimulation (M) obtained from the bilogistic 
model were 0.0101 ± 0.0005 U/ml, 0.0221 ± 0.0009 M 
and 0.086 ± 0.004 mM for penicillin, 1-hexyl-3-methyl-
imidazolium chloride and 4-CP, respectively. There were 
no significant differences among the ED50 and M values 
derived from the three models for all the hormetic dose-
response relationships. With the exception of the 
luciferase data, the LDS values of penicillin and 4-CP did 
not vary significantly among the three hormesis models. 
Generally, the ED-10L obtained from Brain-Cousens model 
differed significantly from the values obtained from the 
other models. The Brain-Cousens and Cedergreen-Ritz-
Streibig models overestimated the ymax in the penicillin 
and 1-hexyl-3-methyl-imidazolium chloride data. In the 4-
CP data, the Brain-Cousens model underestimated 
underestimated the ymax. 
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Table 3. Parameters derived from reparameterized models based on the effects of penicillin on Staphylococcus species growth. 
 

Parametera 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100      
c (%)  -66.762 ± 31.464* (-131.700 – -1.824) -66.094 ± 30.984* (-130.042– -2.145) -66.230 ± 31.095* (-130.407– -2.052) -66.760 ± 31.510* (-131.793– -1.726) 
d (%) fixed 100 100 100 100 
x1 (U/mL) 0.0065 ± 0.0008** (0.0048  – 0.0082) 0.0065 ± 0.0008** (0.0049 – 0.0081) 0.0065 ± 0.0008*** (0.0049  – .0082) 0.0065 ± 0.0008** (0.0048 – 0.0082) 
β1 (%mL/U) 3.158 ± 0.593** (1.935  – 4.381) 3.169 ± 0.585** (1.962 – 4.376) 3.165 ± 0.587** (1.953  – 4.377) 3.154 ± 0.593** (1.929 – 4.379) 
x2 (U/mL) 0.027 ± 0.003** (0.021  – 0.033) 0.027 ± 0.003** (0.022 – 0.033) 0.027 ± 0.003** (0.022  – 0.033) 0.027 ± 0.003** (0.022 – 0.033) 
β2 (%ml/U) -1.852 ± 0.525* (-2.936  – -0.768) -1.864 ± 0.520* (-2.937 – -0.790) -1.860 ± 0.522* (-2.938  – -0.783) -1.851 ± 0.527* (-2.938 – -0.764) 
ED-10L (U/mL) 0.0040 ± 0.0003** (0.0035  – 0.0046) - - - 
LDS (U/mL) - 0.023 ± 0.0002** (0.022 – 0.023) - - 
ED50 (U/mL) - - 0.044 ± 0.006** (0.031  – 0.058) - 
M (U/mL) - - - 0.0099 ± 0.0003** (0.0093 – 0.0105) 
ymax (%) - - - 165.140 
R2 (R2 adj) 0.998 (0.997) 0.998 (0.997) 0.998 (0.997) 0.998 (0.997) 
     
c= 0, d = 100*     
c (%) fixed  0 0 0 0 
d (%) fixed 100 100 100 100 
x1 (U/mL) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 0.0055 ± 0.0004** (0.0046 – 0.0064) 
β1 (%mL/U) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 3.971 ± 0.822** (2.278 – 5.664) 
x2 (U/mL) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0.0252 ± 0.0009** (0.0233 – 0.0270) 0..0252 ± 0.0008** (0.0233 – 0.0270) 
β2 (%mL/U) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) -3.575 ± 0.242** (-4.074 – -3.077) 
ED-10L (U/mL) 0.0035 ± 0.0003** (0.0029  – 0.0040) - - - 
LDS (U/mL) - 0.0230 ± 0.0004** (0.0222 – 0.0238) - - 
ED50 (U/mL) - - 0.0323  ± 0.0005** (0.0313 – 0.3334) - 
M (U/mL) - - - 0.0101 ± 0.0005** (0.0090 – 0.0112) 
ymax (%) - - - 161.038 
R2 (R2 adj) 0.991 (0.990) 0.991 (0.990) 0.991 (0.990) 0.991 (0.990) 

 
aData are given as mean ± standard error with 95% confidence interval in parentheses ,**P < 0.0001for all estimated parameters; *P < 0.01 for the 
estimated parameters. 
 
