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A semi-distributed hydrological model was used for runoff estimation in the Okavango-Omatako 
catchment in Namibia. The model was configured for a 31-year period from 1985 to 2015. Subsequently, 
calibration and validation processes followed using the SUFI-2 algorithm. For evaluating catchment 
simulation, two methods were used: i. model prediction uncertainty measured by P-factor and R-factor 
and ii. Model performance indicators, that is, Nash-Sutcliffe Efficiency (NSE), Coefficient of 
determination (R

2
), Percent bias (PBIAS), and Residual variation (RSR). The P-factor achieved 0.77 and 

0.68 while R-factor attained 1.31 and 1.82 for calibration and validation, respectively. The following 
indicators were used to evaluate the model performance through calibration and validation results 
respectively; NSE with 0.82 and 0.80, R

2
 with 0.84 and 0.89, PBIAS achieving -20≤PBIAS≤-1.1 and RSR 

performing 0.42 and 0.44. All performance indices achieved very good ratings apart from PBIAS 
validation which rated as satisfactory. The semi-arid characteristics together with relatively flat terrain 
features justified the need for the evaluation of model performance using discharge data in our study 
region. SWAT demonstrated reasonable results in modelling semi-arid streamflow with high and low 
flows adequately captured. Consequently, this evaluation was necessary for further investigations into 
impacts of climate change on scarce water resources highlighting the challenges of SWAT model 
applications in our study area climatic regime and other similar regions globally for further model 
improvements. 
 
Key words: Stream flow, catchment, semi-arid, SWAT, SUFI-2, calibration, TanDEM-X, Okavango, Namibia. 

 
 
INTRODUCTION 
 
Hydrological models represent the real-world system in a 
simplified manner through simulations of water resources 
(Sood and Smakhtin, 2015). Such models follow complex 
processes  to   integrate   different   spatial  and  temporal 

variables to better understand catchment heterogeneity 
(Mengistu et al., 2019). However, acquiring data that 
accurately represents these variables is a major 
challenge. Field data acquisition  methods are expensive,  
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time-consuming, tedious and error prone, causing 
limitations in the measurement of hydrological variables 
(Al-Sabhan et al., 2003). Over the years, traditional 
techniques for in-situ observations of precipitation, 
temperature, streamflow, geohydrology, soil moisture, 
dam levels, etc. have dominantly provided data for 
catchment monitoring worldwide (Essou et al., 2017). 
Such ground-based measurements create limitations 
based on the spatial distribution of the observing stations, 
which may insufficiently assess catchment evolution over 
a large area (Lai et al., 2019; Stehr et al., 2008). 
Considering these constraints, various hydrological 
investigations around the world explore the  integration of 
satellite-based data and ground measurements to 
monitor large and complex catchment behavior 
(Abbaspour et al., 2015; Hashim et al., 2016; Thavhana 
et al., 2018). A model is a simplified real world 
representation of a certain phenomenon applied to 
predict system behavior and understand processes such 
as stream flow, droughts, floods, vegetation cover, etc. 
(Devi et al., 2015). The features of models are defined by 
the parameters used to represent the reality.  

In places where natural disasters (e.g. droughts and 
floods) occur frequently, hydrological models are vital to 
characterize various processes in sustainable water 
resource management (Emam et al., 2017). The Soil and 
Water Assessment Tool (SWAT), is one of such model 
capable of simulating water balance in large geographical 
catchments and sub catchments using a time continuous 
semi-distributed hydrological model, integrating various 
parameters like land cover/land use, soil types, 
precipitation, temperature, topography and climate 
conditions (Arnold et al., 2012).  

Namibia is an arid country located in Southwest Africa 
with regular occurrence of dry periods. Annual rainfall 
ranges between ~ 50 mm in the west to over 600 mm in 
the northeast of the country (Mendelsohn et al., 2006). 
Taking into account the low rainfall and variability of 
rainfall within the country, water management is  vital  to 
conserve the existing water resources (Palmer et al., 
2008). According to the Integrated Water Resources 
Management report, the country is divided into eleven 
water management areas, each are further sub-divided 
into water basins (IWRM, 2010). These water 
management areas are defined by similar drainage 
systems of rivers, catchment areas, underground water, 
water supply lines and canals. One such area is the 
Okavango-Omatako catchment which extends from 
Central to the Northeastern regions of Namibia. The 
Okavango-Omatako water management area also 
referred   to   as   a   ―catchment‖   is   comprised   of   the  

 
 
 
 
Omatako-Omuramba and Okavango catchments. The 
ephemeral Omatako is a tributary to the perennial 
Okavango. According to IWRM (2010) report, the 
catchment has indisputable socio- economic importance 
to activities in proximity to it. Water extracted from the 
catchment caters to approximately 15% of the Namibian 
population through livelihood activities such as irrigation, 
mining, tourism, livestock, etc. Considering this, it is vital 
to monitor and explore the catchment‘s behavior to 
different variables influencing its dynamics. This study 
emanated from limited comprehensive assessments  
exploring this catchment (Mendelsohn et al., 2002; 
Strohbach, 2008), and its dynamic response to different 
variables. 

Several studies have been conducted since the 1990‘s 
on catchments in Namibia; from investigations of large 
ephemeral catchments in Jacobson et al. (1995) to small-
scale catchment analysis in O‘Connor (2001), as well as 
more detailed work on various individual catchments 
(Manning and Seely, 2005; Marsh and Seely, 1992; 
Mendelsohn et al., 2000). Although considerable studies 
attempted to map catchments in Namibia, according to 
Strohbach (2008), many have methodological 
inaccuracies or non-repeatable methodological 
descriptions. Further, the coarse resolution from freely 
available Digital Elevation Models (DEM) supplemented 
with missing data due to atmospheric interference, 
shadow effects, etc., has created a challenge to unpack 
Namibia‘s hydrological systems and realistically simulate 
catchment behavior.  

