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In the present communication entropy optimization principles namely maximum entropy principle and 
minimum cross entropy principle are defined and a critical approach of parameter estimation methods 
using entropy optimization methods is described in brief. Maximum entropy principle and its applications in 

deriving other known methods in parameter estimation are discussed. The relation between maximum likelihood 
estimation and maximum entropy principle has been derived. The relation between minimum divergence 
information principle and other classical method minimum Chi-square is studied. A comparative study of Fisher’s 

measure of information and minimum divergence measure is made. Equivalence of classical parameter 
estimation methods and information theoretic methods is studied. An application for estimation of 
parameter estimation when interval proportions are given is discussed with a numerical example. 
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INTRODUCTION 
 
Shannon (1948) introduced the term ‘entropy’ which 
measures the uncertainty contained in a message. Thus 
the information contained in a message can be measured 
by the uncertainty removed by it. Shannon defined a 
function H(p1, p2,….pn) satisfying the properties intuitively 
expected of a measure of uncertainty like continuity, 
symmetry, additivity, being maximum when all outcomes 
are equally alike and being minimum when one of the 
outcomes is bound to occur. He proved that the only 
function which satisfies all these requirements was  
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Equation (1) was called Shannon’s entropy and is non-
negative. Suppose that we know nothing about pi’s 
except that: 
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Then according to Laplace’s principle of insufficient 
reasons which states that in the absence of any 
constraint except the natural constraints  
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we should choose the uniform distribution that is, 

 
p1 = p2 = ………= pn = 1/n                                              (3) 
 

There are infinite numbers of probability distributions 
which are consistent with Equation (2). Out of these 
Equation (3), viz., uniform distribution has maximum 
entropy. Let us suppose that we are given additional 
piece of information in the form of constraints: 
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The probability distributions consistent with Equation (2) 
may not be consistent with Equation (4) and 
consequently, the maximum value of entropy of the 
distributions consistent with Equation (2) and (4) will be 
less than or equal to log n and the minimum value of this 
will be non-negative. Janyes (1957) generalized 
Laplace’s principle to a more general situation and 
suggested that we should choose pi ‘s so as to maximize 
S subject to the constraints (2) and (4). He called it the 
maximum entropy principle (MEP). According to this 
principle, we should use all the information we have and 
scrupulously avoid any information we do not have, 
Kapur (1989) has studied the application of maximum 
entropy principle in science and engineering. 

The concept of the directed divergence of a probability 
distribution P from another probability distribution Q was 
given by Kullback and Leibler (1951) who introduced the 
following measure: 
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This is also called as measure of “distance”, 
“discrepancy” or “discrimination” of one distribution from 
the other and D(P:Q) is always non-negative. In view of 
the fact that there is zero discrepancy if two distributions 
are identical, we require: D (P:Q) = 0 if P =  Q. 
 
If P = (p1, p2 , …..,pn) is a given distribution and U = 

( )1,....,1,1
nnn

 is the uniform distribution , then the 

directed divergence of P from U, is given by  
 
D (P:U) = log n – S(P)                                                    (6) 
  
Thus, maximizing S (P) under certain constraints is 
equivalent to minimizing D (P:Q) under the same 
constraints. Hence, the principle of maximum entropy 
requires us to choose a distribution which is as close to 
the uniform distribution as possible subject to the given 
constraints. This is a new insight into the concept of 
maximum entropy which is provided by Kullback-Leibler’s 
measure of directed divergence.  Let Q = (q1, q2,……,qn) be 
a priori distribution of a distribution P = (p1,p2,…..,pn) 
obtained on the basis of previous experience, intuition or 
some theory. In the presence of constraints, however, we 
would like to choose P which satisfies all the given 
constraints and should be as close to Q as possible. 
Thus, we choose P which minimize D (P:Q) subject to the 
given constraints. Since D (P: Q) is a measure of directed 
divergence of P from Q or of discrimination of information 
(MDIP). When Q = U, this includes the principle of 
maximum entropy as a special case. To minimize D (P:Q) 
subject to some linear constraints, we also require that D 
(P:Q) is a convex function of P and Q so that its local 
minimum should also be its global minimum. For the 
distribution of continuous random  variable, MDI  principle  

 
 
 
 
given by Kullback and Leibler (1951) requires us to 
minimize: 
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Let f(x, ) be the probability density function (pdf) of a 
random variable X, where functional form of pdf is known 

except for the parameter . This parameter  can be a 
scalar or a vector. One of the most important tasks in 

statistical inference is of estimating  on basis of a 
random sample (x1, x2,.......,xn) drawn from the 
population. The classical statistical methods of parameter 
estimation are: methods of moments, least squares, 
minimum chi-square, maximum likelihood, minimum 
distance and a recent one called method of probability 
weighted moment. Amongst all methods, Fisher’s (1921) 
method of maximum likelihood is widely accepted and is 
considered as one of the best method for parameter 
estimation. 