 
 
DISCUSSION 
 
Modeling biphasic dose-response relationship is 
important for optimizing plant, animal and human nutrition 
and for accurate evaluation of the effectiveness and 
toxicity of pharmaceuticals and other chemicals that 
produce biphasic effects (Beckon et al., 2008). Accurate 
descriptions of hormetic dose-response relationship have 
bearing upon establishment of safe limits for hormetic 
substances including food additives, drugs and 
environmental pollutants. Mathematical models are 
important tool for understanding the biological bases of 
dose-response relationship leading to improvements in 
protection of plant, animal, human and environmental 
health. In this case, the bilogistic model proposed by 
Beckon et al. (2008) presented a formidable tool to 
characterize effects of substances that produce both 
stimulatory and inhibitory effects on living system. The 
bilogistic model was shown to be superior to Brain-
Cousens and Cedergreen-Ritz-Streibig models in 
describing the three hormetic data sets presented in this 
study.  According   to   the  goodness-of-fit  statistics  (R2, 

RMSE and AIC), the bilogistic model of Beckon et al. 
(2008) provided a better description of the hormesis data. 
Generally, the graphical agreement between observed 
and fitted values in all the hormesis data was best with 
the bilogistic model. Although the Cedergreen- Ritz-
Streibig model produced somehow similar results when 
compared with the bilogistic model, it overestimated the 
value of ymax in the Staphylococcus data set. The major 
difference observed in the fitting of the data to the models 
occurred mainly at low dose region. The ED-10L values for 
instance obtained from the Brain-Cousens model for all 
the hormesis data are significantly lower or higher than 
values obtained from the other models. The high dose 
region (x ≥ M) described by the downward curve seems 
to be unaffected. This could be attributed to the fact that 
in all the models, the switching function that determines 
the downward curve is same logistic function. The 
switching function describing the low doses is linear for 
Brain-Cousens model but logistic for the bilogistic model. 
Thus, the Beckon et al. (2008) model would be 
particularly suited for data with logistic dose-response 
relationship  at  low  doses  (0 ≤ x ≤ M) to be described by
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Table 4. Parameters derived from reparameterized models based on the effects of 1-hexyl-3-methyl-imidazolium chloride [HMIM]Cl on firefly 
luciferase activity. 
 

Parameter 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100     
c (%)  -9.379 ± .2.807* (-15.111 – -3.647) -9.379 ± 2.807* -15.111 – -3.647) -9.379 ± 2.807* (-15.111  – -3.647) -9.379 ± 2.807* (-15.111  – -3.647) 
d (%) fixed 100 100 100 100 
x1 (M) 0.0044 ± 0.0006** (0.0032 – 0.0056) 0.0044 ± 0.0006** (0.0032 – 0.0056) 0.0044 ± 0.0006** (0.0032 –  0.0056) 0.0044 ± 0.0006** (0.0032 –  0.0056) 
β1 (%/M) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 1.272 ± 0.127** (1.012 – 1.532) 
x2 (M) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 0.076 ± 0.001** (0.073 – 0.079) 
β2 (%/M) -3. 333 ± 0.186** (-3.714 – -2.953) -3. 333 ± 0.186** (-3.714 – -2.953) -3.333 ± 0.186** (-3.714 – -2.953) -3.333 ± 0.186** (-3.714 – -2.953) 
ED-10L (M) 0.0015 ± 0.0001** 0.0012 – 0.0017) - - - 
LDS (M) - 0.0613 ± 0.0007** (0.0599 – 0.0627) - - 
ED50 (M) - - 0.093 ± 0.002** (0.090  – 0.097) - 
M (M) - - - 0.0212 ± 0.0008** (0.0196 – 0.0228) 
ymax (%) - - - 146.368 
R2 (R2 adj) 0.9972 (0.9966) 0.9972 (0.9966) 0.9972 (0.9966) 0.9972 (0.9966) 
     
c = 0, d = 100     
c (%) fixed  0 0 0 0 
d (%) fixed 100 100 100 100 
x1 (M) 0.0038 ± 0.0005** (0.0029 – 0.0048) 0.0038 ± 0.0005** (0.0029 – 0.0048) 0.0038 ± 0.000** (0.0029 – 0.0048) 0.0038 ± 0.0005** (0.0029 – 0.0048) 
β1 (%/M) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 1.375 ± 0.155** (1.059 – 1.691) 
x2 (M) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 0.073 ± 0.001** (0.071 – 0.076) 
β2 (%/M) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) -3. 870 ± 0.169** (-4.215 – -3.525) 
ED-10L (M) 0.0014 ± 0.0001** 0.0011– 0.0016) - - - 
LDS (M) - 0.0616 ± 0.0008** (0.0600 – 0.0632) - - 
ED50 (M) - - 0.0881 ± 0.0011** (0.0858  – 0.0903) - 
M (M) - - - 0.0221 ± 0.0009** (0.0200 – 0.0241) 
ymax (%)    148.944 
R2 (R2 adj) 0.9958 (0.9951) 0.9958 (0.9951) 0.9958 (0.9951) 0.9958 (0.9951) 
 
aData are given as mean ± standard error with 95% confidence interval in parentheses. **P < 0.0001for all estimated parameters.  *P < 0.01for the 
estimated parameters. 