To understand streamflow processes, it is essential to 
evaluate the SWAT model performance (Meaurio et al., 
2015), especially when considering large catchments as 
depicted in this study. To date, no peer reviewed studies 
have used the SWAT model in the Okavango-Omatako 
catchment, denoting a general lack of  knowledge on 
hydrological processes in these semi-arid catchments 
(Strohbach, 2008). To fill the gap, this study evaluated 
the SWAT model for streamflow estimation using 
remotely sensed data supplemented by ground 
observation measurements. It is further imperative to 
evaluate hydrological models and uncertainty methods in 
areas with different climatic zones (that is tropical, arid, 
semi-arid, etc.) (Emam et al., 2018; Rafiei Emam et al., 
2015).  The semi-arid characteristics of the study site and  
its relatively flat terrain features justified the need for 
evaluation of the SWAT model performance using 
discharge data in an intermediate gauge. Krysanova and 
White (2015) highlighted the challenges of SWAT model 
applications in different climatic regimes and specific 
regions,  globally,  suggesting the need for several model 
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Figure 1. Location of the study area, Okavango-Omatako and neighboring catchments. 
Source: Authors 

 
 
 
evaluations and improvements. One such area is SWAT 
applications in regions where water management is 
crucial due to water scarcity. Estimation of streamflow 
using historical variables over the semi-arid water scarce 
environment of the Okavango-Omatako expose 
catchment behavior, which in turn can be used to prepare 
short term and long-term water management plans. 
SWAT depends on the basic units of sub-basins and 
Hydrological Response Units (HRUs) for streamflow 
estimation. Due to the study catchment flat terrain, the z-
resolution of freely available DEM data is insufficient to 
generate accurate HRU‘s, this study therefore used state 
of the art, high resolution DEM - TanDEM-X (Rizzoli et 
al., 2017; Wessel et al., 2018).  Enhanced knowledge on 
hydrological processes through modelling improves 
future investigations on impacts of climate conditions and 
LULC changes on water resources and management. 
The study thus supports Namibian National Climate 
Change Strategies and Action Plan with proposed 
strategies to counteract impacts of climate change. This 
includes understanding climate change and its related 
policy responses, using monitoring and data collection 
technologies for surface and ground water at the 
watershed     level     and    promoting   conservation  and 

sustainable utilization of water resources. 
 
 
Study site 
 
The Okavango-Omatako catchment (Figure 1) extends 
from central to North-eastern Namibia, bordering 
Botswana to the east and Angola to the north at 
approximately 74,700 km2 (Strohbach, 2008). According 
to IWRM (2010), it is one of the eleven water 
management areas classified along shared drainage 
systems (that is, aquifers, canals, rivers and pipelines). 
This catchment is comprised of perennial (Okavango) 
and ephemeral (Omuramba-Omatako) rivers as well as 
groundwater. The Omatako dam which has been built on 
the Omuramba-Omatako ephemeral river and the ground 
water of Tsumeb, Otavi and Grootfontein Karstveld are 
major water sources to central Namibia. The main water 
inflow sources to this catchment are the perennial 
Cubango and Cuito rivers located in southern Angola. 
After heavy rains, other ephemeral streams such as 
Nhoma and Kaudom also join the drainage system of the 
river basin. The Omatako river is similarly a tributary to 
the Okavango,  however,  the contribution  is  minimal  as 
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Figure 2. Elevation map showing the 60 sub-basins of the Okavango-Omatako catchment. 
Source: Authors 

 
 
 
the river originates from the dry central plateau of the 
Kalahari with limited run off either evaporating or draining 
into the sand along its course (IWRM, 2010). The 
catchment‘s average annual rainfall varies between 300 
mm in the west to 600 mm in the north-east with an 
average loss of water through evaporation between 2,600 
and 3,200 mm per annum (Mendelsohn et al., 2002). 

The Okavango-Omatako catchment is predominantly a 
flat sandy plateau categorized as the Kalahari Sandveld 
landscape (Mendelsohn et al., 2002). Although known for 
its flat terrain, the sandy deposits form dunes in some 
areas. The landscape near Grootfontein is known as 
Karstveld and is Namibia‘s largest underground aquifers, 
its elevated terrain receives 550 to 600 mm rainfall 
annually (Mendelsohn et al., 2002). The highest elevation 
is observed in the south-west of the catchment with a 
gentle downward slope towards the northeast where it 
meets the Okavango valley (Figure 2). The vegetation 
varies from moderate-dense shrubland in the south west, 
a shrubland-woodland mosaic towards the  center  of  the 

basin and a dry woodland-grassland mosaic in the north 
eastern parts (Mendelsohn et al., 2002).  

According to IWRM (2010), the supply of water in 
Namibia is primarily allocated for domestic use such as 
livestock farming (communal and commercial). In the 
Okavango-Omatako catchment, large scale irrigation for, 
maize, sorghum, cotton and wheat are predominant 
water consumers, followed by livestock and urban 
consumption. To a lesser extent, rural domestic 
consumption, tourism and mining also utilize water from 
this catchment.  
 
 
MATERIALS AND METHODS 

 
Data 

 
The data used in this study includes climate data, elevation, soil 
characteristics, Land Use Land Cover (LULC) and streamflow data 
(Table 1). Daily in-situ measurements of precipitation and 
temperature  from  eight weather stations (Table 1), which cover the 
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Table 1. Data used and sources. 
 

