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INTRODUCTION 
  
We give a solution to a problem about the L

2
 

boundedness of certain oscillatory integral operators, 
Ricci and Stein (1987), Stein and Weiss (1971). Which 
was proposed by Phong and Stein (1987),  

The operators we study here are of the form 
 

          (1) 
 
where (Bx, y) is a real bilinear form, and rank(B) = k, K is 
a function which is smooth away from the origin, 
homogeneous of degree – (n – k). For operators, 
 

                 (2) 
 

where K is  away from the origin, coincides with a 

homogeneous function of degree -  for large , with a 

homogeneous function of degree – n for small , and 
satisfies the cancellation condition. 
 

                                             (3) 
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for  small, Phong and Stein showed that if  - 
rank(B), then these operators are bounded on L

2
(R

n
). 

Clearly, the kernel functions are homogeneous of critical 

degree that is,  - rank(B). In fact, when rank(B) = 

0
(  

, these operators are simply the classical 
singular integral operators, by the theorem of Calderon 
and Zygmund, they are bounded on L

2
 if and only if 

 

   ( 4 ) 
 
In the other extreme case, one has rank(B) = n, namely 
the bilinear form has full rank, and K is homogeneous of 
degree 0. We notice that as a special case, when K is a 
constant, the operator becomes the Fourier Theorem, 
which is known to be bounded on L

2
. Furthermore, Phong 

and Stein showed that, for general function K which is 
homogeneous of degree 0, the operator is still bounded 
on L

2
. Determine the L

2
 boundedness of those operators, 

when 0 < rank(B) < n. Their solution is as follows. 
 
 
Theorem 1 
 
(i) If Range(B) = Range(B

t
), where B

t
 is the transpose of 

B, and Range  denotes the orthogonal complement 
of Range(B), then the necessary and  sufficient  condition 



 

 

 
 
 
 

for T to be bounded on L
2
(R

n
) is that , as a 

function on the space Range , has vanishing mean 
value on the unit sphere. 

(ii) If Range , the, for all K which is 
smooth away from the origin and homogeneous of 
degree – (n – k), T is a bounded operator on L

2
(R

n
). The 

fundamental difference can be best seen in the following 
two operators on R

2
. 

 

, 
 

 
  
Now, to explain the condition given in Theorem 1 

that , has vanishing mean value on the unit 

sphere, we let E = Range , and L be a linear 
transformation which maps R

n – k
 to E, the (n – k) 

dimensional subspace of R
n
, that is, L(R

n-k
 ) = E. The 

definition for K|E to have vanishing mean value is that K 
satisfies the following 
 

                    (5) 
 
Since K is homogeneous of degree – (n – k), it can be 
checked that this definition does not depend on the 
choice of L. When the matrix associated with the bilinear 
form B is of the form 
 

                                                                  (6) 
 

where A1 is a nonsingular k × k real matrix, B1 is k × (n – 
k) real matrix, we can see that condition (5) is exactly the 
following 
 

           (7) 
 
The following simple lemma says that any matrix B which 
is of rank k can be normalized as in Equation (6). 
 
 
Lemma 1 
 

Suppose that B is a n × n real matrix, rank(B) = k. Then 

there exists a n × n nonsingular matrix P such that; 
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where A1 is a k × k matrix,  
 

 
 
Now Yibiao (1991) prove Theorem 1 in the model case. 
In fact, let 
 

 
 

where K1(x) = K(Px), P is the matrix in Lemma 1. Then 
we get Tf(Px) = T1(f1)(x) and f1(x) = f(Px). The L

2
 

boundedness of T is therefore equivalent to that of T1. 
But now the matrix in the bilinear form in T1 is of the form 
 

 
 

The condition Range(B) = Range(B
t
) (Range(B) ≠ 

Range(B
t
)) is now simply B1 = 0 (B1 ≠ 0). Now we will 

assume in the following that all the bilinear forms are as 
in (6). 
 
 

Theorem 2 
 

Let x = (x', x") denote a point in R
n
, where  

 

 , 
 

 

        (8) 
 

Where A1 is a k × k nonsingular matrix and B1 is an 

arbitrary real  and K satisfies (7); 
then the operator T is bounded on L

2
(R

n
) to itself. 

 
 

Lemma 2 
 

Suppose that K is given as above. Let  
 

          (9) 
 
That is, K1 is the Fourier Transform of K in the x" 
variables. Then for any 
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                            (10) 
 

where  is a constant independent of x". 
 
 
Proof 
 

(i) For we have 
 

  
 

 
 

(ii) For = 0, we need to prove that 
 

 
 
where C is independent of x', x". 
 