 
 
 
upward curve. A typical example is hormetic data having 
delayed stimulation at low doses. In addition, Beckon et 
al. (2008) model can represent dose-responses across a 
wide range of doses. In toxicological studies, a wide 
variety of dose-response patterns are generated which 
cannot all be described by any known single model. The 
bilogistic model is therefore an important candidate in the 
list of models for description of hormetic dose response 
relationships. 

Given that hormesis is becoming more frequent in 
toxicological studies and that the bilogistic model 
describes certain hormetic dose-response relationship 
better than other models, it is necessary to describe a 
method for determination of effective doses using this 
model. The application of the bilogistic model when it 
offers better fit to a dose-response data will help to get rid 
of errors inherent in using other models that do not 
adequately describe a hormetic data or in ignoring 
response stimulation at  sub-inhibitory  doses.  According 

to Schabenberger et al. (1999), ignoring hormesis and 
fitting data with monotonic function can lead to 
substantial bias in estimates of effective dosages. 
Although Zhu et al. (2013) suggested that mathematical 
manipulation is not suitable for a complex expression like 
the bilogistic model of Beckon et al. (2008), this study 
successfully extended the bilogistic model to enable 
estimation of any effective dose while accommodating 
hormesis. The extensions presented here allows 
determination of effective doses at both stimulatory and 
inhibitory dose ranges. 

Fitting data to nonlinear model with many parameters 
such as the bilogistic model can potentially be 
challenging. There is no explicit expression for the 
parameters of this model and so the parameter values 
must be estimated by iterative process. The ability of 
nonlinear regression to achieve rapid convergence partly 
depends on good initial parameter estimates (Mcmeekin 
et al., 1999). Selecting good initial estimates of the model 
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Table 5. Parameters derived from original and reparameterized models based on the effects of 4-chlorophenol on P. vermicola dehydrogenase activity. 
 

Parameter 
Bilogistic model (Equation 7) reparameterized for incorporation of: 

ED-10L LDS ED50 M 

d = 100     
c (%)  6.648 ± 2.100* (2.360 –10.937) 6.648 ± 2.100* (2.360 – 10.937) 6.648 ± 2.100* (2.360 – 10.937) 6.648 ± 2.100* (2.360 – 10.937) 
d (%) fixed 100 100 100 100 
x1 (mM) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 0.046 ± 0.004** (0.038 – 0.054) 
β1 (%/mM) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 3.223 ± 0.533** (2.134 – 4.312) 
x2 (mM) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 0.246 ± 0.012** (0.221 – 0.270) 
β2 (%/mM) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) -2.731 ± 0.232** (-3.205 – 2.257) 
ED-10L (mM) 0.026 ± 0.002** (0.022 – 0.030) - - - 
LDS (mM) - 0.219 ± 0.005** (0.210  – 0.230) - - 
ED50 (mM) - - 0.343 ± 0.010 (0.323  – 0.362) - 
M (mM) - - - 0.086 ± 0.004** (0.078 – 0.094) 
ymax (%)    150.758 
R2 (R2 adj) 0.995 (0.994) 0.995 (0.994) 0.995 (0.994) 0.995 (0.994) 
     
c= 0, d = 100     
c (%) fixed  0.000 0.000 0.000 0.000 
d (%) fixed 100.000 100.000 100.000 100.000 
x1 (mM) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 0.052 ± 0.007** (0.038  – 0.066) 
β1 (%/mM) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 2.881 ± 0.514** (1.832 – 3.931) 
x2 (mM) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 0.230 ± 0.022** (0.185  – 0.274) 
β2 (%/mM) -2.199 ± 0.158** (-2.521  – -1.878) -2.199 ± 0.158** (-2.521   – -1.878) -2.199 ± 0.158** (-2.521 –  -1.878) -2.199 ± 0.158** (-2.521  –  -1.878) 
ED-10L (mM) 0.026 ± 0.002** (0.022 –  0.030) - - - 
LDS (mM) - 0.216 ± 0.005** (0.205 – 0.227) - - 
ED50 (mM) - - 0.365 ± 0.008** (0.348 – 0.381) - 
M (U/mL) - - - 0.086  ± 0.004** (0.077  – 0.095) 
ymax (%)    153.053 
R2 (R2 adj) 0.993 (0.992) 0.993 (0.992) 0.993 (0.992) 0.993 (0.992) 

