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The nonlinearity and accompanying concept, namely the chaos receive great attention from 
researchers. This study employs nonlinearity and chaos theories to examine the behavior of the 
Istanbul Stock Exchange (ISE) all share equity indices. The main purpose was to explore the existence 
or nonexistence of nonlinearity and chaotic behavior in the ISE market. Therefore, the efficient markets’ 
characteristics, which are the random behavior of asset prices and nonlinear chaotic dynamics, were 
contrasted and the probabilistic and deterministic behaviors of the asset prices were compared. Our 
results based on BDS, Hinich Bispectral, Lyapunov Exponent and NEGM tests reject the efficient 
market hypothesis that the index series examined in this study is not random, independent and 
identically distributed (i.i.d).  
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INTRODUCTION 
 
Most of the studies on the behavior of the Istanbul Stock 
Exchange (ISE) market prices support the weak form 
market efficiency against the existence of chaos. The 
detection of nonlinearity and chaos versus efficient 
market hypothesis (EMH) in the ISE market is the main 
focus of this study. The main results in this study chal-
lenge the dominant findings in the literature and imply the 
existence of nonlinear structure and chaos in the ISE 
market. The finance and economics literature on the non-
linearity and chaos increases in quantity as well in quality 
in recent years. Studies try to find out the (non-) existence 
of the chaos in financial time series. The importance of 
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this research topic comes from the fact that chaos and 
efficient market hypothesis are mutually exclusive para-
digms. This study is motivated from this fact. Nonlinearity 
and chaos theories were employed to examine the 
behavior of the ISE all share equity indices. 
 
 

Identification of research problem 
 
For the last four decades, the EMH has been the domi-
nant theory in the financial markets. Many studies have 
been conducted to test the theory. Under the EMH, stock 
returns processes should be random. Market efficiency 
idea mentions that prices fully reflect all information and 
price movements do not follow any patterns or trends. 
That is, past price movements cannot be used to predict 
the future price movements but follow what is known as a 
random   walk,   an   intrinsically    unpredictable    pattern 
(Campbell et al., 1997; Fama, 1965). The mathematical 
expression  of EMH  is  that  the  financial  time  series  is 
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independent and identically distributed (i.i.d.), so behave 
in a random manner. 

The deterministic nonlinear equations can generate 
data which seems as if random. This is the shortest 
defini-tion of the chaos. Chaos phenomena were first 
observed in natural sciences and its theoretical 
fundamentals are founded in these areas such as physics 
and ecology. Later, these theoretical basics were 
transferred to many other fields, such as economics and 
finance (Creedy and Martin, 1994; Gleick, 1987; 
Mantegna and Stanley, 2000; Lorenz, 1993; McKenzie, 
2001; Pesaran and Potter, 1993; Ruelle, 1993; Trippe, 
1995; Barnett and William, 2004).  
 
 
Related research 
 
There are many studies supporting the EMH in the 
literature (Kendall, 1953; Brealey, 1970; Dryden, 1970; 
Cunningham, 1973; Brock, 1987). These studies find no 
evidence of chaos in macroeconomic time series in the 
US and Canadian markets. The studies on the United 
Kingdom stock market also detect the weak form market 
efficiency. These authors base their studies on the 
assumption that UK stock market price changes are i.i.d. 
Fama (1965) admit that linear modeling techniques have 
limitations as they are not sophisticated enough to 
capture complicated ‘patterns’ which chartists claim to 
see in stock prices. Moreover, most of the studies on the 
behavior of ISE market prices supported the weak form 
market efficiency against the existence of chaos (Kenkül, 
2006; Topçuo�lu, 2006; Çıtak, 2003; Adali, 2006). 