 Data Sources Resolution 

1. Meteorological Variables: 
Precipitation(mm), temperature (°C), 
Solar radiation (MJ/m

2
), Relative 

Humidity (%), and Wind Speed (m/s) 

Namibia Meteorological Services (NMS) 1985-2015 
and Climate Forecast System Reanalysis (CFSR) 
(Weather Stations: Awagobibtal, Grootfontein MET, 
Kalidona, Omambonde Tal, Otjikururume, Otjirukaku, 
Rundu and Simondeum) 
 

Daily meteorological 
records  

2. Discharge of Omatako Dam (m
3
/s) Hydrological Services of Namibia  Monthly discharge from 

1990 – 2008 

 

3. TanDEM-X Digital Elevation 
Model (DEM) 

German Aerospace Center (DLR) Relative vertical accuracy 
of 2 m and a Spatial 
resolution of 12 m 

 

4. Land use and land cover (LULC) Sentinel-2 Products from European Space 
Agency (ESA) and Directorate of Survey and 
Mapping (DSM), Namibia 

 

Spatial resolution 10 m 

5. Soil Information SOTER (Soil and Terrain Database) (Coetzee 2001, 
M. Coetzee, personal communication, December 6, 
2019, Batjes 2004) 

Updated Soil Map (from Agro-Ecological Zoning)  

Scale 1:250 000 

 

Source: Authors 
 
 
 
extent of the study area were identified and prepared for the period 
1985-2015. While solar energy, relative humidity, and wind speed 
data were sourced from the Climate Forecast System Reanalysis 
(CFSR) of The National Centers for Environmental Prediction 
(NCEP, 2020). Moreover, the internal ―weather generator‖ from 
SWAT generated missing weather data to fill the climatic gaps. The 
soil information over the river basin under study was sourced from 
an ongoing project to update the Soil Map of Namibia (Coetzee 
2001, M. Coetzee, personal communication, December 6, 2019). 
Land use and land cover (LULC) information was derived from the 
Copernicus Sentinel-2 mission products supplemented by existing 
information from the Directorate of Survey and Mapping (DSM) in 
Namibia. The runoff discharge data measured by the Hydrological 
Services of Namibia at the Ministry of Agriculture, Water and 
Forestry was solicited for calibration/validation purposes. The 
following subsections will further discuss the datasets mentioned 
above in detail.  
 
 
Digital elevation model 

 
Stream flow simulation is a complex process with several 
uncertainties arising from input variables, missing assumptions in 
the model and lack of knowledge on the catchment being modeled 
(Abbaspour et al., 2007; Rostamian et al., 2008). 

Imperatively, while modeling a large and complex catchment as 
presented in this study remote sensing plays a major role to 
successfully model streamflow. This is especially valid in data poor 
countries where lack of frequent high-resolution data is not 
accessible. For this reason and due to the flat terrain characteristics 
of the catchment in this study, a high-resolution TanDEM-X product 
was sourced to improve simulation capacity as recommended by 
(Archer et al., 2018). Thus, accurate watershed delineation  (stream 

slopes and total length of streams) and HRU definition were 
achieved in this study catchment which were further used to 
simulate the streamflow effectively as established by Buakhao and 
Kangrang (2016) and Tan et al. (2015), where the accuracy of the 
DEM was sensitive to streamflow. 

Due to the flat terrain characteristics of the Namibian Northern 
regions, elevation data of TanDEM-X from the TerraSAR-X DLR 
mission was used in the study with a relative vertical accuracy of 
2 m and a spatial resolution of 12 m sourced from German 
Aerospace Center (DLR) (Wessel et al., 2018). According to Archer 
et al. (2018), Maharjan et al. (2013) and Rizzoli et al. (2017), 
without the High Resolution Terrain Information-3 (HRTI-3) from 
TanDEM-X,  the study area of relatively flat terrain would not define 
an accurate watershed to create Hydrologic Response 
Units (HRUs), which are the smallest representation of the basin 
used in the simulation of streamflow in SWAT. In Figure 2, the 
elevation map of the river basin derived from TanDEM-X is 
displayed together with the generated sub-basins of the study area. 
 
 

Land use land cover mapping 

 
Land use land cover (LULC) is an essential input variable for 
simulation of streamflow in the SWAT model. An assessment of 
global LULC products indicated insufficient detail for runoff 
modelling purpose, therefore a LULC map was generated for the 
catchment.  The LULC was generated using multiple scenes of 
Sentinel-2-A data of 2017 acquired and mosaicked from 
Copernicus Sentinel-2 mission (European Space Agency, 2020).  
This product further attained the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index (NDWI) and 
Normalized Difference Built-up Index (NDBI) indices to facilitate the 
differentiation of vegetation, water  and  built-up  areas.  Using  high  
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Figure 3. Land Use Land Cover (LULC) map of Okavango-Omatako catchment. 
Source: Authors 
 
 
 
resolution topographic maps obtained from the Directorate of 
Survey and Mapping (DSM) for the same timeframe as the 
Sentinel-2 imagery, seven land cover classes (bare land, forest 
cover, cultivated land, grassland, built-up area, water bodies and 
bush/shrub) were visually identified. Using polygons of each 
landcover classes resultantly, a classification training and validation 
dataset was derived for these classes. Thanh Noi & Kappas (2017) 
compared and investigated performances of random forest, k-
nearest neighbor, and support vector machine (SVM) classification 
methods for LULC classification with Sentinel-2 and achieved 
superior accuracy and consistency in their classification results 
using SVM. Consequently using ENVI 5.5.1 (Harris Geospatial 
Solutions Inc, 2020), the SVM algorithm was applied to compute 
the classification and generate a LULC map (Figure 3) of the 
interest region. For the independent validation dataset, the 
classification was validated using a Cohen kappa (K) (Cohen, 1960) 
and overall accuracy assessment (Congalton, 1991). According to 
Nyeko et al. (2010) and Rani and Sreekesh (2019), approximately 
80% and 0.8 is the overall accuracy and kappa for LULC to be 
suitable for input into the SWAT model . The classification for the 
catchment     data    was   performed    with   an  acceptable  overall 

accuracy of 84% and a kappa coefficient 0.8. 
 
 
Soil mapping 
 
Soil type information plays a major role in runoff estimation. 

According to Yang et al. (2008), model variable inputs such as 
soil data and its resolution has an effect on modelling streamflow in 
SWAT. The Soil mapping of the study area was performed at the 
scale of 1:250 000 while most of the samples for the profile 
descriptions was taken along the study area as demonstrated in 
(Coetzee, 2001). In this study, soil profile data for the catchment 
was acquired and significant information was extracted such as 
texture classes, profile depth, soil types, etc. 