 

aData are given as mean ± standard error with 95% confidence interval in parentheses. **P < 0.0001for all estimated parameters. *P < 0.01for the estimated 
parameters. 
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Figure 4. Goodness-of-fit statistics (a: Adjusted R2, b: RMSE and c: AIC) for Beckon et al. (2008), Cedergreen et al. (2005) and Brain-
Cousens models describing the three data sets (Penicillin, [HMIM]Cl and 4-Chlorophenol [4-CP]). 
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Table 6. Comparison of effective doses derived from the hormesis models for the three data sets 
 

Effective dosesa 
Model 

Brain-Cousens Cedergreen-Ritz-Streibig Beckon et al. (Bilogistic) 

Penicillin (U/mL)    
ED50  0.032 ± 0.001* (0.030 – 0.034) 0.032 ± 0.001* (0.030 – 0.033) 0.032  ± 0.001* (0.031 – 0.333) 
LDS 0.023 ± 0.001* (0.022 – 0.024) 0.022 ± 0.0004* (0.022– 0.023) 0.023 ± 0.0004* (0.022 – 0.024) 
ED-10R 0.022 ± 0.001* (0.020  – 0.023) 0.017 ± 0.0004* (0.020 – 0.022) 0.021 ± 0.0004* (0.0214  – 0.0223) 
ED-10L 0.0015 ± 9.818 E-5* (0.0013  – 0.0017) 0.0028 ± 0.0003** (0.0022 – 0.0034) 0.0035 ± 0.0003** (0.0029  – 0.0040) 
M 0.0119± 0.0005* (0.0108  – 0.0129) 0.0115 ± 0.0003* (0.0108 – 0.0122) 0.0101 ± 0.0005* (0.0090 – 0.0112) 
ymax (%) 159.647 165.182 161.038 
    
[HMIM]Cl (M)    
ED50  0.089 ± 0.004* (0.080 –  0.097) 0.088 ± 0.002* (0.084– 0.091) 0.088 ± 0.001* (0.086  – 0.090) 
LDS 0.055 ± 0.002* (0.051– 0.059) 0.060 ± 0.001** (0.058 – 0.062) 0.062 ± 0.001** (0.060 – 0.063) 
ED-10R 0.051 ± 0.002* (0.047 – 0.054) 0.056 ± 0.001** (0.053 – 0.058) 0.057 ± 0.001** (0.055– 0.058) 
ED-10L 0.0026 ± 0.0002* (0.0021  – 0.0031) 0.0009 ± 0.0002** (0.0006  –  0.0012) 0.0014 ± 0.0001** 0.0011– 0.0016) 
M 0.024 ± 0.001* (0.021  – 0.026) 0.026 ± 0.001* (0.024 – 0.027) 0.022 ± 0.001* (0.020   – 0.024) 
ymax (%) 158.161 154.655 148.944 
    
4-CP (mM)    
ED50  0.358 ± 0.010* (0.337 – 0.379) 0.360 ± 0.008* (0.344 – 0.375 0.365 ± 0.008* (0.348 – 0.381) 
LDS 0.223 ± 0.006* (0.210 – 0.236) 0.214 ± 0.005* (0.204 – 0.223) 0.216 ± 0.005* (0.205 – 0.227) 
ED-10R 0.204 ± 0.006* (0.190  – 0.217) 0.195 ± 0.005* (0.185 – 0.204 ) 0.026 ± 0.002** (0.022 – 0.030) 
ED-10L 0.014 ± 0.001*  (0.012  – 0.016) 0.024 ± 0.002** (0.021 – 0.028) 0.026 ± 0.002** (0.022 –  0.030) 
M 0.102 ±  0.004* (0.093 – 0.112) 0.093 ± 0.003* (0.088 – 0.099) 0.086  ± 0.004* (0.077 – 0.095) 
ymax (%) 146.894 153.317 153.053 
 
aData are given as mean ± standard error with 95% confidence interval in parentheses. c= 0, d = 100.  Within rows, for each parameter derived from 
different models and same hormesis data, values with same number of asterisks are not significantly different from each other (p > 0.05). 
 