Barnett et al. (1996) report the successful detection of 
chaos in the US division monetary aggregates. This 
conclusion is further confirmed by several authors (e.g. 
Hinich and Rothman 1998; Barnett and William, 2004). 
Furthermore, foreign exchange markets are an essential 
domain in which chaos has been detected (Mantegna 
and Stanley, 2000; Das and Das, 2007). Many 
researchers (e.g. Granger and Newbold, 1974; Campbell 
et al., 1997; Lee et al., 1993; Bonilla et al., 2006) argue 
that financial market series exhibit non-linearity. The 
terms of many financial contracts such as options and 
other derivative securities are also nonlinear (Mantegna 
and Stanley, 2000). Therefore, a natural frontier for 
financial econometrics is the modeling of nonlinear 
phenomena (Barnett and William, 2004; Barnett et al., 
1997; Barnett and Hinich, 1992). Findings of Abhyankar 
et al. (1997) are also consistent with the existence of the 
nonlinearity. Scheinkman and LeBaron (1989) study 
U.S.A. weekly returns on the Center for Research in 
Security Prices (CRSP) value-weighted index, employing  
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the BDS statistic, and find rather strong evidence of 
nonlinearity and some evidence of chaos. Frank and 
Stengos (1989) obtain similar results by investigating 
daily prices for gold and silver, using the correlation 
dimension and the Kolmogorov entropy. Serletis and 
Gogas (1997) find the evidence consistent with a chaotic 
nonlinear generation process in seven East European 
black market exchange rates. Sewell et al. (1993) report 
evidence of dependency in the market index series in 
Japan, Hong Kong, South Korea, Singapore and Taiwan. 
De Lima (1995) argues that for the US data, non-linear 
dependence is present in stock returns after the 1987 
crash. Some studies on Turkish ISE market (e.g. 
Bayramoglu, 2007; Ozgen, 2007) demonstrate that the 
market is not efficient. 

Despite the affirmative chaos test results, there are 
some critiques of the chaos in the literature as well (Lee 
et al., 1993). Hamill and Opong (1997) report that despite 
the nonlinear dependence in Irish stock returns, there 
exist no chaos. Willey (1992) find no evidence of chaos in 
the Financial Times Industrial Index.  
 
 
DATA AND RESEARCH METHODOLOGY 
 
The data set is taken from ISE 100 index series. Although it begins 
on 02 January 1982, daily data for the “All Share Index” are avai-
lable in Datastream only after 02 February 1997. Thus, the early 
times of the ISE 100 index were not included in the subsequent 
analyses considering the immature characteristics period of a new 
born market that resulted in noisy data sets. Therefore, daily ISE 
composite price closing index (all share index) was used in analysis 
for the period between 02 February 1997 and 16 March 2009 
comprising 3,036 observations. Descriptive statistics for the 
observations were shown in Table 1. 

The daily returns of the ISE composite index were calculated as 
the change in logarithm of closing stock market indices of suc-
cessive days. Taking the first differences may not only ensure that 
the time series are stationary but also it is a common practice in 
standard econometric work to whiten the time series. 

For testing the stationary of ISE time series the Augmented 
Dickey-Fuller (ADF) test by Dickey and Fuller (1979) was utilized. 
The ADF test shows whether a time series is stationary or not, 
hence the existence of unit root and auto-correlation is tested. For 
testing the nonlinearity, the BDS test by Brock et al. (1996) and the 
Hinich Bispectral test by Brockett et al. (1988) were employed. For 
testing the chaos, the Lyapunov Exponents test by Wolf et al. 
(1985) and the NEGM test by Nychka et al. (1992) were used. 
 
 
STATISTICAL TEST RESULTS 
 
Augmented dickey-fuller (ADF) test 
 

Time series data analysis has many applications in many 
areas. Many analysts use the linear regression models to 
predict some variables change  over  time  or  extrapolate�
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Table 1. Descriptive Statistics for 

( )t t 1rt ln ISE ISE −= . 

 
Parameter Value 
Number of observations in sample 3036 
Mean 0,00124 
Std. Error of Mean 0,00055 
Median  0,00070 
Std. deviation 0,03028 
Variance 0,00092 
Skewness 0,081 
Kurtosis 4,066 
Range 0,377 
Sum 3,411 
Minimum -0,201 
Maximum 0,176 

 
 
 
from present conditions to future conditions. However, 
caution is needed during the interpretation of the results 
of regression models estimated using time series data. 
Analysts working with time series data uncovered a 
serious problem with standard analysis techniques 
applied to time series. For instance, the estimation of 
parameters of the Ordinary Least Square Regression 
model produces statistically significant results between 
time series that contain a trend and are otherwise 
random. This leads to considerable work on how to 
determine what properties a time series must possess if 
econometric techniques are to be used. In this respect 
Granger and Newbold made one basic conclusion such 
that “any time series used in econometric applications 
must be stationary” (Granger and Newbold, 1974). In this 
study, the ADF test was employed to test the stationary 
of ISE time series. The value of ADF test statistics (-
13.17) is much larger than the MacKinnon critical values 
at 1, 5 and 10% significant levels (Table 2). As it can be 
seen, the ISE time series was found to be stationary for 
all significance levels. 
 