Akaike’s (1971) work paved the way for the information 
theoretic approach in parameter estimation.  Lind and 
Solana (1988) method is based on the principle of least 
information. Kapur (1989) compared the Gauss’ method 
of estimation with a method based on the principle of 
maximum entropy. 

In the present paper, we present a critical appraisal of 
parameter estimation methods using entropy optimization 
principles and compare these with classical methods 
such as method of moments and method of maximum 
likelihood. The basic principle is that, subject to the 

information available we should choose  in such a way 
that the entropy is as large as possible or the distribution 
as nearly uniform as possible. 
 
 

MAXIMUM ENTROPY PRINCIPLE IN PARAMETER 
ESTIMATION AND ITS APPLICATION  
 

Let us consider f(x,) as the given functional form of pdf 

and we have to estimate the parameter  for a given 
random sample x1, x2,........ xn from the population. Fisher 
(1921) suggested the method of maximum likelihood that 

is,  should be chosen such that it maximizes the 
likelihood function: 
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or log L (x, ) =



n

i 1
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Now  a  probability  distribution  can  be  formed such that 
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where f (xi, ) is the value of pdf at X = xi. For making pi's 

as equal as possible, we choose parameter  such that it 
maximizes Burg’s (1972) measure of entropy for this 
distribution. However, it may be noted that we can use 
any other entropy to measure the uncertainty contained 
in the probability distribution of a random variable in an 
experiment. Burg’s entropy measure for probability 
distribution  
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Substituting (10) in (11), we have 
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For maximizing Equation (12) with respect to , we put 

the first derivative of Equation (12) with respect to  equal 
to zero and thus we get 
   

               (13) 
   
But Fisher’s method of maximum likelihood requires to 
solve 
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Since
1

n

i

 f (xi, ) is not independent of , therefore 

Equation (13) and (14) will give different estimates of . 
Hence Equation (13) is different from Fisher’s method of 
maximum likelihood estimation (MLE). 
 
 
Remarks 
 

It may be noted f(x1, ), f(x2, ),........, f(xn, ) are not 
probabilities. Actually, these are the values of pdf at 
x1,x2,....., xn. Their sum is not necessarily unity or 

independent of  as x1, x2,......, xn represents only a 
random sample and not all the values which the variate X 
can  take.  We  have  formed   probability   distribution   of  
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Equation (10) from these values on driving by the sum of 
the values of PDF. 
 
 

Relation between maximum likelihood estimation 
(MLE) and maximum entropy principle (MEP)   
 

Let x1, x2,......, xn be a random sample from a population 

with pdf  f(x, ). We choose or estimate parameter  in 
terms of the sample values such that it maximizes 
likelihood function. But according to MEP, we choose the 

value of  such that the uncertainty that remains after the 
sample values are known as large as possible or, we can 
say that the entropy of the sample itself has to be a 
minimum. Thus, the Shannon’s (1948) entropy is given 
by 
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Or 
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Where L(x, ) is the maximum likelihood function given 

by Equation (8). Thus, we choose   such that it 

minimizes the entropy of the sample or maximizes the 
likelihood function. It implies that maximum entropy 
principle leads to the principle of maximum likelihood. 

Now let us consider ( , )x  as the cumulative 

distribution function of the second distribution in case of 

minimum cross entropy principle. We shall choose   

such that for the chosen value of   it minimizes the 

entropy of the sample .The distribution function f(x,  ) is 

as close as possible to the distribution function 
determined by the random sample x1, x2,......, xn. 
Thus, minimum discrimination information statistic (refer 
to Kumar (2001) is given by: 
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Equation (8) attains minimum when its second part is 

maximum. Consequently, we choose   which can 

maximize: 
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Thus, both maximum entropy and minimum cross entropy 
principles lead to maximum likelihood principle given by 
Fisher (1921). 

 
 
MINIMUM DIVERGENCE INFORMATION PRINCIPLE 
IN PARAMETER ESTIMATION AND APPLICATIONS 

 
It is very interesting and useful to study the relation 
between traditional methods and minimum divergence 
information principle in parameter estimation 

 
 
Relation between measures of minimum divergence 
information and minimum chi-square 

  
Let us consider that there are n classes and 

1, 2 ,,......., nNp Np Np  be the expected frequencies on the 

basis of parameter   in these classes. Further, we 

consider that 
1, 2 ,,......., nNq Nq Nq  are the observed frequencies 

in these n classes. Then we choose   so as to minimize 

divergence measure D (P:Q) or D (Q:P). 