Once the watershed delineation of the study area was completed 
using the boundary of the delineated basin, sixteen soil classes 
were identified and further categorized into six dominant groups: 
Cambisols, Regosols, Arenosols, Calcisols, Leptosols and 
Fluvisols. The soil type distribution over the catchment was mapped 
as shown in Figure 4. Based on the available soil properties for 
different  soil  classes,  all  required  information  for the model input  
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Figure 4. Soil classes of the study catchment. 
Source: Authors 

 
 
 
was calculated. 
 

 
Catchment modelling  

 
Model setup and configuration  

 
A hydrological SWAT model (Figure 5) was employed to simulate 
the water balance components of different sub-basins in the 
catchment under study. To this end, the Okavango-Omatako 
catchment was delineated using the SWAT model. 

The spatial heterogeneity of the catchment was best modeled 
through sub-basins and was further divided into HRUs. HRUs 
represent the smallest spatial units of the catchment with 
homogenous slope class, soil characteristics and Land use and 
land cover (LULC) information. HRUs simulated the water balance 
components with the assumption that different HRUs have different 
hydrologic characteristics. To execute different SWAT scenarios, 
the various datasets outlined in Table 1 were utilized. These 
scenarios were thereafter used to simulate the quantity of water in 
each sub-basin, computed as the total water departing and arriving 
into the channel at each time step. Using this model, water balance 
was computed as shown in Equation (1) (Neitsch et al., 2011): 

        ∑ (                        )
 

   
                 (1)                                          

 

where     refers to the soil water content at time t, the initial soil 
water content is denoted by    ,      is the amount of precipitation 

on day i,       indicates surface runoff on day i,    refers to the 

amount of evapotranspiration on day i,       specifies the amount 

of percolation on day i and     denotes groundwater return flow on 

day i.  
Surface runoff originates when precipitation received on the 

ground surface surpasses the rate of infiltration. The Soil 
Conservation Service Curve Number also referred to as SCS-CN is 
used in this study to simulate the surface runoff (USDA, 1986). To 
determine surface runoff CN in a specific location of the catchment 
during a rain event, the method considers the soil hydrologic group, 
soil moisture conditions and LULC types. The Penman-Monteith 
approach (Allen et al., 1989; Howell and Evett, 2004) using solar 
energy, wind speed, humidity and temperature was used to estimate 
the potential evapotranspiration (PET) for the entire catchment 
area. Water flowing into the stream network of the basin is 
simulated using the variable storage routing method developed by 
(Williams, 1969). The SWAT model setup was adopted to delineate 
the Okavango-Omatako  catchment  into sub-basins using the high-  
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Figure 5. Framework of model setup and configuration using SWAT as well as calibration and validation processes in SUFI-2. 
Source: Authors 

 
 
 

resolution TanDEM-X digital elevation product due to its flat terrain 
characteristics. These processes were followed to fill DEM 
depressions, compute flow direction and accumulation, which are 
further used to apply thresholds for stream definition, subsequently 
determining stream networks and the number of sub basins. 
Thereafter, HRUs were created using unique combinations of 
LULC, Soil and Slope information within each sub basin. As 
discussed in Table 1, the precipitation and temperature (Tmin and 
Tmax) data for eight weather stations optimally distributed 
throughout the study area were defined and SWAT input tables 
were created. As a final step, the simulation was performed over 
31-years (1985-2015), with a five-year warm-up period 
(1985-1989). The warm-up is an adjustment process used by the 
model to achieve a stable state (e.g. streamflow values), as initial 
conditions of a catchment are usually underestimated during 
simulation in SWAT (Kim et al., 2018). Consequently, the study 
simulated 26-years (non-inclusive warm-up period) of hydrological 
parameters of the catchment. 

 
 
Parameter sensitivity analysis 

 
Sensitivity analysis of parameters is the main driving force for a 
successful  application  of  streamflow  simulation  (Mengistu  et  al., 

2019; Thavhana et al., 2018). Sensitivities of parameters are 
computed through regression between parameters and the 
objective function. This process calculates the mean change in the 
objective function which results from changes in each parameter. 
Twelve parameters were selected through a careful review of 
related literatures and considering the semi-arid characteristics of 
the area under study. The parameters, that is, CN2, OV_N, FFCB, 
ESCO, EPCO, CH_K2, CH_N2, ALPHA_BF, GW_DELAY, 
GWQMN, SURLAG and MSK_CO1 (abbreviations are explained in 
Table 3) were chosen based on their sensitive behavior to 
streamflow (Aqnouy et al., 2019; Desai et al., 2021; Mengistu et al., 
2019). The list of parameters associated with streamflow was 
applied for further evaluation in a calibration process. Thereafter, a 
sensitivity analysis was performed by considering the changes in 
the objective function as a result of the sensitivity of one parameter 
to other parameters, which determines its influence on streamflow. 
The t-stat and p-value are used to quantify the sensitivity of a 
parameter and its significance. A higher t-stat value and a lower p-
value demonstrates a more sensitive streamflow in the catchment 
(Abbaspour, 2015; Arnold et al., 2012). 
 
 

Calibration, validation, and uncertainty analysis 
 

Evaluation of  hydrological models is performed, using performance 



 

 
 

 
 
 
 
criteria through comparison of simulated variables or processes in 
the basin against measured data.  The model calibration and 
validation are the final vital step to assess the accuracy of the runoff 
simulation. Once the simulation process is completed in SWAT, the 
hydrological model undergoes calibration and uncertainty analysis 
as shown in Figure 5. SWAT Calibration and Uncertainty 
Procedures (SWAT-CUP) was employed for further processing, 
which is a program with five different algorithms commonly used in 
calibration and validation of simulated hydrological models. 
Large-scale and complex models usually make use of the 
Sequential Uncertainty Fitting also known as SUFI-2 due to its 
efficiency and reliability (Yang et al., 2008), especially when 
compared with deterministic approaches to calibration (Abbaspour, 
2015). Given the scale and complexity of our catchment, the study 
therefore used this stochastic approach. In this algorithm, ranges 
associated with uncertainty of all variables convey the uncertainty 
of each parameter by considering the conceptual model, the data 
measured and its parameters. Uncertainties in parameters lead to 
uncertainty in model output which is commonly expressed in SUFI-2 
by 95% probability distributions which are computed between 2.5 
and 97.5% of cumulative distributions for an output variable. This is 
referred to as 95% prediction uncertainty or a confidence interval 
(95PPU). This output acquired from the stochastic calibration 
approach is the most suitable solution at 95% significance level, 
generated from specified parameter intervals and defined by the 
modeler. 