When  is homogeneous of degree – (n 
– k) and has vanishing mean value in x", its Fourier 
Transform is bounded; that is, 
 

                                (11) 
 
for some absolute constant C. Now we assume that  
 

 
 

 

             

             
 
By (11), we have 
 

 

 
 
 
 
Notice that, 
 

 
 

Let  be a  function which is radial, and satisfies 
 

 
  
Breaking the integral into two parts, we get 
 

 

 

 
 
The second integral is 
 

 
 
We also have 
 

 
 
Similarly, we can get the estimate 
 

 
 

This concludes the proof of the lemma. Now, Yibiao 
(1991) prove Theorem 2. In (8), taking Fourier Transform 
in the x" variables, we get 
 

 

 

 
 

Where 
 

 



 

 

 
 
 
 
Clearly, we have 
 

 
 
 

RESULTS 
 

Theorem 3 
 

If . For  
 

 
 

where A1 is a non singular matrix. Ahmed (2009). 
Show that; 
 

(i)  for 

suitable , and 

(ii)  

(iii) If S is a contraction then  
 

We define the operator S on by 
 

                                                                                   (12) 
 

for  and x’’ is arbitrary in R
n-k

.  
 

Pan (1991) prove that 
 

                                     (13) 
 

for some constant C which is independent of x’’, then, for  
 

, 
 

 
 

 
 

By Plancherel’s Theorem 
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He has reduced the study of the operator T on L

2
(R

n
) to 

the study of an operator S on L
2
(R

k
). For  

 

, write 
 

 

 
 

Where 
 

 
 

and 
 

 
 

By Lemma 2, , and we get 

 which implies 
the boundedness of S2 on L

2
(R

k
). Now Yibiao (1991) 

proved that 
 

  (14) 
 

Let 
 

 
 

So we have that  
 
But 
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Let  
 

We claim that 
 

                                                (15) 
 

for N > k, and  
 

                                               (16) 
 

The constants CN and C do not depend on  or y. To 

prove this, we let  be the inverse 

matrix of A1, and  
 

So  Integrating by parts, we 
get 
 

 
 

 
 

if N > k, which proves (15). 
To prove (16), we break the integral into two parts, 
 

 

 
= I1 + I2. 
 

By Lemma 2. 
 

 
 

To estimate I2, take N > k, and use integration by parts, 
 

 

 
 
 
 
In light of (15), we need only to be concerned with those 

x which are in  For , we 

must have  and  Using 
integration by parts, 
 

 
 

 
 

Those terms with are bounded by 
 

. 
 

For terms with , we have 
 

 
 
for N > k. This proves (16). 
 

Now take another function  
 

where  for  
 

and supp  
 

We write F(S1 f) as the sum of two parts: 
 

F(S1 f) =   
 
and  
 

 
 

 
 

By (15), the kernel of S3 is bounded by 



 

 

 
 
 
 

 
 

So it is obvious that S3 is bounded from L
2
(R

k
) to itself. In 

order to study the operator S4, we introduce another 
operator S5, defined by 
 

 
 

Once we prove that 
 

                         (17) 
 
We can get the estimate for S4 as follows. 
 

Let  
 

 
 
We have 
 

 
 

So it is easily seen that supp S4  
Where 
 

 
 
and we can see that 
 

 
 
Write 
  

 
 

 
 

 
 

Applying (16) 
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                   (18) 
 

By (17) and (18) we get 
 

                     (19) 
 

Uniformly in  Now 
 

 
 

 
 

 
 

By (19) we obtain 
 

 
 

Now we prove (17), that is, the boundedness of S5. 
Observe that 
 

 
 

where  is the determinant of A1. Let 
 

 
 

We have  
 

Now let  
 

By the definition, we have 
 

 

 

                 (20) 
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Where the operator S6 is defined by 
 

 
 

If we can prove that 
 

,                                  (21) 
 
Then by (20) we would have 
 

 
  

Since  To prove (21), we shall discuss the 
following two cases separately. 
 
(i) If B1 = 0, we have 
 

 
 

By our estimates on K1, one gets 
 

 
 
So by Plancherel’s theorem, we see that (21) holds. 

(ii) If , then there exists two nonsingular matrices 

M and N; M is k × k, N is (n – k) × (n – k), such that 
 

 
 
where we have assumed that rank (B1) = m, 

 
 
Write S6f (x) as 
 

 
 

Where  is nonsingular. We have  
 

 
 
and 

 
 
 
 

 
 

 
 
Let 
 

 
 
Clearly, we have 
 

 
 
and 
 

 
 
As 
 

 
 

for some m such that  we have 
 

  
 

 
 

Since n – k > n – k – m 
 

 
 

 
 

We recall that the operator on L
2
(R

1
) 

 

 
 
is the Hilbert integral operator, and it is well known that 
this operator is bounded from L

2
 to itself (Phong and 

Stein, 1986), (Pan, 1989). By induction we have 



 

 

 
 
 
 

 
 

 
 

Integrating with respect to  we get 
 

 
 

Which implies that  So (21) 
is proven. 
 

 
Proof of the main result 
 

(i) For , the iterated sequence will give 
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Thus, generally  
 

 
 
(ii) In (i) taking the supremum over all  
 
 

 we can find  
 

  
 

(iii) Letting  
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