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This paper studies the asymptotic behavior of solutions of the second-order nonlinear delay differential

equations with impulses:

(r(t)x’(t))’—p(t)x’(t)+iqi(t)x(t—q)+f(t)=0, t#t,

x(t) - x(t,) =axt).x t)-x ¢)=hx () kOz'. and some sufficient conditions are obtained.
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INTRODUCTION

Liu and Shen (1999) studied the asymptotic behavior of
solution of the forced nonlinear neutral differential
equation with impulses:

[X(t) - px(t-7)] +ZLgM) f(x(t—-0))=ht), t#t,

x(t7) = x(t,) = b, x(t,), kOZ".

Zhao and Yan (1996) the authors researched the
effective sufficient conditions for the asymptotic stability
of the trivial solution of impulsive delay differential
equation:

X )+, pt)x(t-7)=0t#t,

Xt,) —xt,) =Xt ). k=12---

In this paper, we discuss the asymptotic behavior of a
class of second-order nonlinear delay differential
equation with impulses. The equation is:
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(rx (1) - p(t)X'(t)’ri a(tx(t-o)+ f()=0, t#t,

1)
X(te) —x(t) = akx(tk)1xl(tk+) _X'(tk) = bKX'(tk) kOZ".
2),
where 0<t, <t <t,<---,lim _, t =+ , and
a.,b,k=212,-- areconstant.
x'(t,) =,!irp— X(t, +h|f)‘_X(tk)’ X (t) =,!irp X(t, +h|?‘—X(t,:)’k =12, .

r(®), PO.QO.HOOCI0),R)i =12:-,10< g <0, <-- <,

Let PC, denotes the set of

function @:[t, — 0,,,t,] - R, which is continuous in the
set  [t,—o,,t,]\{t.:k=12--} and may have
discontinuities of the first kind and is continuous from left
at the points t, situated in the interval (t, — o,,t,]. For

any t,=0,¢0 PCtO,

solution of (1) and (2) and satisfying the initial value
condition:

a function X is said to be a



X(O) =) X)X X O=¢ O.X ) =%, 00 =0,k (5

in the interval [t,—0,,) , if
satisfies (3) and

(i) for tO(t,0)t#t, t£t, +0,i=12--,nk=12---x({t),X (t) is
continuously differential and satisfies (1);

(i) for t, O[ty, ), X(t)),x (t7),x(t;)and x (t;) exist,

x(t7) = x(t, ), x (t;) =x (t,) and satisfies (2).

X:[t,—0,,0) - R

Because (1) can be transformed to one-order differential
equations with impulses, so the existence and sole of

solutions of (1) can be deduced by Wen and Chen (1999).

A solution of (1) and (2) is called eventually positive
(negative) if it is positive (negative) for all t sufficiently
large, and it is called oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is called
nonoscillatory.

MAIN LEMMAS

Throughout this paper, we assume that the following
conditions hold:

H) r@)=r, fjo pt)dt< p,qt)<q.i =12,--,nr,p,g OR"
(H.) for all t[J[0,), the intergration
H(t) = Lw f(s)ds converges; Z; b’ <o where

b =max{h,,0};

1 m

) 1m S ][] (@20 0] ool Bagai=+e.

m=0 k=m+1 [=0

(Ko [] s+ D7 Eenpl- [ 2 a1,

(J+n)

Lemma l

Suppose that X(t) is a solution of equations (1) and (2),
and there exists T =t, such that X(t)>0,t=T, If

X (t)>0,x (t)>0

(H;) hold, then where

to,,t., 0. k=12

Proof

First, we prove X (t,) >0, for all t, >T. Otherwise,
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there exists some | such that t, ZT,X'('[J-) <0, then

X'(t;r) =(1+ bj)x'(tj)from (1), we get

Rs)

0 Veel-[ £l =S - a)exp[J" os] f(ept| B3 LONE

=3 a0t -0)-fQlert-] Bday<o

is decreasing on

Hence, r(t)x (t) eXp[‘jtt féss)) ds]

( ]+1] and

r(tjﬂ)x’(tj+1>e<p[—jtj‘*1%ob] <rt)X () <1t +DX ().

e[ E g

b, +1
X (t.0) < ( )(M)

on (tj+11tj+2]1

(]+2) ( i1 ) (tj+1) X'(tjﬂ)e(p[‘l'tﬂ p(S) ]

((t,0) 9

(]+l) : ts2 p(S)
<b b .
=0 0 ® D5 (tJﬂ) e, g™
=040, 4D X )ex [J”p(s) )

rt;.2)