 
 
parameters is therefore a prerequisite to successful curve 
fitting of a nonlinear model with many parameters. The 
ease of this selection depends on the interpretability of 
the parameters. Practically-interpretable parameters 
often lead to better initial parameter estimate and 
consequently simplify the model fitting process 
(Mcmeekin et al., 1999). This is because the initial 
parameter value can easily be deduced from the x-y plot 
of the observed data. Some parameters of the bilogistic 
model (such as d, c, x1, x2, ED-10, ED50. LDS and M) are 
interpretable and can be easily deduced from x-y plot of 
the observed data. Other parameters cannot be easily 
deduced from the observed data. For instance, Max is a 
theoretical maximum response to be reached by rising 
curve in the absence of descending curve or vice versa. 
  The interpretation of Max is not in agreement with its 
fitted value. Other parameters that cannot easily be 
deduced are the slope parameters β1 and β2. However, 
the fact that β1 must have a positive value while β2 must 
have a negative value would be helpful. Selecting good 
initial estimates for such non interpretable parameter can 
be time consuming and require some kind of experience. 
However, the process of selecting good initial estimates 
to ensure convergence is simplified with  TableCurve  2D. 

By supplying the values of the interpretable parameters 
and making smart guess of the values of non-
interpretable parameters to make the regression line 
somehow close to observed data, the initial estimates of 
all parameters can be updated automatically to optimal 
values in TableCurve 2D. In doing this, care must be 
taken to ensure that unrealistic values are not produced 
especially in cases (like ED-10) where two values are 
possible. In Table Curve 2D, and possibly other statistical 
softwares, application of constraint on ED-10 may not be 
critical. The initial parameter estimate for any particular 
ED-10 (ED-10L or ED-10R) could be optimized in TableCurve 
2D by selecting value around the required ED-10. Since 
ED-10 is an interpretable parameter, this approach of 
using graphically-deduced initial estimates can simply be 
applied to estimate ED-10L or ED-10R without applying 
constraint.  

Another practical challenge observed in fitting the 
bilogistic model is the poor estimation properties of the 
upper (d) and lower (c) asymptotes. When allowed to be 
estimated iteratively, unrealistic negative values of the 
lower asymptote were produced in the Staphylococcus 
sp. and luciferase data sets. In these data sets, there was 
no obvious saturation of effect at infinite  doses. Similarly, 



 
 
 
 
estimation of upper asymptote (d) could result to values 
with wide standard error and 95% confidence limit. As 
pointed out by Schabenberger et al. (1999), it is important 
to consider whether estimation of lower (c) and upper (d) 
asymptotes is necessary. In our data, theoretical 
considerations suggested that the lower and upper 
asymptotes should be 0 and 100%, respectively. The 
statistical properties of other model parameters improved 
when c and d were fixed as 0 and 100%, respectively. 
The reparameterization of the bilogistic models is the 
substitution of Max with a function containing interpretable 
parameters. Generally, these extensions did not affect 
estimation of other parameters and goodness-of-fit 
especially when the value of c and d were fixed. 
However, minor variations which are not statistically 
significant may occur. Thus, the values of ED-10, LDS, 
ED50 and M were estimated with good statistical 
properties. In addition, the value of ymax was slightly 
affected when c and d were fixed.   

The reparameterized models were successfully applied 
to estimate effective doses and their confidence intervals. 
Although reparameterization of models was discouraged 
by Cedergreen et al. (2005) and recommended the use of 
bisection and delta methods implemented in some 
statistical software, delta method could only allow the 
estimation of EDK doses with statistical properties and to 
extract M without statistical properties. In addition, the 
mathematical operation is not implementable in some 
statistical software. The reparameterized models can 
easily be coded into any curve fitting statistical software. 
Hence, the approach as recommended by Cedergreen et 
al. (2005) may not be easier than reparameterization for 
some users (Nweke and Ogbonna, 2017). Furthermore, 
the limitations of the delta method with respect to 
statistical properties of M underline the importance of 
reparameterization as an alternative approach for 
exploration of hormesis quantities in hormetic dose-
response relationships. The competitiveness of this 
approach remains a pending question that is worth 
exploring (Belz and Piepho, 2012). 

 
 
Conclusion 
 
This study described a general approach to estimate the 
effective doses at hormetic and toxic dose ranges in 
inverted U-shaped dose-response relationships by 
reparameterization of a bilogistic model. The extended 
models were successfully applied to test for significance 
of hormesis and estimate effective doses and their 
confidence limits by non-linear curve fitting. Therefore, 
the suggested reparameterizations would result in accurate 
determination of the effective doses, their standard errors 
and confidence limits in dose (concentration)-response 
relationships that could be best described by the bilogistic 
model. The use of the bilogistic model where it is most 
suitable will help to remove errors that may arise from the 
use  of  other  hormesis  models  that  do  not  adequately 
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represent the data.  In addition, the models will be 
applicable in the study of variability of inverted U-shaped 
dose-response relationships in many disciplines. These 
models could potentially help to refine regulatory 
guidelines for protection of human, animal, plant and 
microbial populations which would have bearing upon the 
management of environmental health. 
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