The calibration and validation process in this study was 
performed using the split-sample approach with monthly stream 
flow data from Omatako gauge station used for the period 1990-
2003 (calibration) and 2004-2008 (validation). 

This was performed to evaluate the efficiency of streamflow 
simulation compared to the observed data. The splitting of 
observed data based on time-period ensures data independence to 
assess the model performance. Moreover, the selected period for 
calibration and validation process was due to lack of in-situ data 
spanning the model duration. During calibration (1990-2003), four 
iterations each with no less than 500 simulations were executed to 
refine the model parameters (Abbaspour, 2015; Hajati et al., 2020). 
With each iteration performed, values of each parameter range 
become smaller approaching the best solution and achieving better 
models than previous iterations. According to Abbaspour (2015) the 
best solution is usually achieved within the above stated iteration. 
Thereafter, independent observed data can be used to validate the 
2004-2008 period. During this process, the exact calibrated 
parameter ranges and same simulation quantity as defined in the 
final calibration was repeated, aimed to assess model performance. 
The calibration and validation results were both quantified using 
statistics known as P-factor, R-factor, and objective function value 
(Abbaspour, 2015; Abbaspour et al., 2004).As expressed by 
Abbaspour (2015), in SUFI-2, a good fit between observation and 
simulation results is conveyed using two indices ‗P-factor‘ and 
‗R-factor‘. P-factor refers to the observed data enveloped by 95% 
prediction uncertainty. While the R-factor refers to the thickness of 
the 95PPU. The P-factor is measured between 0 – 1 with 1 being 
the perfect result indicating 100 % of the observed data enveloped 
in the 95PPU, while 0 being the worst with none of the observed 
data represented within the envelope. In the case of R-factor, 
possible values range between zero and infinity. The recommended 
value for R-factor is less than 1.5 for streamflow, (Abbaspour et al., 
2004, 2015), whereas P-factor is acceptable with values greater 
than 0.7. However, the former depends on the project scale, input 
data, etc. Hence, the above indices can evaluate the goodness of fit 
between our observed and simulated results in the calibration and 
validation process. Values slightly outside the acceptable range are 
still possible, as the recommended values are not necessarily fixed 
numbers, rather a quest to reach a balance between R factor and P  
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factor (Abbaspour, 2015). 

In this study the good agreement between the observed and 
simulated streamflow is evaluated through the objective function 
Nash-Sutcliffe coefficient (NSE) as shown in Equation (2), 
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Coefficient of determination (R2) as shown in Equation (3), 
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Percent bias (PBIAS) as shown in Equation (4), and 
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Ratio of RMSE to the Std. Dev. of observed data (RSR) as shown 
in Equation (5) 
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Where Q is the variable under observation or simulation, that is 
discharge,           and            are discharge data, which have 
been measured and simulated respectively, while n refers to the 

number of total records and  ̅         denotes the average 
measured data while i is the ith measured or simulated data. Similar 
to the P-factor and R-factor, there are no specific numbers to 
achieve, however, the recommended values for watershed scale 
(Gupta et al., 2009; Hajati et al., 2020; Moriasi et al., 2007, 2015) 

are as follows;         ,         and            . Hence, the 
model performance is evaluated as per the performance rating 
criteria listed in Table 2. 

 
 
RESULTS AND DISCUSSION 
 

Results of SWAT 
 
In the process of delineation, the catchment was divided 
into 60 sub-basins and further subdivided into 762 HRUs. 
The simulation was executed for a 31-year period 
between 1985 and 2015 with the initial five years from 
1985-1989 used as model warm-up. The simulated 
results showed precipitation in the basin to be low and 
potential evapotranspiration being expectedly high for 
simulated timeframe. During the simulation, the ratio of 
surface runoff to total flow was very low at 0.27, the 
evapotranspiration to precipitation recorded was 0.57, 
and the baseflow to total flow ratio was a high 0.73. 
These results clearly show that the surface runoff was 
very low and most of the precipitation was lost to the 
shallow aquifer and the evapotranspiration process. 
 
 

Sensitivity analysis 
 

Out of the twelve  parameters  discussed  above  (that  is, 
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Table 2. Performance Rating for a Monthly Time Step  
 

Model performance rating RSR NSE    PBIAS 

Very Good                                                    

Good                                                        

Satisfactory                                                        

Unsatisfactory                                     
 

Source: Koycegiz and Buyukyildiz, 2019; Moriasi et al., 2007 

 
 
 
Table 3. Parameters and range of values used in the calibration. 
 

Parameter Description Parameter Range Fitted Value t-Stat   p-Value 

CN2 SCS runoff curve number f -0.2 – 0.2 -0.1804 -11.697   0.000 

OV_N Manning's "n" value for overland flow -1.5 – 1.5 -0.273 1.496   0.135 

FFCB 
Initial soil water storage expressed as a fraction of field capacity 
water content 

0.12 – 0.69 0.20037 -0.102   0.919 

ESCO Soil evaporation compensation factor 0 – 1   0.269 0.570   0.569 

EPCO Plant uptake compensation factor 0.3 – 1  0.9293 0.496   0.620 

CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 2 – 140  82.729996 -1.457   0.146 

CH_N2 Manning's "n" value for the main channel 0.25 – 0.76  0.73807 0.453   0.651 

ALPHA_BF Base flow alpha factor (days) 0 – 1  0.135 -6.334    0.000 

GW_DELAY Groundwater delay time (days) 30 – 450  189.179993 7.923    0.000 

GWQMN 
Threshold depth of water in the shallow aquifer required for 
return flow to occur (mm). 

