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This paper considers the development of a class of one-point hybrid implicit methods for direct
solution of general second order ordinary differential equations. The main predictors needed for the
evaluation of the implicit methods are obtained to be of the same order with the methods at whatever
hybrid point of collocation. The methods and their respective predictors are consistent and zero-stable.
Numerical results are presented to show the accuracy of the methods.
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INTRODUCTION

In this paper, a direct numerical solution to the general
second order initial value differential equations of the
form

F(t,3y)=0, yV(t,)=y",5=0,1

is proposed without recourse to the conventional way of
reducing it to a system of first order equations (Chan et
al., 2004), which has many disadvantages (Awoyemi and
Kayode, 2002).

Attempts have been made by various authors to solve
Equation (1) in which the first derivative () is absent,

(Al-Said and Noor, 2001; Golbabai and Arabshahi, 2010;
Gonzalez and Thompson, 1997; Saravi et al., 2009). This
limits the solution to a special class of differential
equations. Efforts have also been made to develop
methods for solving Equation (1) directly with little
attention at solutions at off- grid points, (Awoyemi and
Kayode, 2003; Tselyaev, 2004; Awoyemi and Kayode,
2005; Kayode and Awoyemi, 2005; Jator, 2007; Kayode,
2007; Kayode, 2010).

Yahaya and Badmus (2009) developed a class of
hybrid methods for problem of Type (1) with low order of

AMS 2000 subject classification: 65L05, 65L06.

accuracy.
In this paper, a class of one-point numerical hybrid

methods with higher order of accuracy is developed for

directly approximating the solution of Equation (1).

(1)
THE HYBRID METHODS

Here, interpolation and collocation procedures are used
by choosing interpolation points (s) at the grid points and
collocation points (t) at both grid and at one off-grid points
given rise to ¢ =s+1+1 equations whose coefficients
are determined by using appropriate procedures.

The approximate solution to Problem (1) is taken to be
a polynomial of degree { =s+17+1 in the form:

S

Y= A @)
j=0

/1j,j:O, I, 2, .. are real numbers and y s

continuous differentiable.

Obtaining the second derivative of (2) and using (1) to
have the differential system as:



94 Afr. J. Math. Comput. Sci. Res.

é, .
2 JG=DAx" = f (x,y(0), Y (x)

To obtain a one point zero-stable hybrid method, the
collocation equation is obtained by collocating (3) at all

grid points x i=0,1,2, ..., and at one off-grid point

n+i?’

X 1 < v <2. Interpolation equation is obtained by

n+v?
interpolating (2) at all grid points except at the last end
point. These result into an order m matrix equation:

AX =B
Where:
I 2 6 I2x, .. o]
-2
2 6x, I2x, .. ©o,
e 0 2 6x, I2x., .. o)
- )
0 0 2 6, I2x, . 7. (4)
1 x ¥ x <L X
4
L x, xr21+1 Xfm X1 xri—l
2 4 4
_1 xn+2 xn+2 'xr31+2 xn+2 xn+2 a

X=[ao a a,..d., as+t]Ts

BA oy Lot fow 3o it = Vo]

T is the matrix transpose:

T=j(j-1,j=23...¢,
fn-l-i :f(xnwynwy;g)a l:Q],Z

Wi UK,0).

Solving the matrix Equation (6) for the unknown
parameters lj's,j:O(l)f . The values of these

parameters are substituted into approximate solution (2)
to obtain a continuous hybrid method expressed as:

500= 200N, + DB (D + POy (6)

=0

Using the transformations:

1 1
t:Z(x—ka_l),dt:de, te (0,1], (6)

in the continuous Method (5), the coefficients «;, ,Bj are
obtained, as a function of t as:

ak—l(t) = {l+1}

o, ,(1t) = -t
o, t)=.=0,()=0
h2 3 4
= -1 20(2 - -
B, 36()(3_v){(23v 3)t+20(2—v)t’ +5(8-3v)t

+3(5-v)t’ + 2%}

hz
B, = 120(Tv){ (75— 43v)t + 60(2 —v)t* +
10(4 =2 +5Q2v =3)t" +3(v —4)° — 21°)
hz 3 4
B, = mu 1(2v =3) +20(2 = v)t* + 5vt
+3(v=3) —2¢%)
h2 3 4 5 6
,30=36Ov{(11—7v)t+10(v—2)t =5t +3Q2-v)t" +2t°}
hz
B, (111 =208 =5¢* + 665 +2:°) (V)

T 60v(3— )2 —v)(v—1)

and the first derivatives of &;, B, in (7) yields:

, 1
a _, = h_
, 1

ak—z__h_



a,_()=..=0,t)=0

B h
360(3—v)
2004 =3v)’ +15(5—-v)t* +12¢°

Jif {(8v—=13)+60(2—v)t* +

h
Ba= 1202 -v)
3004 —v)t* +20Q2v=23)t’ +15(v—4)t* —12¢°}

{(75—-43v)+1202—v)t +

h
= {11(2v=3)+60(2 —v)t*

B 120(v—1){ (2v=3)+60(2-v)t” +
20wt +15(v =3)t* —12¢°)

yis =L{(11—7v)+30(v—2)t2 — 408
360v
+15Q2-v)t* +12¢°}

g = h {11-607°
60v(3—v)2—v)(v—1) @)
—20r +30¢* +12¢°})

Using the step number k =3 and t = 1 in (6), (7) and (8)
give:

hz
OVG—v)2—v)\v—I) @
+é;f;l+2 +5vfn+v + fn+1 +§ﬂ(r‘l) (9)

where

V3 _2n+2 V=

0, =v(14-5v)2-v)(v-1)

0, =v(103-50v)(3-v)(v—-1)

O =v(Sv-2)3-v)(2—v)

4 =—GB-v2-v-1

and
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h
360v(3—v)2—v)(v—-1)
(}/Sf;1+3 + }/Zf;1+2 + }/vf;ﬁv + }/lf;ﬁl + %)ﬁ)}

, 1
yn+3 :Z(yn+2_yn+l)+

Where:

%, =v(354—127v)(2—v)(v—1)
%, =3v(303-138»)(3—v)(v—1)
¥, =—162

% =910 -1)B=V)(2-v)

Vo =@v=27)3-v)2-v)(v-1)

For the purpose of numerical experiment specific values

5 7
of ve (1, 2) are taken at three points as Z 5 Z to

obtain the following discrete schemes:
5

Forv=—:
4

2

h
=2 - +——(155 +1890
yn+3 n+2 yn+1 2100 ( fn+3 fn+2

=512f +595f,,, —284f,)
" (1)

The order (p) is 5 and error constant C,,, = —0.002292

, 1 h
= — (Ypoy = Vyut) +—— (3905, +
yn+3 h(yn+2 yn+1) 12600( fn+3 (12)

18270 f,, —13824f +11025f,,, —476f,)
n+Z

Order P =5, Cp+2 = 0-006344.

Forv=§:
2

2

h
=2 -y  +—(13f .+168
y n+3 n+2 y n+l 180 ( f n+3 f n+2

_32f 3 +33fn+1 _an)
"2 (13)
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Order P =5, C,,, = —0.002083.

(109 f,3 4576,
—10 £)

yn+3 (yn+2 yn+l)+

- 288f ,+ 153fn+1
s

Order P =5, C,,, = 0.005407.

7
Forv=—:
4

2

h
=2 - +—— (147 +2170
yn+3 n+2 yn+1 2100( fn+3 fn+2

~512f , +315f,,,—20f,)
n+Z (15)
Order P =5, C,,, ~—0.001875.
(y )+L(3689 f o+
n+3 n+2 n+1 126% n+3

(16)

25830 fn+2—13824f L +3465F. —260f)
"

Order P =5, C,,, = 0.004469.

IMPLEMENTATION OF THE METHODS

The set of implicit discrete schemes and their respective
first derivatives in equation (11) through (16) are not self-
starting. Thus to be able to implement them, some
starting values are developed using the same technique
for the main method described above. Thus at t = 1, and

3 7
5 Z , the main starting values are:

-lk|Ul

r=

For V=—:
4

29 31 K

4 27T 4 T o

~512f | +1990f,., +127f,)
*1

(4951 .,

J— 1
yn+3 - yn+2 '

n+l

having orderp=5and C,,,

y, :ﬁ {-757y,,, +1538y,.,— 781y }

n+3

+ 7i {45585, —65024f
"

+248410f

n+l

+16129f }

p=5,C,., ~—0.054671.

For V=

Do | W

13 K

9
_5 yn+2 +12yn+1 _E yn

+150f,,, +11f)

yn+3 =

p=5and C,,, =0.011458, and
, 1
Vues = —{—105y,l+2 +214y,.,-109y, }
+——{4749f, ., — 4064
720{ Fra f,,+g

+18618f,,, +1397 .}

orderp=5, C,,, =—0.051364.
7
Forv=—:
4
13 19 21 n
=— =y . — (847
yn+3 4 yn+2 2 yn+1 4 yn 336( f

~512f , +1638f,,, +127f.)
nt

orderp=>5and C,,, =0.01015625, and

, 1
=——{-503y,,, +1030y,,, — 527
yn+3 24—h{ yn+2 yn+l yn}

h
+ 83377f,,, — 65024
100080 > e ! ey

+201978f,,, +16129f.}

= 0.0122396, and

+—(1f ., —32
24( f;1+2 f;ﬁ%

(20)

(21)

(22)



orderp=5and C,,, = —0.0458519

Other starting values for Y2, ¥.ss Vet Vorw» Y,

ym—l are obtained to be:

2
yn+2 :Q’yn+1 _yn +h fn+ (23)
P = 2, Cp,2 = 0.0833,

o1 h
2 == O — )WL —21)
D UNE AL »
p =2, cp,2=-0.375
YVars =Y HY, + (])f+

Ghy @[ @f @[ W (25

i)
3 gy ay}m(

5 =y 4G+ ap

N ALA
2 o oy,

3 ’
where j=1, =, 52 and Y,» Y, are the initial

values from the given problem.