By induction, we have, forall n= 2.

x() p[j'*”f((‘? ),

X (tun) l_0|( e

' t
Because r(t)X (t)exp[—L %ds] is decreasing on
]

(tj!tj+1] SO,
r(t;)

< (b, +1
x (1)< (b, +1) )

¢ p(s)
x'(t)) xp[LJ e dsl, tO(t;,t,,]
Integrating the above inequality from S to t, we have

Xt) <9+ +Dr(, X (t; )r ) rf((;)ds]d,l, t, <s<ts<t,,

St

Let t - t. i

T we get
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B OO e[ o

By induction, we get, for all N

)= @ ) O XS ] [ 00, ] s ot i

because of X(t) >0, X'(t]-) <O(t; =T), itis contraction

to the conditon (H,). Hence, X (t)>0 for all

>T and r(t)x (t) exp[—f_ f((;) ds] is decreasing on

(t;,t;.] thus,
X Oogl-] ! p(s)oa 216, (.)o0l-{ p‘s)oa >
Therefore, X' (t) ZO,t D(tk,tk+l] . The proof is complete.

Theorem 1

Let (H,)—(H;) hold. Suppose that

Yat+a)z0, [y q(sto)ds=e, @
i=1 i=1

and there exists constant A >0 such that for sufficiently
large t

Cq(s+to)ds<sA<r+p.

where r0q].q'®)=madq(®).d.q ¢)=mad—q(t).,d. Then

every nonoscillatory solution of (1) and (2) tends to zero
as t - oo,

Proof

Choose a positive integer N such that (5) holds for
t=>t, and S o bi<r-p-A. let X(t) bea non-

oscillatory solution of (1) and (2). We will assume that
X(t) is eventually positive, the case where X(t)

eventually negative is similar and omitted. Let X(t) >0

for t =1, By Lemma 1, we know that
X (t)>0, for t>t,. Define

y(t) =r)x ) - j p(s)x (s)ds— Zj Q(s+o)x(9dsH ()= > X ().

ty <t st

(6)
Then for t#t t#t +0,i=12--,nk=12.-
y'(t):—zn: g(t-r+og)x(t-r) @)

and
y(t) - y(t) = (b —-b)x () <0,k =N,N+1,---.

Thus, Y(t)
L=Ilim,__ y(t), weclaimthat LOR.

is non-increasing on [ty,®) . Set

Otherwise, L =—c0, then X (t) must be unbounded
by virtue of (H,) and (4). Hence, it is possible to
choose t”>t, +0, such that y(t”)+H(t”) <0 and
X (t%) =max{x (t) :t, <t<t%}. Thus, we have:

0> y(t)+H(t"
2r(t)x (ﬂj P(9X ()ds— Zj Q(S+U)X(S)d5 Z bex ()

It
EX'(ﬂ(r-p-/\-thbQ
k=N
which is a contradiction and so L[ R. By integrating

both sides of (7) from t to
t, we have:

. Y ats-r-ax(s-nds=-{ y (55

=yt)+ D [y =yt - yt) < y(ty) - L.

ty <t st
which, together with 4 implies that
x(t) OL([ty,©),R) and so lim __x()=0. The

proof is then complete.



Lemma 2

Let X(t) be an oscillatory solution of equation (1) and

(2), suppose that there exists some T =t,, if (H,)
hold, then | X (t) BIX(t) LIX () I X(®) ],
t( Gl k=12

where

Proof

From the result of Lemma 1, we know that, if X(t) >0
then, X’(tk) >0,X'(t) >0, where, tO(t,,t,,]. we wil
assume that X(t) >0 we have
X (t) = x(t),x (t) = x(t),tO(t,,t.,], the case x(t)
is negative is similar and omitted. From Lemma 1, we

have X (t,) >0,x (t) >0,tO(t,,t,.,], then the x(t) is
increased. We also obtained

when

rOxOepl-; 23 asll <lrx O expl=] H 3 as) <0

Hence, I (t)X(t)expl _[ f((:)) is decreasing on
(tj1 j+1] and

( )X(t) p[_J“ll p(s)d]

< (b,
x(tj.,) < (b; +1) T (s)

for all N, we obtain

X(t;.0) < H(b“k i )) el 7Y p(S)

By the condition (H,), we get X(t.
a contraction. The proof is complete.