0 – 2  0.142 -0.195   0.845 

SURLAG Surface runoff lag time 0 – 20  13.86 1.349   0.178 

MSK_CO1 
Calibration coefficient used to control impact of the storage time 
constant for normal flow 

0 – 10  0.43 -0.274   0.785 

 

Source: Authors 
 
 
 
parameter sensitivity analysis), three parameters 
appeared to be highly sensitive to stream flow in the 
Okavango-Omatako catchment. The most sensitive 
appeared to be the runoff curve number controlling the 
surface runoff followed by ground water delay time and 
baseflow alpha factor influencing the baseflow of the 
semi-arid catchment during the period 1990 to 2003. 
Many of the studies performed in arid and semi-arid 
environments also confirmed these results with Esmali et 
al. (2021) observing runoff curve number (CN2) ranked 
the most sensitive in different climatic zones including 
semi-arid and arid, while ground water delay 
(GW_DELAY) was found to be most sensitive in arid and 
baseflow alpha factor (ALPHA_BF) in semi-arid 
environment. Additionally, Aqnouy et al. (2019) and Desai 
et al. (2021) noted that out of the three above 
parameters, two were the most significant in a semi-arid 
environment in Morocco and India. The sensitivity 
analysis as indicated by the t-stat and p-value in Table 3 
showed CN2, GW_DELAY and ALPHA_BF as the most 
sensitive parameters in our catchment. The results  agree 

with similar findings by Thavhana et al. (2018) and 
Koycegiz and Buyukyildiz (2019), Mengistu et al. (2019) 
and Leng et al. (2020) on frequently considered 
parameters which are amongst the most sensitive in the 
global sensitivity analysis for hydrological processes of 
semi-arid catchments. The remaining nine parameters 
were less sensitive with higher p-values and a lower t-
stat.   

The sensitivity analysis yielded t-stat and p-value for 
the model parameters as shown in Figure 6. The most 
dominant significance with the highest t-stat and a low p-
value were seen in CN2, GW_DELAY and ALPHA_BF. 
The parameter CN2 also known as the SCS runoff curve 
number is used to determine runoff values for the 
catchment and is found to be the most sensitive 
parameter with a low p-value (p < 0.05) and a high t-stat. 
According to USDA (1986), this parameter has been 
used to characterize antecedent runoff conditions in arid 
and semi-arid watersheds. Following CN2, ALPHA_BF, a 
parameter affecting base flow, was classed to be 
sensitive  to  streamflow  in  the semi-arid catchment. The  
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Figure 6. Parameters sensitivity analysis (t-stat and p-value) of SWAT simulation for the Okavango-Omatako catchment. 
Source: Authors 

 
 
 

Table 4. Result from calibration and 
validation. 
 

 Calibration Validation 

P-factor 0.77 0.68 

R-factor 1.31 1.82 

   0.84 0.89 

NSE 0.82 0.80 

PBIAS -1.1 -20.0 

RSR 0.42 0.44 
 

Source: Authors 
 
 
 

ALPHA_BF fitted value of 0.135 reveals a slow recharge 
response rate as discussed by Miskewitz (2007), 
constituting a slow baseflow in the catchment. The next 
sensitive parameter is GW_DELAY, which is highly 
influenced by the catchment area size under 
consideration. The parameter measures the time for 
water to percolate and reach the water table, being 189 
days in this catchment. The remaining nine parameters 
(OV_N, FFCB, ESCO, EPCO, CH_K2, CH_N2, GMQMN, 
SURLAG and MSK_CO1) were found to be less sensitive 

to streamflow estimation causing increased model 
uncertainties in the study area. As part of this study, a 
further in-depth investigation which identifies parameter 
sensitivity to semi-arid environments similar to this study 
catchment will be valuable for better model performance 
in stream flow estimation. 
 
 
Model calibration 
 
The output of the calibration illustrated the capacity of 
SWAT to simulate streamflow in this study catchment. 
The 95PPU illustrated in Figure 7(a), with green in the 
calibration processes displays the uncertainty of this 
model through computation of the P-factor, and R-factor 
indicators. As shown in Table 4, the P-factor estimate 
was 0.77, thus 77% of the observed discharge lies in the 
95PPU bracket for the period of calibration, from 
1990-2003. Whereas 95PPU bracket thickness was 
measured by the R-factor, which was 1.31, resulting in 
both indicators meeting the optimum value as determined 
by Abbaspour et al. (2015). During the calibration 
process, the study achieved the best model between 
observed  and  simulated  streamflow.  It is also apparent 
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from Figure 7(a) that the observed mainly falls outside 
the 95PPU during the descent cycle of streamflow, 
demonstrating the start of the flow modelled very well as 
opposed to the end of the seasonal flow. In general, the 
model also performed well in simulating high and low 
flows between the observed and simulated streamflow.    

In addition to the above model performance 
parameters, all other performance indicators for the 
model calibration (Table 4) scored between good to very 
good according to the evaluation criteria outlined in Table 
2 (Koycegiz and Buyukyildiz, 2019; Moriasi et al., 2007). 
The model performance indices evaluated the agreement 
between simulation and observation of our catchment as 
presented in Table 4. The objective function used in this 
study to evaluate the model performance for the period 
1990 to 2003 was Nash-Sutcliffe efficiency (NSE) with a 
calibration of 0.82. These results depict the model 
simulation success with good results produced according 
to the model performance evaluation criteria listed in 
Table 2. Additionally, other performance indicators such 

as Coefficient of determination (  ), Percent 
bias (PBIAS) and residual variation (RSR) were similarly 
used to evaluate the model. The calibration results as 

presented in Table 4, with    (0.84) achieved very good 
performance rating for the recommended statistics on a 

monthly basis. The PBIAS scored (    ), ranking very 
good on the calibration while the RSR (0.42) also 
performed very well with values below 0.5 as 
recommended by (Arnold et al., 2012; Fernandez et al., 
2005; Mengistu et al., 2019; Moriasi et al., 2015).   