 
Nonlinearity tests 
 
For testing the nonlinearity, the BDS and the Hinich 
Bispectral tests were employed. The BDS statistic has its 
origins in the correlation dimension plots of Grassberger and 
Procaccia (1983). Brock et al. (1996) proposed a non-
parametric tool as a test of the null hypothesis of an i.i.d. 
(that is random) time series. 

In the first  step  of  BDS  test,  the  best  fitting  ARIMA �

 
 
 
 

Table 2. Results for the ADF test statistics for 
three significance levels (1, 5 and 10%). Note that 
the ADF test statistic critical value is -13.17. 
 
Significance level (%) Critical values 
1 -3.7979 
5 -2.8451 
10 -2.4899 

 
 
 
(p, d,q) model is determined and fitted to data. This 
eliminates the linearity from the data. In the second step 
of BDS test, the test is applied by running it on the 
residuals of that ARIMA (p, d, q) model, which by default 
must be linearly independent, so that any dependence 
found in the residuals must be nonlinear in nature. 

The time series ( : 1, 2,....., )tX t T=  to be analyzed is 
used to form the so-called m-
histories ( ) ( )t t m 1 tmX X ,....., X− += , where m is known 

as the “embedding dimension”. These histories can be 
used to define a correlation integral as below: 
 

( ) ( ) ( )
T

2
m i j

i,j 1
C e 1 N Z e X X ,      i j

=
= − − ≠�              (1) 

 

i j

i j

1          e- X X >0 
Z( e )

0          e- X X 0

� −�= �
− ≤��

 

 
T = the number of observations 
e = distance 

mC = correlation integral for dimension m 
X = index (data) series. 
 
If the iX  in the time series X (with T observations) are 

independent and iX  series are lagged into “m histories”, 

then the correlation integral ( , )mC e T  is calculated as: 
 

1( , ) ( )m
mC e T C e→                                       (2) 

The correlation integral simply fills the space of whatever 
dimension it is placed in. The BDS statistic, NW , that 
follows is normally distributed; 
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Table 3. ARIMA models for Stock Exchange Indexes daily returns. Note that �i is the parameter 
for an MA at lags i. 
 

Index Model  Q1 Q2 Q3 
Coefficient 0.802075 0.137213 0.050019 

ISE Composite ARIMA(0,1,3) 
T-Statistic 33.97 4.55 2.12 

 
 
 

[ ]1/2
1( , ) ( , ) ( , ) * / ( , )N

N m NW e T C e T C e T T S e T= −                                       

                                                                                    (3) 
 
Where ( , )NS e T  is an estimate of the standard deviation 
under the null hypothesis. 
 
The null hypothesis under the BDS test is that the 
increments of the time series are independent and 
identically distributed. A rejection of the null hypothesis 
for the BDS test could mean any one or a combination of 
three major possibilities. First, there can be linear serial 
dependencies in the data; second, the time series can be 
non-stationary; and third, there can be a nonlinear serial 
dependency in the data, either chaotic or stochastic. 

Since BDS test is a two-tailed test, we should reject the 
null hypothesis if the BDS test statistic is greater than the 
positive critical z-value or less than the negative critical z-
value. For example, if � = 0.05, the critical z-value = ± 
1.96. 

Using the Box-Jenkins methodology an ARIMA 
(autoregressive integrating moving average) process was 
adjusted for the chosen stock exchange (ISE composite) 
index log return.  

Briefly, an ARIMA (p, d, q) model was fitted to the time 
series, where p denotes the number of autoregressive 
terms, d the number of times the time series has to be 
differenced before it becomes stationary, and q is the 
number of moving average terms. For the model 
selection criteria the Akaike Information Criterion (AIC) 
(Akaike, 1974) was used, and the order of the model was 
determined by relying on the minimum Akaike Information 
Criterion estimated as ARIMA (0, 1, 3). These captured 
residuals became the whitened returns series subject to 
the statistical analysis for BDS test. 

The ADF test was applied and found that the ISE time 
series was a stationary process as desired. In fact, the 
Box-Jenkins methodology applies only to stationary data 
series, which means that the time series has a mean and 
a variance essentially constant through time. 