Let  qi = pi + i  ,       

where i is very small 

 

Then 
1

0
n

i

i




 ,      since 
1 1

1
n n

i i

i i

p q
 

  
 

 

We have, D (P: Q) = 
1

log
n

i
i

i i

p
p

q

                       (19) 

 
 
 
      

1

1

2 2

1 1

log
(1 / )

log(1 / )

( )1 1

2 2

n
i

i

i i i i

n

i i

i

n n
i i i

i ii i

p
p

p p

p p

q p

p p











 




  


 





 

                                    (20) 

 
Next, similarly we have 
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It may be pointed here that Equation (20) corresponds to 
modified chi-square while Equation (21) is chi-square 
statistic. Thus, from Equations (20) and (21) we can infer 

that   is chosen to minimize 
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where Oi and Ei are observed and expected frequencies 
in the ith class. 
 
 
Fisher’s measure of information (FMI) and minimum 
divergence measure 
 

Let f(x,  ) = f and f (x,  +Δ ) = g,  be the two density 

functions, then divergence measure of f from g is given 
by 
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When 0  , we have 
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Equations (22) and (23) together gives 
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In Equation (24) is called Fisher's information measure. It 
can be noted Fisher’s measure of information measures 
the power of discrimination or divergence between two 
density functions ( , )f x   and ( , )f x   .Thus, greater the 

value of FMI, greater is the power of discrimination or it 

can be said that it gives us more information about . 

Fisher’s measure of information is different in many 
aspects from Shannon’s measure of information and 
Kullback-Leibler’s measure of divergence. Shannon’s 
measure of information gives us information about the 
probability density functions while FMI gives information 
about the estimators of population parameters. When 
interval is finite FMI measures the directed divergence of 

( , )f x  from ( , )f x   , while Shannon’s measure gives 

the directed divergence of f (x,  ) from uniform density 

function.  
Fisher’s measure of information gives directed 

divergence of f (x,  ) from density function depending on 

both f and  , while Shannon's measure gives the 

directed divergence of f(x,  ) from a density function 

which is independent of both f and  . The Kullback-

Leibler measure of directed divergence can discriminate 

between any two density functions f(x, ) and g(x,  ) 

while FMI discriminate between f(x,  ) and 

( , )f x   only. Thus, these measures have different 

purposes, to decide the relative merits of information 
measures difficulty arises when the problems of 
discriminate are viewed in isolation.  

In generalized model, these measures are considered 
in relation with the probability distributions and their 
moments. 
 
 
EQUIVALENCE OF CLASSICAL AND INFORMATION 
THEORETIC METHODS OF PARAMETER 
ESTIMATION 
 
Some    classical   statistical   methods   and   information  
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theoretic methods in parameter estimation have 
equivalence which we discuss thus. 
 
 
Entropy optimization Principle and Laplace’s 
principle of insufficient          Reasoning 
 
If the constraints are absent in Jaynes (1957), MEP, then 
maximization of uncertainty gives the uniform distribution. 
Thus, the Laplace principle is a special case of MEP. 
However, Hadgiwas (1981) has shown that the MEP and 
the MDI principles can be deduced from the principle of 
insufficient reasoning and thus, MEP and MDI can be 
regarded as the special case of Laplace’s principle, while 
Laplace’s principle can be regarded as a particular case 
of MDI principle when there are no constraints and the 
prior distribution is uniform. 
 
 
Minimum discrimination information and maximum 
likelihood principle 
 
A correspondence between the MDI and Fisher’s 
maximum likelihood principle has been established. 
Suppose we are given g(x) then we find f(x) which 
minimizes 
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and satisfies the given constraints or we may be given 
f(x) and have to find g(x) so that we have to maximize 
 

X

 (log g(x)) f(x) dx = 

X

  log g(x) df(x),         (26) 

 
where F(x) is the cumulative distribution function of X.  
We have shown that maximization of Equation (26) 
corresponds to maximization of the likelihood function. 
Thus, maximum likelihood principle can be regarded as a 
special case of MDI principle. 

 
 
Entropy optimization principle and Gauss’s principle 
of minimum interdependence (PMI) 
 
If the probability distributions of the individual random 
variables are included in the set of constraints, as the 
marginal probability distributions of the joint probability 
distribution, the PMI is equivalent to the maximum 
entropy principle (MEP) which is also a particular case of 
Kullback and Leibler’s (1951), MDI principle if a priori joint 
probability density function is the independent product 
density of n individual variables.  

