African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12501

Full Length Research Paper

Effect of priming on germinability and salt tolerance in seeds and seedlings of Physalis peruviana L.

Cíntia Luiza Mascarenhas de Souza1*, Manuela Oliveira de Souza2, Lenaldo Muniz de Oliveira3 and Claudinéia Regina Pelacani3
1Plant Genetic Resources, State University of Feira de Santana, Feira de Santana, Bahia, Brazil. 2Biotechnology, State University of Feira de Santana, Feira de Santana, Bahia, Brazil. 3State University of Feira de Santana, Feira de Santana, Bahia, Brazil.
Email: [email protected]

  •  Received: 10 December 2013
  •  Accepted: 29 April 2014
  •  Published: 07 May 2014

References

Alarcón JJ, Morales MA, Ferrández T, Sánchez-Blanco MJ (2006). Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 81:845-853.
 
Basu RN (1994). An appraisal of research on wet and dry physiological seed treatments and their applicability with special reference to tropical and subtropical countries. Seed Sci. Technol. 22: 107–126.
 
Bradford KJ (1986). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience. 21: 1105-1112.
 
Casenave EC, Toselli ME (2007). Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci. Technol. 35: 88-98.
 
Corbineau F, Ozbingol N, Vineland D, Come D (2000). Improvement of tomato seed germination by osmopriming as related to energy metabolism. In Black M, Bradford KJ, Vasquez-Ramos J (Eds). Seed Biology Advances and Applications: Proceedings of the Sixth International Workshop on Seeds, Mérida, Mexico, 1999. New York, NY : CABI. 467-474.
 
De Castro RD, Van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000). Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol. 122: 327-335.
Crossref
 
Fischer G, Ebert G, Lüdders P (2007). Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81: 29-35.
 
Ferreira DF (2011). Sisvar: a computer statistic alanalysis system. Cienc. Agrotecnol. 35: 1039-1042.
 
Heydecker W, Coolbear P (1977). Seed treatments for improved performance - survey and attempted prognosis. Seed Sci. Technol. 5: 353-425.
 
Iqbal M, Ashraf M (2007). Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J. Integr. Plant Biol. 49: 1003-1015.
Crossref
 
ISTA (2007) International Rules for Seed Testing Association, Bassersdorf, Switzerland.
 
Kaya MD, Okçu G, Atak M, Çikili Y, Kolsarici O (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.) Eur. J. Agron. 24: 291-295.
Crossref
 
Kaur S, Gupta AK, Kaur N (2002). Effect of osmo and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. J. Plant Growth Regul. 37: 17-22.
Crossref
 
Lima CSM, Manica-Berto R, Silva SJP, Betemps DL, Rufato AR (2009). Establishment and operating costs of a cape gooseberry orchard in the south region of Rio Grande do Sul. Rev. Ceres. 56: 555-561.
 
Mazorra MF, Quintana AP, Miranda D, Fischer G, De Valencia MC (2006). Anatomic Aspects of Formation and Growth of the Cape Gooseberry Fruit Physalis peruviana (Solanaceae). Acta Biol.Colomb.11: 69-81.
 
McDonald MB (2000). Seed priming. In: Black M, Bewley JD (Eds). Seed Technology and Its Biological Basis. Sheffield: Sheffield Academic Press. UK. 287-325.
 
Miranda D, Fischer G, Ulrichs C (2010). Growth of cape gooseberry (Physalis peruviana L.) plants affected by salinity. J. Appl. Bot. Food Qual. 83: 175-181.
 
Munns R (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250.
Crossref
 
Nakaune M, Hanada A, Yin YG, Matsukura C, Yamaguchi S, Ezura H (2012). Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol. Biochem. 52: 28-37.
Crossref
 
Natale E, Zalba SM, Oggero A, Reinoso H (2010). Establishment of Tamarix ramosissima under different conditions of salinity and water availability: Implications for its management as an invasive species. J. Arid Environ. 7: 1399 -1407.
Crossref
 
Puente LA, Pinto-Mu-oz CA, Castro ES, Cortés M (2011). Physalis peruviana Linnaeus, the multiple properties of a highliy functional fruit: a review. Food Res. Int. 44: 1733-1740.
Crossref
 
Souza MO, Souza CLM, Pelacani CR (2011). Germination of osmoprimed and non-osmoprimed seeds and initial growth of Physalis angulata (Solanaceae) in saline environments. Acta Bot. Bras. 25: 105-112.
Crossref
 
Souza MO, Souza CLM, Pelacani CR, Soares M, Mazzei JL, Ribeiro IM, Rodrigues CP, Tomassini TCB (2013). Osmotic priming effects on emergence of Physalis angulata and the influence of abiotic stresses on physalin content. S. Afr. J. Bot. 88: 191-197.
Crossref
 
Varier A, Vari AK, Dadlani M (2010). The subcellular basis of seed priming. Curr. Sci. 99: 450-456.
 
Villela FA, Doni Filho LD, Sequeira EL (1991). Table of osmotic potential as a function of polyethileneglycol 6000 concentretion and temperature. Pesqui. Agropecu. Bras. 26: 1957-1968.
 
Xiong L, Zhu JK (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25: 131-139.
Crossref
 
Yildirim E, Karlidag H, Dursun A (2011). Salt tolerance of Physalis during germination and seedling growth. Pak. J. Bot. 43: 2673-2676.