According to Figure 7(b), the scatter plot representing 
measured vs simulated discharge, visualizes the success 
of the model performance. Coefficient of determination 
(R2) of the scatter plot shows 0.84 for calibration, 
indicating a higher correlation between observed and 
simulated data during the calibration period. However, in 
Figure 7(a) an overestimation during low flow periods 
were observed. While high flows were simulated 
satisfactorily, closely matching the observed values, 
excluding few cases of the peak flow estimations which 
were slightly underestimated. These findings agree with 
similar studies by (Koycegiz and Buyukyildiz, 2019; 
Thavhana et al., 2018; Vilaysane et al., 2015).  
 
 
Model validation 
 
The validation process compared the simulated 
discharge of a selected outlet of a sub-basin with 
observed discharge measured at gauge station nearby, 
plotted in Figure 8(a) with corresponding precipitation 
data from the closest meteorological station. As outlined 
in the methods, the model validation was carried out 
using in-situ data from 2004 to 2008. The results were a 
P-factor of 0.68 (that is, 68% of the observed discharge 
was bracketed by  the  modeling  result  of  95PPU),  and  

 
 
 
 
R-factor of 1.82 (that is, the 95PPU bracket thickness). In 
both cases, the results were unable to achieve the 
recommended values of (Abbaspour, 2015), which were 
set to be greater than 0.7 for P-factor and less than 1.5 
for R-factor. These optimum values as endorsed by 
Abbaspour et al. (2015) act more of a guide rather than 
absolute numbers which must be achieved. The values 
are dependent on project scale and availability of input 
and calibration data as mentioned in (Abbaspour et al., 
2015; Beharry et al., 2021; Musyoka et al., 2021; Pontes 
et al., 2021). In the validation process the R-factor 
recorded a value > 1.5, which was found to be 
satisfactory due to the large size of the study area under 
consideration and limited calibration data availability. 
Moreover, the recorded R-factor above the 
recommended value could be attributed to low flow 
during the years 2004-2005, especially when compared 
with peak-flow characteristics during the calibration 
period. Pontes et al. (2021) also recorded similar results 
during the evaluation of SWAT model to simulate monthly 
streamflow in a catchment in Brazil. Nonetheless, the 
objective function results in the validation process 

achieved NSE of 0.8,    of 0.89 and RSR of 0.44 with all 
three scoring in the very good category as stipulated by 
(Moriasi et al., 2007). While the model indicated a PBIAS 
of -20.0 falling within a satisfactory range for validation as 
stated by (Koycegiz and Buyukyildiz, 2019; Moriasi et al., 
2007). Similarly, the validation also demonstrated poor 
performance at the end of a streamflow season, but also 
at times during low flow by falling outside the 95PPU 
bracket.  

Coefficient of determination (R2) of the scatter plot in 
Figure 8(b) attained 0.88 indicating a positive correlation 
between observed and simulated data during the 
validation period. This result indicates the success of the 
model performance. 
However, in Figure 8(a) a high overestimation during low 
flow years were seen while closely matched results 
between simulated and measured streamflow during 
peak flow years were observed. 
 
  
Model performance evaluation 
 
A SWAT hydrological model was setup and implemented 
for a semi-arid catchment in Namibia to evaluate model 
performance for streamflow estimation. The model was 
calibrated using the limited available observed river 
discharge data. Despite the simulation for the study area 
carried out from 1985 to 2015, the calibration and the 
validation processes could only be implemented for the 
periods 1990 to 2008 due to inconsistencies and missing 
observed discharge data subsequent to this period. Such 
limitations were also observed by Terskii et al. (2019) in a 
similar study. 

Thus, reliable discharge observation stations collecting 
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Figure 7. (a) Observed vs simulated monthly stream flow and (b) Scatter plot showing correlation between the observed and 
simulated for the calibration period (1990 - 2003). 
Source: Authors 

a)

 

b)
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Figure 8. (a) Observed vs simulated monthly stream flow and (b) Scatter plot showing correlation between the observed and 
simulated for the validation period (2004 - 2008). 
Source: Authors 

a)

 

b)

 



 

 

 
 
 

 
long term flow data could go a long way in modelling 
catchments similar to the study area.   

The general performance of the model as indicated 
through the values achieved by the different indicators 
has a good agreement between the observed and 
simulated streamflow. 95PPU for the calibration and 
validation processes for the period of study with its 
corresponding rainfall records are shown in Figure 7(a) 
and 8(a). It is apparent that after intensive rain occurred, 
an increased streamflow was observed thereafter. 
However, this was not the case for all the years of 
calibration, which could be attributed to climate conditions 
such as high evapotranspiration, high percolation, 
abstraction, etc. Despite this, one can still observe the 
simulated data, predominantly falling within the confidence 
interval. Similar findings were observed by Koycegiz and 
Buyukyildiz (2019) and Mengistu et al. (2019), while 
modelling runoff in a semi-arid catchment, both studies 
observed an increased flow following a high rainfall event 
confirming the outcome of simulation in this study.  

Prediction uncertainty is used to quantify the agreement 
between simulated and observed results. The P-factor 
value for calibration was adequate while the validation 
value was near the recommended value of 0.7 
(Abbaspour et al., 2015). Similarly, the R-factor value of 
the calibration was within the acceptable range while the 
validation is slightly on the upper side of the 
recommended value of 1.5. This could be dependent to 
and highly attributed to the scale of the project as 
demonstrated in (Abbaspour et al., 2007, 2015). Hence, 
the results of this study can be considered to have lower 
uncertainty in the calibration and slightly higher uncertainty 
in the validation process. As stated by Abbaspour et al. 
(2015) while calibrating a continental scale hydrological 
system, a large-scale catchment as demonstrated in the 
study could attain slightly higher or lower results than the 
ranges of the recommended value. Abbaspour et al. 
(2015) and Beharry et al. (2021), Musyoka et al. (2021) 
and Pontes et al. (2021) demonstrated that a high R-
factor could also occur due to lack of sufficient data for 
model calibration. To this end, the modelling of the 
Okavango-Omatako catchment has been challenging due 
to the quality of input and calibration data with 
uncertainties leading to a high R-factor. 

