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This paper deals with the two dimensional non-homogeneous boundary value problem of heat 

conduction in a hollow disk defined as hzbra ≤≤≤≤ 0;  and discussed the thermoelastic behavior 

due to internal heat generation within it. A thin hollow disk is considered having arbitrary initial 

temperature and subjected to time dependent heat flux at the outer circular boundary )( br =  whereas 

inner circular boundary )( ar =  is at zero heat flux. Also, the upper surface )( hz =  of the hollow disk is 

insulated and the lower surface )0( =z  is at zero temperature. The governing heat conduction equation 

has been solved by using integral transform technique. The results are obtained in series form in terms 
of Bessel’s functions. The results for displacement and stresses have been computed numerically and 
are illustrated graphically 
 
Key words: Transient, thermoelastic problem, thermal stresses, heat generation non homogenous boundary 
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INTRODUCTION 
 
Deshmukh et al. (2008) has considered two dimensional 
non-homogeneous boundary value problem of heat 
conduction and studied the thermoelasticity of a thin 
hollow circular disk. 

In this paper, the work of Deshmukh et al. (2011) has 
been extended for a thin hollow circular cylinder and 
discusses the thermoelastic behavior. This problem deals 
with the determination of displacement and thermal 
stresses due to internal heat generation within it. 

Consider a thin hollow disk of thickness h occupying 

space D  defined by .0, hzbra ≤≤≤≤  Initially, the 

disk is kept at arbitrary temperature ),( zrF . The inner 

circular boundary )( ar =  is at zero heat flux whereas the 

time dependent heat flux ),( tzQ  is applied on the outer 

circular   boundary  )( br = .   Also   the   upper    surface 
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)( hz = of the hollow disk is insulated and the lower 

surface )0( =z of the disk is at zero temperature. For 

time ,0>t heat is generated within the thin hollow disk at 

the rate ),,( tzrg . The governing heat conduction 

equation has been solved by using integral transform 
technique. The results are obtained in series form in 
terms of Bessel’s functions. The results for displacement 
and stresses have been computed numerically and are 
illustrated graphically. To our knowledge no one has 
studied thermal stresses due to heat generation in a thin 
hollow disk so far. This is new and novel contribution to 
the field. 

The results presented here will be useful in engineering 
problems particularly in aerospace engineering for 
stations of a missile body not influenced by nose 
tapering. The missile skill material is assumed to have 
physical properties independent of temperature, so that 

the temperature ),,( tzrT  is a function of radius, 

thickness and time only. Under these conditions, the 
displacement and thermal stresses in  a  thin  hollow  disk 



 
 
 
 
due to heat generation are required to be determined. 
 
 
THEORY ANALYSIS 
 
Following Deshmukh et al. (2011), we assume that a 
hollow disk of small thickness h is in a plane state of 
stress. In fact, “the smaller the thickness of the hollow 
disk compared to its diameter, the nearer to a plane state 
of stress is the actual state”. The displacement equations 
of thermoelasticity have the form as: 
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where 
i

U − Displacement component, −e Dilatation, 

−T Temperature, and ν  and 
t

a are respectively, the 

Poisson’s ratio and the linear coefficient of thermal 
expansion of the hollow disk material. Introducing  
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we have 
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where µ  is the Lamé constant and 
ij

δ  is the Kronecker 

symbol. In the axially-symmetric case 
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and the differential equation governing the displacement 

potential function ( )tzr ,,ψ  is  
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Figure 1. Shows the geometry of the Heat conduction problem. 

