Full Length Research Paper
References
Abebew D, Belihu K, Zewde G (2014). Detection and determination of oxytetracycline and penicillin G antibiotic residue levels in bovine bulk milk from Nazareth dairy farms. Ethiopia. Ethiopian Veterinary Journal 18(1):1-15. |
|
Ahlberg S, Korhonen H, Lindfors E, Kang'ethe E (2016). Analysis of antibiotic residues in milk from smallholder farms in Kenya. African Journal of Dairy Farming and Milk Production 3(4):152-158. |
|
Asredie T, Engdaw TA (2015). Antimicrobial Residues in Cow Milk and its Public Health Significance. World Journal of Dairy and Food Sciences 10(2):147-153. |
|
Bush K (2018). Past and present perspectives on beta-lactamases. Antimicrobial Agents Chemotherapy 62:e01076-18. |
|
Cannon RY, Hawkins GE, Wiggins AM (1962). Duration of secretion of bacteriostatic drugs in milk. I. Penicillin, following oral and parenteral administration. Journal of Dairy Science 45(6):769-773. |
|
FAO and WHO (2018). Codex Alimentarius, Maximum residue limits (MRLS) and risk management recommendations (RMRS) for residues of veterinary drugs in foods CX/MRL 2-2018. |
|
Gaudin V, Maris P, Fuselier R, Ribouchon JL, Cadieu N, Rault A (2004). Validation of a microbiological method: the STAR protocol, a five-plate test, for the screening of antibiotic residues in milk. Food Additives and Contaminants 21(5):422-433. |
|
Gondova Z, Kozarova I, Polakova Z, Madarova, M. (2014). Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals. Italian Journal of Animal Science 13(4):3521. |
|
ISO E (2008). ISO 707: 2008 (IDF 50: 2008) Milk and Milk products -Guidance on sampling. Geneva, Switzerland: International Organization for Standardization. |
|
Kebede G, Zenebe T, Disassa H, Tolosa T (2014). Review on detection of antimicrobial residues in raw bulk milk in dairy farms. Africa Journal of Basic and Applied Science 6:87-97. |
|
Khaskheli M, Malik RS, Arain MA, Soomro AH, Arain HH (2008). Detection of ß-lactam antibiotic residues in market milk. Pakistan Journal of Nutrition 7(5):682-685. |
|
King DT, Sobhanifar S, Strynadka NCJ (2017). The mechanism of resistance to Betalactam antibioitcs. In Gotte M., Matlashewski G., Wainberg M., Sheppard D. (eds) Handbook of Antimicrobial Resistance. Springer, New York, NY |
|
Kivirand K, Kagan M, Rinken T (2015). Biosensors for the detection of antibiotic residues in milk. Biosensors-Micro and Nanoscale Applications pp. 425-456. |
|
Kurwijila LR, Omore A, Staal S, Mdoe NSY (2006). Investigation of the risk of exposure to antimicrobial residues present in marketed milk in Tanzania. Journal of Food Protection 69(10):2487-2492. |
|
Layada S, Benouareth D, Coucke W, Andjelkovic M (2016). Assessment of antibiotic residues in commercial and farm milk collected in the region of Guelma (Algeria). International Journal of Food Contamination 3:19. |
|
Li L, Guo C, Ai L, Dou C, Wang G, Sun H (2014). Research on degradation of penicillins in milk by beta-lactamase using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Dairy Science 97(7):4052-4061. |
|
Livermore DM, Brown DF (2005). Detection of beta-lactamase-mediated resistance. Journal of Antimicrobial Chemotherapy 48(1):59-64. |
|
Mullen KA, Beasley E, Rizzo JQ, Washburn SP, Baynes RE, Mason SE, Anderson KL (2017). Potential of phytoceuticals to affect antibiotic residue detection tests in cow milk in a randomized trial. Veterinary Record Open 4(1):e000214. |
|
Munita JM, Arias CA (2016). Mechanisms of Antibiotic Resistance, Microbiology Spectrum 4(2):10.1128/microbiolspec.VMBF-0016-2015. |
|
Mwagore D, Koge J, Ng'ang'a M (2019). Milk quality seminar; workshop proceedings. |
|
Ndungu TW, Muliro PS, Omwamba M (2021). A novel platform test to detect beta-lactam residues in raw milk. African Journal of Food Science 15(10):336-344. |
|
Ndungu TW, Omwamba M, Muliro PS, Oosterwijk G (2016). Hygienic practices and critical control points along the milk collection chains in smallholder collection and bulking enterprises in Nakuru and NyandaruaCounties, Kenya. African Journal of Food Science 10(11):327-339. |
|
Pandey N, Cascella M (2020). Beta lactam antibiotics: In StatPearls [Internet]. StatPearls Publishing. |
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Herman L (2017). Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA Panel on Biological Hazards (BIOHAZ), EFSA Journal 15(1):e04665. |
|
Sachi S, Ferdous J, Sikder MH, Hussani SAK (2019). Antibiotic residues in milk: Past, present, and future. Journal of Advanced Veterinary and Animal Research 6(3):315. |
|
Sajid M, Kawde AN, Muhammad D (2014), Designs, formats and applications of lateral flowassay: A literature review, Journal of Saudi Chemical Society 19(96):689-705. |
|
Salois A, Perez I, Palma E, Goolish E, Griko Y (2015). Evaluation of the Chemical Integrity of beta-lactam antibiotics by iodine-based assay. Journal of Biosciences and Medicines 3(11):91. |
|
Shaheen BW, Nayak R, Boothe DM (2013). Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrobial Agents and Chemotherapy 57(6):2902-2903. |
|
Stead SL, Ashwin H, Richmond M, Sharman PC, Langeveld JP, Barendse JP, Keely BJ (2008). Evaluation and validation according to international standards of Delvotest SP-NT screening assay for antimicrobial drugs in milk. International Dairy Journal 18(1):3-11. |
|
Yamaki M, Berruga, MI, Althaus RL, Molina MP, Molina, A. (2004). Occurrence of antibiotic residues in milk from Manchega ewe dairy farms. Journal of Dairy Science 87(10):3132-3137. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0