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The object of the present paper is to study locally g—symmetric three-dimensional generalized
Sasakian space forms and such manifolds with Ricci semi symmetric, 7 -parallel Ricci tensor and cyclic
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INTRODUCTION

Generalized Sasakian space forms are considered as
special cases of an almost contact metric manifold
(Alegre et al., 2004). Three-dimensional LP-Sasakian
manifolds and  three-dimensional  trans-Sasakian
manifolds were studied respectively by De and Tripathi
(2003), Venkatesha and Bagewadi, 2006). Where as
three-dimensional Para-Sasakian manifolds, three-
dimensiomal Lorentzian «—Sasakian manifolds and
three-dimensional quasi-Sasakian manifolds were
studied respectively by Bagewadi and et al. (2007), Yildiz
et al. (2009) and De and Sarkar (2009). In this paper we
extend same work for three- dimensional generalized
Sasakian space forms and obtain some results.

GENERALIZED SASAKIAN SPACE-FORM
A (2n+1) -dimensional Riemannian manifold(M,g) is

called an almost contact manifold if the following results
hold:

(@ @>(X)=-X+7(X)& (1)

(b) ¢5=0

*Corresponding author. E-mail: prof_sky16@yahoo.com.

@ nd=1 )
(b) gX.H)=n(X) ,(c) n@X)=0
g(¢X,¢Y)=g(X,Y)—77(X)77(Y), (3)
(@) g@X.Y)=-g(X,pY) (4)

(o)  g(pX.X)=0

(Vx7kY)=g(V y EY) )

An almost contact metric manifold is called contact metric
manifold if

dn(X.Y)=®(X,Y)=g(X,9Y)

Where ®is called the fundamental two-form of the
manifold. If & is a killing vector field the manifold is called

a k-contact manifold. It is well known that a contact metric
manifold is k-contact if and only ifVXg?:—(pX, for any

vector fieldx on(M,g). An almost contact metric

manifold is Sasakian if and only if
(Vxo)y)=g(X,1)E-n(¥)X , for any vector
fields X,Y .

Blair (1967) introduced the notion of quasi-Sasakian
manifold to unify Sasakian and cosymplectic manifolds.
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Again Olszak (1986) introduced and characterized three-
dimensional quasi-Sasakian manifolds. An almost contact
metric manifold of dimension three is quasi-Sasakian if
and only if

Vi &=—fox (6)

forall XeTM and a function g such that{s =0
As the consequence of (6), we get

(VxnkY) =g(VyEY)=—Lo(¢X.Y) (7)
(Vxn)é)=-Bg(@X,&)=0 (8)

Clearly such a quasi-Sasakian manifold is cosymplectic if
and only if #=0.It is known that for a three-dimensional

quasi-Sasakian manifold the Riemannian curvature
tensor satisfies

R(X,V)E = BHp(n X-n(X)r}
+dB(Y)pX —dB(X)gY 9)

For a (2n+1) -dimensional generalized Sasakian-space-
form, we have

R(X.VZ = fi{e(¥.2)X—g(X,2)Y}
+ {8 (X.02)pY -2 (Y .02)pX +2¢(X 0¥ )pZ }

nCONZ)Y -1V NZ)X
i {+g<x,zm<Y)§—g<Y,Z)n<x)5} (10)

ROCNE=(f= X -nx)v} 1)
REX)Y =(f = flgX.NE-n)X} (12)
$(REXY.) = (f) = f3)8(gX.01) (13)

_ _ 2
S(X.Y)=(2nfy +3f, - f3)8(X.Y)

—(3fy +@n=1) £nX)nY) (15)
0¢=2n(f; - f3)§ 1)

S(@X, oY) = S(X,Y) +2n(f5 = fn(X)n() (17)

The Conformal curvature tensor vanishes in three-
dimensional Riemannian manifold therefore we have

R(X.Y)Z=g(Y,Z)0X - g(X,Z2)QY

+S(Y,Z)X—S(X,Z)Y—g[g(Y,Z)X—g(X,Z)X] (18)

Here S is the ricci tensor and r is the scalar curvature
tensor of the space-forms. It is known that (2006) a
(2n+1)-dimensional (n>1) generalized Sasakian-space-

form is conformally flat if and only if /5 =0.