Using the lag operator L, that is, t t 1LX X −= . The 
ARIMA models assume the form: 

Table 4. BDS statistics-residuals from the ARIMA to log returns. 
 

� 
Index 

m 
0.5� � 1.5� 2� 

2 15.719 16.292 14.438 13.064 
3 19.322 18.763 15.765 13.933 
4 21.876 20.319 16.644 14.424 

ISE Composite 

5 25.284 22.014 17.187 14.527 
 

Note: m: embedding dimension; � �: distance between points measured 
in terms of number of standard deviations of the raw data; �: standard 
deviation. All statistics are significant at the 5% level. 
 
 
 
 ( ) ( )2 3

t 1 2 3 t1 L Y 1 L L L uθ θ θ− = − − −
             (4) 

 
Where Y is the first difference of the natural logarithm of 
the original time series, 1θ , 2θ  and 3θ  are the moving 

average coefficients and the random shock tu  is 
assumed to be an i.i.d. random variable with a mean of 
zero and a constant variance. 

Table 3 presents the main results of the fitted models, 
which satisfy the stationarity and invertibility conditions. 
These models are stationary since they have no 
autoregressive coefficients. The invertibility conditions 
require �i <1 for all i. The residuals of the ARIMA models 
were used to perform the BDS test. To compute the BDS 
statistic using � between one-half to two times the 
standard deviation of the raw data (0,5� � � � 2�) while 
suggesting that m = 2 is a general approach. For samples 
with less than 500 observations, m should be set less or 
equal to 5. 

Table 4 presents the results of the BDS test for the 
ARIMA residuals of log returns. It can be seen that the 
null hypothesis being i.i.d. was rejected at the 5% level 
for all ISE composite index. In other words, non-linear 
dependence was not absent from the series returns. It 
was thus conclude that the weak form effi-ciency 
hypothesis was not validated for the Istanbul stock 
exchange composite index in the data  set  considered  in  
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this study. 

The hypothesis of linearity was rejected by the BDS 
test. In fact, the results allowed rejecting the null hypo-
thesis of daily returns being i.i.d., non-linear dependence 
was present on those returns, therefore, contradicting the 
random walk model supposition. Since the test results 
indicate that non-linear structure was present in the data, 
it is possible that exploitable excess profit opportunities 
may exist in the Istanbul stock market (ISE). However, 
the main characteristic of chaos, namely the sensitive 
dependence to the initial conditions, observed in the tests 
prevents that excess profit opportunities by the use of a 
chaotic anticipation pattern in ISE. 
 
The null hypothesis may be formulated as; 
 
H0: pure whiteness, independent data, data generated by 
an i.i.d. stochastic process, market efficiency, i.e. the 
error terms of data in time series is independent and 
identically distributed (i.i.d.). 
H1: The error terms of data in time series are not i.i.d. 
This implies that time series is non-linearly dependent, 
since linear dependence has been removed. Hence, 
there exist non-linear dependence and absence of the 
market efficiency. 
 
When the BDS test statistic is large (greater than 2), H0 is 
rejected. The BDS statistics are computed for the under-
lying dimension of m = 2, 3, 4, 5, 6, 7, 8, 9 and 10 and for 
� values of 0.50, 1, 1.5 and 2. A level of significance (�) 
of 5% is taken and thus the critical value for the test is 
±1.96, indicating that the null hypothesis should be 
rejected if the BDS test statistic is greater than 1.96 or 
less than -1.96. Table 5 indicated that all test statistics of 
error terms were greater than the critical value of 1.96 
significantly under different embedding dimension and 
ratio of tolerance to standard deviation. Thus, the null 
hypothesis of i.i.d. for data should be rejected. The 
results strongly suggest that the series were non-linearly 
dependent at the 5% level of significance. 

BDS test was applied to these residuals and result 
showed that residuals were not independently identically 
distributed. For all embedding dimensions BDS test 
rejected the null hypothesis of i.i.d.-ness (that is returns 
are nonlinearly dependent). Running the BDS test is far 
from straightforward, since the test is extremely computa-
tionally intensive and special algorithms are needed to 
ensure the implementation viable. In this study a 
MATLAB program was used to apply the BDS test. 

Hinich Bispectral test is, on the other hand, a frequency 
domain approach test. It is used to estimate the bispec- 
trum of a stationary time series and provides a direct  test  

 
 
 
 
for non-linearity and also a direct test for Gaussianity.  If 
the process generating the data (in this case the rates of 
return) is linear, then the skewness of the bispectrum will 
be constant. If the test rejects constant skewness, then a 
non-linear process is implied (Hinich and Clay, 1968). 
Linearity and Gaussianity can be tested using a sample 
estimator of the skewness function. 
 