 
 
 

for all time ,t  where ν  and 
t

a  are Poisson’s ratio and 

linear coefficient of the thermal expansion of the disk 

respectively. The stress function rrσ  and θθσ  are given 

by  
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The surface of the thin hollow disk at br =  is assumed 

to be traction free. The boundary condition can be taken 
as  
 

 
 0=rrσ

 at 
 brar == ,

                                              (9) 
 
Also in the plane state of stress within the hollow disk  
 

 
 0
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                                                   (10) 

 
Initially 
 

 ),( zrFT
rr

==== θθσσψ
 at  0=t                      (11) 

 

The temperature of the hollow disk ),,( tzrT  at time t  

satisfying the differential equation given in Ozisik (1968), 
(Figure 1), 
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with the boundary conditions, 
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and initial condition 
 

 ),(),,( zrFtzrT =
 in 

 hzbra ≤≤≤≤ 0,
 for 

 0=t .                                                                      (17) 
 

where k  and α  are thermal conductivity and thermal 

diffusivity of the material of hollow disk respectively. 
Equations 1 to 17 constitute mathematical formulation of 
the problem. To obtain the expression for temperature 

function
 ( )tzrT ,,

, we develop the finite Fourier 
transform, the henkal transform and their inversion and 
operate on the heat conduction Equations 12 to 17 one 
obtain  
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and ,.....,
21

ηη are the positive roots of the 

transcendental equation 
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and ,.....,
21

ββ are the positive roots of the 

transcendental equation  
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Using Equation (18) in (5), and using the well known 
result 
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one obtains the displacement function as  
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Using Equation (21) in Equations (7) and (8), one obtains 
the expression of radial stress function and angular 
stress function as:  
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Figure 2. Temperature distribution 
T

X . 
 
 
 

Dimension 
 

Inner radius of a thin hollow circular disk, ma 1=  

Outer radius of a thin hollow circular disk, mb 2=
  

Thickness of hollow circular disk, mz 2.0=   
Central circular path of circular disk in radial and axial 

directions, mr 5.1
1

=
 
and

 
mz 1.0

1
=

  
 
The numerical calculation has been carried out for a 
Copper (Pure) thin hollow disk with the material, 
properties as: 
 

Thermal diffusivity, 
226

1011234 sm−×=α   

Thermal conductivity, ( )mkWk /386=  

Density, 
3

/8954 mkg=ρ  

Specific heat, kgKJc p /383= , 

Poisson ratio, 35.0=ν , 

Coefficient of linear thermal expansion, 6 1
16.5 10

t
a

K

−= × , 

Lamé constant, 67.26=µ  

7199.15,5812.12,4445.9,3123.6,1965.3
54321

===== βββββ

are the positive roots of transcendental Equation (20). 
For convenience setting 
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The numerical calculation has been carried out with the 
help of computational mathematical software Mathcad-
2000 and the graphs are plotted with the help of Excel 
(MS office-2000). From Figure 2, it can be observed that, 
the temperature distribution undergoes the form of wave 
due to the point heat source. From Figure 3, it can be 
observed that displacement variate non-uniformly in the 
radial direction due to the point heat source. From the 
Figure   4   it  can  be  observed  that  the  radial  stresses 
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Figure 3. Displacement function:
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develop due to the point heat source in the radial 
direction. From Figure 5 it can be observed that the 
angular stresses develop the compressive stresses in the 
axial direction. 
 
 
RESULTS AND DISCUSSION 
 
In this paper, we extended the work of Deshmukh et al. 
(2011) in two dimensional non-homogeneous boundary 
value problem of heat conduction in a thin hollow disk 
and determined the expressions for temperature, 
displacement and stresses due to internal heat 
generation within it. As a special case mathematical 
model is constructed for Copper (Pure) thin hollow disk 
with the material properties specified as above. The heat 
source is an instantaneous point heat source of strength 

pig  situated at the center of the hollow circular disk 

along radial and axial direction and releases its heat 
spontaneously at the time τ=t . 

The results  obtained  here  are  useful  in  engineering 
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Figure 5. Angular stress function:
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problems particularly in the determination of state of 
stress in thin hollow disk. Also any particular case of 
special interest can be derived by assigning suitable 
values to the parameter and function in the expressions 
(18), (21), (22) and (23). 
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