BASIC RESULTS
Theorem 1

In a three-dimensional generalizedSasakian space forms
M(fy. fo )P (n=1) we get

0X = B+(1—2n>(f -f 3)}(

+[(4n—1>(f1—f3>—ﬂn(X>§

S(X,Y) = B+(l—2n)(f -f 3)}g<x,Y)
: (i)
+[(4n—1)<f1—f3)~ﬂn<xm<¥)

R(X,Y)Z = E+2(1—4n)(f 1-f 3)}

{sv.2)x-g(x.2)v} (iii)
(Y. 2m(X)§
] |me(X.2mNé
+[(4n D(f1-/3) 2} OIDX
-n(Xm2)yy

Proof 1

Substituting Z =¢ in (18) and using (2-b) (11) and (15)
we get

(fy = B O-X)é]=nox —nx)Hoy
+2n(f] = f3n)X = 2n(f] - f3In(X)Y
-2l x-ncxyv]
(19)

Again putting Y =¢in (19) and using (2-b), we have

0X = B—(I—Zn)(frfz)}X

+ {(4n—1)(f1—f3)—ﬂ77(X)§



And

S(X.Y) =B+(l—2n)(.f 1-f 3)}g(X,Y)

+ [(4n—1)(.f1—f3)—5}7(X mE)
2 (21)

By virtue of (19) and (20) the equations18) reduces as
(iii).

This completes the proof of the theorem1.

Corollary 1

A three-dimensional generalized Sasakian space forms
M(fy. 5. 10" L (n=1) with constant function f; ~fyis

a manifolds of constant curvature if and only if the scalar
curvature is 7 =2(4n—1(f; - f3)-

Corollary 2

A three-dimensional generalized Sasakian space
formsM(fl,fZ,fS)Z”“,(n=1) with constant curvature s

flat if and only if f1 = f3.

RICCI-SEMISYMMETRIC THREE-DIMENSIONAL
GENERALIZED SASAKIAN SPACE -FORMS

Theorem 2

A three-dimensional Ricci semi symmetric generalized
Sasakian space forms M(fl,fz,f3)2”+1,(n:1) with

constant function fl —f3 is a manifold of constant

curvature.

Proof 2

We consider three-dimensional generalized Sasakian
space form satisfying the condition

R(X,Y)-S=0 (22)
From (22), it follows that

S(RX,Y)U,V)+SWU,R(X,Y)V =0 23)

Substituting X = £ in (23) and using (12) we get
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an(f; - £) eV .UIMWV )+ (¥ VIRW)]

24)
—2n(f; = RISE VWS Y)n(v)]=0

Let {¢;}, i =1,2,3be an orthonormal basis of the tagent
space at any point of the manifold then putting
Y =U =e;in (24) and taking summation overi ,1<i<3,

we get

g(e.eMVI4n2(f; = f3)% = 2nk(f; = f1=0, (25)
This implies that

T=204n-1)f; - f3), (26)

T
where k = [2—(1—2n)(f1_f3 )}
and gle;.e;)#0

This completes the proof of the theorem 2.

LOCALLY ¢ -SYMMETRICTHREE-DIMENSIONAL
GENERALIZED SASAKIAN SPACE -FORMS

Definition 1

A generalized Sasakian space-forms is said to be
locally ¢ -symmetric if
2(VwR)X.Y)Z =0

®

for all vector fields X,Y,Z and W orthogonal toé. This

notion was introduced by Takahashi (1977) for Sasakian
manifolds.

Theorem 3

A three-dimensional cosymplectic (non cosymplectic)
generalized Sasakian space forms M (f;. f,. f3)*" L. (n=1)
with constant function fi —f3 is locally ¢ —symmetric if
and only if the scalar curvature is constant.