The model performance indicators used the NSE,   , 
PBIAS and RSR while results were ranked according to 
(Koycegiz and Buyukyildiz, 2019; Moriasi et al., 2007). All 
indicators achieved a very good performance rating with 
exception of PBIAS validation rated as satisfactory. 
Similar to Abbaspour et al. (2015), Mengistu et al. (2019) 
and Moriasi et al. (2007), the results indicate a good 
overall achievement of model performance within the 
study area with a good level of agreement between 
observed and simulated streamflow. Taking a closer look, 
the PBIAS index reveals that the model underestimated 
stream flow in the process of simulation by 1.1  and  20%   
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respectively for calibration and validation, when 
compared with observed data. Simulated and observed 
streamflow for both calibration and validation are 
demonstrated in Figure 7(a) and 8(a), respectively. The 
model is capable of simulating low and high flows 
satisfactorily, closely matched to the observed values. 
However, in some cases the peak flow estimation slightly 
falls short in the calibration period. These findings are 
cohesive to similar studies by (Koycegiz and Buyukyildiz, 
2019; Thavhana et al., 2018; Vilaysane et al., 2015). 
Consequently, low flow might have caused an above limit 
R-factor in our catchment as supported by Musyoka et al. 
(2021) and Pontes et al. (2021), during the evaluation of 
SWAT model to estimate monthly streamflow in the dry 
season of their respective study areas.  

After a careful assessment of the simulated versus 
observed results, the performance of SWAT to effectively 
model a large complex semi-arid catchment with scarce 
in-situ data was found to be satisfactory, demonstrating 
the potential of simulating future streamflow events. This 
indicates the effectiveness and further exploration of this 
model to assess impacts of climate change in similar 
catchments within the region. However, evident limitations 
are seen in overestimated low flows during calibration 
and validation timeframes, which are vital for extrapolation 
to forecast and assess climate change impacts. From a 
catchment management perspective, the model fairly 
estimated the peak flow in the calibration period verifying 
its capacity to be used as a water management tool, 
except in few cases where underestimations occurred. 
Further investigations into streamflow intensity and time 
lag between streamflow events are essential for water 
resource managers. Another relevant factor which must 
be considered as a potential impact on catchment flow 
characteristics is the changes in LULC. In this study, the 
temporal changes of LULC were not examined. 

However, the significance of a time-series analysis of 
the catchment‘s LULC cannot be refuted and could go a 
long way in understanding its impacts on streamflow 
behavior. This study thus proposes a subsequent 
investigation on this matter. 

One of the limitations in this study is the inadequacy to 
evaluate parameter sensitivity in the entire catchment. 
The uncertainty analysis of our model estimation can only 
be quantified in locations of the sub-basin where 
calibration was performed. Therefore, results in areas 
further away from calibrated portions should be examined 
attentively. One of the reasons for such limitation is the 
lack of data for use in the calibration process. An 
alternative, which should be considered to overcome 
such limitation, is the calibration using other variables 
such as available remotely sensed evapotranspiration 
and soil moisture as successfully demonstrated by Emam 
et al. (2017) and Rajib et al. (2016), respectively. The 
sensitivity analysis found three parameters to have a 
dominant  influence  in the model parameterization for the 
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Figure 9. Annual monthly average stream flow of observed and simulated (a) during the calibration period (1990 - 
2003) and (b) during the validation period (2004 - 2008). 
Source: Authors 

 
 
 
catchment under investigation. Water resource managers 
in the area should collect these essential parameters 
(that is, the runoff curve number, ground water delay time 
and baseflow alpha factor) to improve model 
performance. 

Annual   monthly   average   stream   flow  displayed  in  

Figure 9(a) and 9(b), demonstrates variation of observed 
and simulated streamflow values with an average 
overestimation of 1.03 and 16.63% for the calibration and 
validation periods respectively. The model inclination to 
overestimate low flows is evident, especially for the 
periods of 1992, 1995, 1996, 1998, 1999, 2002, 2004 and 

a)

 

b)

 



 

 
 

 
 
 
 
2005. The result is confirmed by similar investigations in 
Tegegne et al. (2017), Thavhana et al. (2018) and 
Turkmen et al. (2021), and is critical that the model is 
modified to handle low flows or adjoined with other 
models for improved estimates. The peak flows were 
estimated more reasonably and closely matched the 
observed values with slight underestimations. Bearing the 
adequate performance of the model estimation and 
results in mind, hydrological simulation in a semi-arid 
environment such as Okavango-Omatako catchment can 
be performed using modified SWAT and/or coupled with 
other models to manage scarce water resources in the 
region. 
 
 
Conclusion 
 
This study evaluated streamflow responses of selected 
parameters in the Okavango-Omatako catchment and 
recommends future work to explore the dynamics of the 
Okavango River basin starting from southern Angola 
through the northeastern part of Namibia and dissipating 
in the Okavango delta. Further, to understand the 
hydrological systems in this area, the link to climate 
systems such as El Nino/La Nina, Southern Oscillation 
(ENSO) and Sea Surface Temperature (SST) in the 
Atlantic and Indian Ocean should be investigated. These 
links are recommended by Landman and Mason (1999), 
Namibia Resource Consultants (1999) and Orti and 
Negussie (2019) to impact the management of water 
resources in this semi-arid environment, but have not 
been investigated to date. 

It is paramount to understand hydrological systems and 
their characteristics as well as various parameters which 
influence these systems. A major part of this process is to 
recognize the spatial and temporal patterns of 
precipitation, evapotranspiration, LULC and soil moisture. 
The varying spatial distribution of these variables in the 
catchment creates a challenge in simulating streamflow. 
Serious deficiencies during the modelling process 
merged from the lack of knowledge on the catchment‘s 
physical environment. The need for more comprehensive 
research to better understand the hydrological processes 
on catchments in Namibia is obvious. This research is 
necessary to sustainably use water resources and support 
water resource managers for efficient planning and 
management of this scarce resource. This study further 
recommends the sensitivity of parameters in the catchment 
under study to be evaluated as familiarities could contribute 
to a better understanding of streamflow processes. 
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