According to Guass’s principle of PMI if we know the 
density  functions  of n random variables and some mixed  
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moments of these variables, we should choose that the 
joint density function for these variables which is as close 
to independence as possible subject to the given 
constraints that is, the joint density function should be as 
close as possible to the product of the density functions 
of the independent variables subject to joint moments 
having the prescribed values. Thus, Kullback and 
Leibler’s MDI and Gauss’s principle of PMI are 
equivalent.  
 
 

ESTIMATION OF PARAMETER WHEN INTERVAL 
PROPORTIONS ARE GIVEN 
 
Let us consider a random variable X over the interval 
[a,b] and let the random sample be arranged in order as 
 
a = x0 < x1 < x2 < ………..< xi < xi+1 < ……...< xn < xn+1 = b
                                                             (27) 
 
So that the interval [a, b] is divided into (n +1) 
subintervals and Q0, Q1... Qn are the given proportions of 
the population in these (n + 1) subintervals. Let us define 
a probability function over subinterval (xi, xi+1) as 
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where   is the population parameter. Thus, (P0, P1, ......., 

Pn) gives us a probability distribution depending on  . 

Now, we have to choose parameter   such that P0, 

P1,....... Pn are as close as possible to given Q0, Q1,......, 
Qn. This can be achieved by minimizing the measure of 
cross entropy or directed divergence. We can make use 
of any measure of cross entropy that gives rise to a 

convex function of . But here, we minimize the Kullback 

Leibler measure of cross entropy, 
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Minimization of Equation (29) is same as maximization of 
 

0

log
n

i i

i

Q P


 . So, we have to maximize 

 

0

log
n

i i

i

Q P


  = 1i

i

x

x




Qi log

1i

i

x

x



  f (xi,  ) dx                     (30) 

 
This principle have wide applications in estimating 
parameters  when  interval  proportions  are  given  to us,  

 
 
 
 
e.g. proportions of students in different intervals of marks 
obtained, proportion of failed equipments in different 
intervals of time etc. Let us consider the case when f(x i, 

 ), functional form of distribution is exponentially 

distributed with unknown parameter  . Then, Equation 

(30) reduces to maximize: 
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The above principle is illustrated in the following example 
having randomly generated population data. 

 
 
Example 

 
Let us consider a randomly generated population of size 
50 (from exponential distributed with mean = 20) with 
interval proportions as: 

 
Intervals:         0-10    10-20   20-30    30-40   40-50   >75 
Frequency:       19        13        4           4         7         3 
Qi =Proportion: 0.38    0.26     0.08       0.08    0.14     0.06 
Here x0=0, x1=10, x2=20, x3=30, x4=40, x5=60, x6=∞. 

 
We choose   which maximizes Equation (31), that is, 

 

( )  1

0

log( )i i

n
x x

i

i

Q e e
  



   = 0.38 log 
10(1 )e   + 0.26 

log 
10 20( )e e    + 0.08 

20 30( )e e    

 + 0.08 
30 40( )e e   + 0.14

40 50( )e e    + 0.06 
50e 

 

= -0.26 × 10  - 0.08 × 20  - 0.08 × 30  - 0.14 × 40  - 

0.06 × 50   + (0.38 + 0.26 + 0.08 + 0.08 + 0.14) log 
10(1 )e  = - 15.2  + 0.94 log 

10(1 )e             (32) 

 
To maximize Equation (32), differentiate it with respect to 

  and put the resultant form equal to zero, we get  

 
10

'

10

0.94 10
( ) 15.2 0

1

e

e




 






   


 

=> 9.4 e
-10  = 15.2- 15.2e

-10  

  

=>  24.6 e
-10  = 15.2. 

 
Taking log both sides, we get:  



 
 
 
 

1 24.6ˆ log
10 15.2

1
20.77

ˆ
mean







 

  

 
The estimated value of the parameter is quite close to the 
population parameter value that is, we have small bias. 
Further, we can study the asymptotic behaviour of the 
estimator. 

 
 
Conclusion  

 
Entropy optimization principles and their applications in 
statistics is mainly the study of two well known entropy 
optimization principles namely maximum entropy 
principle and Kullback-Leibler minimum information 
principle and their generalizations by considering some 
generalized measures of entropy and cross entropy. 
These principles have found wide applications in various 
branches of science and engineering. We have 
presented a critical appraisal of classical statistical 
methods vis-à-vis entropy optimization principles in 
parameter estimation. Further, parameter estimation 
methods using entropy optimization principles have been 
discussed with illustrations and examples. 
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