Proof 3

Now differentiating (theorem1, iii) covariantly with respect
to W we get
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(wrNx 1)z = I [ 2)X~g(x.2)7] (27)

_dz(W) [g(y,zmx>§—g<x,zmmﬂ

2 | nWn@X-n(XmZ)Y
(e 2)(Vwm(X)E ]
-¢(X.2)VwmE)E
+g(V.ZM(X)Vyé
-8(X.Z2nX)Vyé
+(Vwm¥nz)X
+V)(Vwm(2)X
~(VwmX)n(2)Y
|-n(X)wm@)Y |

~

+((4n—1)(.f'1—f3)—%

Taking X,Y,Z and W orthogonal to ¢ and using (6,) and
(7), we have from above

(v R)x.¥)z = L)

[¢(v.2)x-g(X,2)Y]
: (28)
~Be(Y.Z)g(oW X )& }

T
An-1)(fi—f3)—
+(( DT ZJ Lﬁg(X,Z)g(pr,Y)f
From (28) it follows that,

_dt(W)

P> (Vw R)X.Y)Z = [sr.2)x-g(x.2)y]  (29)

This completes the proof of the theorem3.

Corollary 3

A three-dimensional Ricci semi symmetric generalized
Sasakian space forms

M(fl,fz,f3)2”+1,(n=1) is locallyp —symmetric if and
only if the scalar curvature is constant.

THREE-DIMENSINAL GENERALIZED SASAKIAN
SPACE FORMS WITH 7-PARALLEL RICI TENSOR

Definition 2

The Ricci tensor S of generalized Sasakian space-forms
is said to be 7 -parallel if it satisfies

(Vi Skex,or)=0.

for all vector fields W,X,andY .The notion of Ricci 77-

parallelity for Sasakian manifolds was introduced by Kon
(1976).

Theorem 4

A three-dimensional generalized Sasakian space

formsM(fl,fz,f3)2”+1,(n=1) has 7 —parallel Ricci tensor.
Then the scalar curvature is constant.

Proof 4

From (21) we get by virtue of (2.-¢) (3), that

S(pX oY) = [;+(1—2n)(f -/ 3>}
{2(X,V)-n(X)(Y))

(30)

Differentiating (30 ) covariantly along W ,we get

dt

W g (x 1)-n(x )]

2
ny)(VwmX } (31)
+n(X)(VwmY

(Vi S )X pY) =

—B+(1—2n)(f1—f3)H

By using (7) in (31) we get

dT(W)[g(X V) -n(X)n)]+ [r+20-2n)(fi—13)]

32
{Be (oW, X )+ B (oW Y)(X )} = 0 (32)

Substituting X =Y =e;in (32) and taking summation
overi, 1<i<3, we get

dt(W)=0,forall Z. (33)

This completes the proof of the theorem4.

Corollary 4

A three-dimensional generalized Sasakian space
formsM(fl,fz,f3)2”+1,(n=1) with 7 —parallel Ricci tensor
is locally ¢ —symmetric.

THREE-DIMENSINAL GENERALIZED SASAKIAN
SPACE FORMS WITH CYCLIC PARALLEL RICI
TENSOR

Gray (1978) introduced two classes of Riemannian
manifolds determine by the covariant derivative of the
Ricci tensor. The first one is class consisting of all
Riemannian manifolds whose Ricci tensor is of Codazzi
tensor, that is

(Vi SXX, )+ (VxS)W,Y)=0

The second one is the class of consisting of all
Riemannian manifold whose Ricci tensor is cyclic



parallel, that is

(VwSXX, ) +(VxS)Y,W)+(VySkw.,x)=0

Theorem 5

A three-dimensional non cosymplectic generalized
Sasakian space forms M (. f,.f;)*"*L.(n=1) with cyclic
parallel Ricci tensor is a manifold of constant curvature if
and only if function fl —f3 is constant.