NUMERICAL EXPERIMENTS

The accuracy of the continuous method (11) developed
for the direct solution of problem (1) is tested on linear

and non-linear problems withv = 2— :

0 V=2 ym=1, vy = -

Theoretical solution:
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y(x)=—

iy Y =y+xe”

Theoretical solution:

()= —4x=3
Y 32 exp( —3x)
N2
iy v =2 oy
2
n 1 0 43
)’(g)—z,)’(6)— 5>

Theoretical solution

y(x) = Sirtx.

v Y =x) =0, y0=1, 0=

Theoretical solution

2+ x)
(2-x)

y(X)—1+21 n{ }

RESULTS

The absolute errors obtained from the method (13) fork =
3 are compared with those obtained from the method for
k = 3 in Kayode (2007) for the problems (i) to (iv).

The results of the absolute errors are shown in Tables
1to 4.

CONCLUSION

In this paper a class of one-point continuous hybrid
method has been considered for direct solution of general
second order differential equations. The discrete
schemes from the continuous method (8) have the same
order p = 5. The major predictors for these are also of
order p = 5 with these discrete methods. All the discrete
methods are consistent and zero stable, satisfying the
necessary and sufficient conditions for the convergence
of Linear Multistep Methods (LMM), (Chou and Ding,
2004; Parand and Hoijjati, 2008).
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Table 1.Comparison of errors in Kayode (2007) with new Method (11).

Kayode (2007) for Problem (i) New method (11) for Problem (i)

X Errorsfork =3 Errorsfork =3
1.1 0.5263931D-08 0.2102459D-08
1.2 0.3720895D-08 0.1683367D-08
1.3 0.2704051D-08 0.1371889D-08
1.4 0.2012022D-08 0.1135265D-08
1.5 0.1527879D-08 0.9520500D-09
1.6 0.8078035D-05 0.1180986D-08
1.7 0.6925521D-05 0.9271881D-09
1.8 0.5992534D-05 0.7380502D-09
1.9 0.5228356D-05 0.5947730D-09
2.0 0.4595810D-05 0.4846371D-09

Table 2. Comparison of errors in Kayode (2007) with new Method (11).

Kayode (2007) for Problem (ii)

New method (11) for Problem (ii)

X Errorsfork =3 Errorsfork =3
0.1 0.2086753D-09 0.5079052D-10
0.2 0.1923770D-09 0.7948121D-10
0.3 0.1391324D-09 0.1429751D-10
0.4 0.2508468D-10 0.2779986D-10
0.5 0.1857944D-09 0.4903604D-10
0.6 0.5588885D-09 0.8051933D-10
0.7 0.1157671D-08 0.1094526D-09
0.8 0.2107025D-08 0.1865553D-09
0.9 0.3578957D-08 0.3063101D-09
1.0 0.5822924D-08 0.4891233D-09

Table 3. Comparison of errors in Kayode (2007) with new method (11).

Kayode (2007) for Problem (iii) New Method (11) for Problem (iii)

Errorsfork =3

Errorsfork =3

1.1

0.2282106D-05

0.64811445D-07

1.2 0.2893084D-05 0.80343529D-07
1.3 0.3453509D-05 0.93317005D-07
1.4 0.3954212D-05 0.10334724D-06
1.5 0.4384330D-05 0.11012633D-06
1.6 0.4731177D-05 0.11342972D-06
1.7 0.4980477D-05 0.11312237D-06
1.8 0.5116961D-05 0.10916432D-06
1.9 0.5125297D-05 0.10161543D-06
2.0 0.4991312D-05 0.90639024D-07

Four linear and non-linear the test problems are solve
with the methods to confirm their accuracy. The accuracy

of the method is compared with Kayode (2007) of the
step number k = 3. The comparison of the absolute errors
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Table 4. Comparison of errors in Kayode (2007) with new method (11).

Kayode (2007) for Problem (iv)

New method (11) for Problem (iv)

X Absolute errors Errors for k =3
1.1 0.8047086D-07 0.61853700D-08
1.2 0.1625604D-06 0.31695117D-07
1.3 0.2480160D-06 0.75714456D-07
1.4 0.3387987D-06 0.14304432D-06
15 0.4372248D-06 0.24120724D-06
1.6 0.5490446D-06 0.38177170D-06
1.7 0.6725762D-06 0.58268768D-06
1.8 0.8153498D-06 0.87233773D-07
1.9 0.9842053D-06 0.12968951D-07
2.0 0.1188939D-05 0.19343897D-06

as shown in Tables (1) to (2) confirms a better result over
Kayode (2007).
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