The null hypothesis of the Hinich “linearity” test is given 
by 
 
H0: flat skewness function, absence of third order non-
linear dependence; 
H1: non-linear dependence, absence of efficiency, 
 
H0 is rejected if the standard normal test statistic Z is 
large (that is over 2 or 3). When the null is Gaussianity, 
the related test statistic is denoted by H and is also a 
standard normal random distribution under the null 
hypothesis (Hinich and Patterson, 1989). 
 
The existence of the third order nonlinear dependence 
(that is tests the flatness of skewness function or lack of 
third order nonlinear dependence) was examined, and 
the null hypothesis of linearity was rejected. Therefore, it 
is concluded that the series was nonlinear. As reported in 
Table 6, the test statistic is 3.73, which is larger than the 
critical value of 2.55. This implies that the null hypothesis 
of linearity can be rejected. As for the Gaussianity test, 
normality of daily ISE returns was analyzed. In this case, 
the test statistic of 8.47 was again much larger than the 
critical value of 3, implying that the null hypothesis of 
Gaussianity can be rejected. The rejection of linearity 
provides support for the conclusion on non-linearity in 
ISE stock indexes returns and, therefore, for the absence 
of weak form efficiency.  
 
 
Chaos tests 
 
For testing the chaos, the Lyapunov Exponents and the 
NEGM test were used. These tests were applied to the 
ISE data set to analyze the existence of chaos in the ISE. 
The distinctive feature of chaotic systems is sensitive 
dependence on initial conditions, that is, exponential 
divergence of trajectories with similar initial conditions. 
The most important tool for diagnosing the presence of 
sensitive dependence on initial conditions (and thereby of 
chaoticity) is provided by the dominant Lyapunov Expo-
nent (�). This exponent measures average exponential 
divergence or convergence between trajectories that 
differ only in having an infinitesimally  small  difference  in  
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Table 5. BDS test results: Daily ISE composite index returns. 
 

�/� 
ratio 

Embedding 
dimension (m) 

BDS test 
statistics 

�/� 
Ratio 

Embedding 
dimension (m) 

BDS test 
statistics 

0.5 2 6.9552 1.5 2 9.7703 
0.5 3 9.9729 1.5 3 12.4650 
0.5 4 12.9582 1.5 4 14.90410 
0.5 5 15.9241 1.5 5 15.9980 
0.5 6 17.8642 1.5 6 16.8969 
0.5 7 20.5240 1.5 7 17.9367 
0.5 8 23.6152 1.5 8 18.8290 
0.5 9 27.9350 1.5 9 20.9880 
0.5 10 30.9720 1.5 10 21.9630 
1.0 2 7.7246 2.0 2 11.9860 
1.0 3 10.6841 2.0 3 14.9670 
1.0 4 12.8480 2.0 4 16.1290 
1.0 5 14.8520 2.0 5 16.820 
1.0 6 17.4790 2.0 6 17.9380 
1.0 7 19.6260 2.0 7 18.0085 
1.0 8 21.5650 2.0 8 18.5470 
1.0 9 23.8750 2.0 9 19.3130 
1.0 10 25.9699 2.0 10 19.9840 

 
 
 
their initial conditions and remains well defined for noisy 
systems (Wolf et al., 1985). 

In mathematics the Lyapunov exponent or Lyapunov 
characteristic exponent of a dynamical system is a 
quantity that characterizes the rate of separation of 
infinitesimally close trajectories. Quantitatively, two trajec-
tories in phase space with initial separation “�” diverge. 
The difference between the results is given by;  
 

( )( )n 0d exp n Xλ ε= ⋅ ⋅                                  (5) 

Let consider two points, 0X  and 0X + , apart from each 
other by only the infinitesimal difference “�” and apply a 
map function to each of the two points n times. Here “�” is 
the Lyapunov exponent. After solving for the 
convergence (or divergence) rate the maximal Lyapunov 
exponent can be defined as follows: 
 

n
n

d1
lim log

n
λ

ε→∞
=                                        (6)                                                     

There are three possible values for the Lyapunov 
exponent where Lyapunov exponent denoted by �: 
 

0λ < , When  Lyapunov exponent   is   less   than   zero,  

system is convergent  
0λ = , When Lyapunov exponent is equal to zero, the 

system is in some sort of steady state mode.  
0λ > , When Lyapunov exponent is greater than zero, it 

indicates a sensitive dependence on initial conditions (i.e. 
system is chaotic).  
 