Proof 5

We suppose that a three-dimensional generalized
Sasakian space form satisfies the cyclic Ricci tensor.
Then we have

(Vi SXX. ) +(Vx S)Y,W)+(VyS)W,X)=0 (34)
Taking covariant derivative of (21) alongW , we obtain

(Vi S)X.Y) = @[g(x,n —n(X)n)]

+[(4n—1)(f1—fﬁ—ﬂ[n(Y)(VWn)(X) (35)

+(X)(Vyym(Y)

By virtue of (7) and (33) Equation (35) take the form

(Vi S)x.Y)= {(4n—l)(f1—f3)—ﬂ

[Bn(Y)g (oW, X) - fn(X)g (W .Y)]

(36)

Taking cyclic permutation of (36) and adding them we get
by virtue of (34), we get

{(4n—1)(f1—f3)—j[ﬁ77(Y )g(pW, X)

- pn(X)g(pW.Y)
+ BnW)g (X, Y)— fn(Y)g(¢X W)

+pnW)g(pY, X) - pn(X)g(gY ,W)]
(37)

Substituting ¥ =W =e;in (37) and taking summation
overi, 1<i<3, we get

7=204n-D(f - f3) (38)

This completes the proof of the theorem.
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Corollary 5

The necessary and sufficient condition for three-
dimensional generalized Sasakian space

forms M (f;. f,.f;)*""L.(n=1) satisfies cyclic condition if
the manifold is cosymplectic.

Corollary 6

A three-dimensional non cosymplectic generalized
Sasakian space-forms M(f}. f,. f3)*"L.(n=1) with cyclic
is Ricci semi symmetric.

THREE-DIMENSINAL GENERALIZED SASAKIAN
SPACE FORMS ADMITTING A  NON-NULL

(v|> #0) CONCIRCULAR VECTOR FIELD

Definition 3

A vector fieldV in generalized Sasakian space-

forms M (f;. f.f;)*".(n=1) is said to be concircular
vector field if it satisfies an equation of the form

Vi V=X, (39)

For allX ,whered is a scalar function. In particular
ifA=0, thenV is parallel.

Theorem 6

If a three-dimensional generalized Sasakian space-
formsM(fl,fZ,f3)2”+l,(n=1) admit a non- null concircular
vector field then the manifold is an Einstein manifold.
Proof 6

Differentiating (39) coraiantly we have

VyVyV =V V V= dUX)Y —dAV)X , (40)

By virtue of Ricci identity we get from (40) that
R(X,Y,V,Z)=dA(X)g(Y,Z)-dA(Y)g(X,Z), (41)
where g(R(X,Y,V)Z)=R'(X,Y,V,Z)

Replacing Z = £ and using (2.-b), we get

R'(X,Y,V,f) =n(R(X,Y)V)
= dAX)n(Y) - dAY)N(X)
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Taking inner product of (theorem 1.-iii) withé and
replacing Z =V , we obtain

g Vm(x)
R(X,Y)V)=|1-4 - 43
R, YWV) = [( n><f1f3>]{_g(x’v)n(y)} (43)
From (42) and (43), we get
dAX)N(Y) - dAY)n(X)
=[1-4n)( £ 1~ 1 @ VInX)-g(xX . VIn)} (44)

Subsisting X =¢X and Y =¢in (44) and using (2. a, c),
we get

dApx) = =[a-4n)( £ 1-f D]g(ex,V) (45)
Again putting X = ¢X in (45) and using (2.), we obtain

—dA(X)+1(X)dA(E) =
[=4n)(f 1= f D) X, V)-nX)mv)y, (46)

Multiplying both sides of (46) by ¢g(X,V), we get

—dAUX)g(X,V)+7(X)dAE)g(X,V) =
[=4m)( £ 1= f 3 e (X, V)=n(X)nV)}e(X,V), (47)

By virtue of (11) and (41), we have
dA(X)g(Y,V)=dA(Y)g(X,V), (48)

Multiplying both of (48) by n(X)#0for allX and
puttingY = &, we obtain that

dAX mVIn(X)=dA(&E)g(X,VIn(X) (49)
By virtue of (46) and (49) we get

(i) dAX)=[1-4n)(f1-f p]ex,V) (50)
forall X or

(ii) g(X.V)=n(X)nV)
assumption]

for al X [contradicts our

From (41) and (50-i), we have

R(X,Y,V,Z) = [(1=4n)(f 1~ 3)]

(51)
{g(X,V)g(¥,Z)—g(Y,V)g(X,2)}

Substituting X =Z=e, ,i=123in (51) and taking
summation fori, 1<i <3, we get
S v)=[20-4n)( f 1-f 3]e.V), (52)

This completes the proof of the theorem 6.
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