) <X(t;), which is

j+n

Theorem 2

Let (H,),(H,) and (H,) holds. Suppose that

2 b <, (®)
k=1

and there exists positive constant A and r[J(0,0,]
such that
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limsup®+limsupQ,(t)sa<r-2p, ©
Zn:qi(HUi)#O, for large t, (10)
i=1
where
LI,
Q=X ], als+ads (12)
i=

Q=X [ sntr-a)as+a)ds @

Then every oscillatory solution (1) and (2) tends to zero
as t - oo,

Proof

Let X(t) be an oscillatory solution of (1) and (2). We first
show that X (t) and X(t) are bounded. Otherwise,

X (t) is unbounded which implies that there exists
positive integer N such that

lim, ., sup, e |X ()= and

t o0

sup |x (s)[Fsup [x (s)], t=t,+ao,
ty +o, <sst ty Ssst
and
S -2 -
k=N
Set

YO=1OX O~ pOX (9= X[ a(s+a)xIs-HO- 3 X &),

ty <test

where holds. For

by =max{h,0}. Then (7)

t=t, +0,, using Lemma 2 we have

IYORrIX©O1- DIX(t)I-Zf C1(S+U)I><(S)IdS-IH(t)I-ZIbKX (]

tystest

2(r-p)|x (t)I-(Qz(t)+ZItL Dsup (X (9)-IH®)|

tyssst

which implies
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sup IY(S)IE(f—p—‘SJsz(t)—iMI)tSUDIX'(S)I— sup [H(s)|.

ty +0, Ssst N Ssst ySsst ty+o,Ssst

(14)
Hence, limsup|y(t)|=c. From (7) we notice that

t> o0
y () is
& >t +20, such that |y(&)|= sup |y(s)| and

ty +opssst
y (£')=0. From (7) and (10), we get X(§ -r)=0
by Lemma 2. We know that X (t) is oscillatory, hence,
a £>& +r such that x (§-r)=0.
Integrating both sides of (7) from é—r to &, we obtain

oscillatory, we see that there is a

there is

£
Y(é)=y(¢-r) -J.; 2. 4(s=r+0))x(s=r)ds

=[x (9ds+ 3 [T a(s+o)xPds+HE-N- Y Bx ()

tystesé-r

‘f;., 3 q(s-r+0)x(s-r)ds

=7 pox @ds+HE-N-3 [ atsra)xe- X bx ),

tyste<é-r

which implies that

)

Iy(f)IS(p+Q1(<‘—r)+kZ I b I)‘SSUSE{IX'(S)I+IH(<‘—r)I-
(15)

From (14) and (15), we have

-r +2P+(Q1(3-r)+‘SQJ£{Q2(S))+2§, 1B 1+( iume (9+IH(E-T) I)(‘SSUSEgIX'(S) h7=o0

Let & — o and noting that limsup | X (S)|=c, we

§o0 yss<E

have _r+2p+“2§|bk|20, by (9), which
k=N

contradicts (13) and so X (t) is bounded. By Lemma 2,
we know that X(t) is bounded.

Next we will prove that 4 =limsup|x (t)|=0. To

to o0

this end, we define

2t) =r(t)x () —j: D(S)X'(S)CS’fZJ:T‘ q(s+a)X(Qd+HE)+ hx )
(16)

then Zz(t) is bounded and for sufficiently large t,

201X 1P O1-Q,(1) sup |x'(9)=IHB]-Y b (1)

thus, by (H,) and (8)

B=limsuplz®) k- pu-ximsupQ.

tooo too

=dr - p-limsupQ, ).

tom a7
on the other hand, we have by (16) for
t#t, t#t, +o,k=12---i=12--,
z (t)=- q(t-r+o)xt-r) (18)
i=1

From this we see that Z (t) is oscillatory. Hence there

exists a sequence (&} such that

lim, . & =owlim__|2(&)=32(&)=0 and
)(fn']—r) =Qn=1,2:-- similar to (15) we can obtain by (16)
and (18), thereis a ¢, > En;, such that

IZ(fm)IS(p’le(fm‘f)){ sup X (9 I+IH(EG N1+ X X)),

- -20, 555y N

which implies by (8) and (H,) that

A< p+limsupQ.

tooo

This, together with (17), yields

U—1 +2p+limsup Q,(t) +limsup Q,(t)] = O.

t > o t - o
Therefore, by (9) we have
HU(=T +2p+1) 20,
.. X (t)=0.

Hence we can obtain that lim,__ X(t) =0. Thus, the
proof is completed.

which implies £ =0 by (9) and so, lim
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