If a system has at least one positive Lyapunov Exponent, 
the system is chaotic and trajectories, which start at two 
similar states, will diverge exponentially. The larger the 
dominant positive exponent is, the more chaotic the 
system becomes, and the shorter the time span of 
system predictability. A positive Lyapunov Exponent is, 
therefore, viewed as “an operational definition of chaotic 
behavior”. Wolf et al. (1985) estimate the Lyapunov 
Exponent by averaging the observed orbits divergence 
rates. 

Table 7 presents estimates of the maximum Lyapunov 
Exponents of the daily log returns series using the 
estimation method of Wolf et al. (1985). The Lyapunov 
Exponents were estimated with embedding dimensions 
up to four as in Wolf (1991). The results (all � are 
positive) appear to point to the above stated operational 
definition of chaos.  It allows us to accept chaos for the 
financial time series considered. 
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Table 6. Result of Hinich bispectral test. 
 
Test Statistic Critical value Conclusion 
Linearity test statistic (Z) 3.73 2.55 (�=0.05) Reject the Linearity 
Gaussianity test statistic (H) 8.47 3.00 (�=0.05) Reject the Gaussianity 

 
 
 

Table 7. Lyapunov exponents for log returns. 
 

ndim max �  (ISE Composite share) 
1 0.22368791 
2 0.23458914 
3 0.35612712 
4 0.41236514 

 

Note: ndim: embedding dimension, max �: 
maximum estimated value of Lyapunov 
Exponent. 

 
 
 

Since Lyapunov Exponent method is less reasonable 
when we are dealing with noisy systems, Nychka et al. 
(1992) developed an alternative approach, namely 
NEGM test, based on Jacobian methods in order to avoid 
upward bias when estimating Lyapunov Exponents. They 
proposed that regression (or Jacobian) method, involving 
the use of neural network models, to test for positivity of 
the dominant Lyapunov Exponent. NEGM is a procedure 
for testing for chaos by estimating the dominant 
Lyapunov Exponent. Lyapunov Exponent for a bounded 
system is the operational definition of chaos. Jacobian 
method is used to calculate Lyapunov Exponent where 
the neural network method has been used to estimate 
this exponent. 
 
The hypotheses of the NEGM test are: 
 
H0 = Lyapunov Exponent is negative or time series is not 
chaotic or 0λ ≤ . 
H1 = Lypunov Exponent is positive or time series is 
chaotic or 0λ ≥ . 
 
Since Lyapunov Exponent point estimate is “0.42”, which 
is a positive number, then the null hypothesis can be 
rejected, implying that the time series is chaotic. 
 
 
Conclusions 
 
This paper employs two tests for nonlinearity on the daily  

ISE composite returns, namely, BDS Test and Hinich 
Bispectral test. The test results rejected the presence of 
linearity for ISE returns by the BDS test. In order to test 
the chaotic behavior, Lyapunov Exponents test and 
NEGM test were employed.  

Both tests showed that chaos existed in ISE composite 
returns. We conclude that the test results indicate 
sufficient evidence for non-linearity and chaos in the ISE 
daily returns. By providing significant evidence against 
the popular efficient market hypothesis, this study 
challenges the existing studies on ISE market. In other 
words, ISE market does not follow the random walk 
pattern, hence it is not i.i.d. 

Compared to the existing literature on Turkish ISE, the 
results might be different for several reasons. One reason 
can be the volume of the data sets. Because, as men-
tioned in Harrison et al. (1999: 501), the accuracy of test 
results improves with the increase in the number of 
recording points and the length of the time series. 
Another reason could be that ISE has been relatively a 
young financial market. Moreover, Turkey has expe-
rienced many economical and financial crises during the 
last twenty years.  

Thus, ISE has some maturity problems. It is possible 
that the studies conducted with similar ISE data sets can 
show contradicting results because of the noise in the 
data, low number of data points and the methods utilized. 
For further studies, it is recommended that researchers 
use larger (probably 5.000 or more) data sets with 
different test methods and make comparisons to clarify 
the reliability of methods.   
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