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A three-step optimized block backward differentiation formulae for solving stiff ordinary differential 
equations of first-orderdifferential equations is presented. The method adopts polynomial of order 6 
and three hybrid pointschosen appropriately to optimize the local truncation errors of the main 
formulas for the block. The method is zero-stable and consistent with sixth algebraic order. Some 
numerical examples were solved to examine the efficiency and accuracy of the proposedmethod. The 
results show that the method is accurate. 
 
Key words: Three-step, optimized block backward differentiation formulae, stiff, zero stable, consistent, 
convergent, first-order. 

 
 
INTRODUCTION 
 
A differential equation can be defined as an equation that 
creates a relationship between an unknown function and 
one or more of its derivatives. In other words, it is a 
relationship existing between a dependent variable and 
one or more independent variable(Dahlquist, 1956).Block 
methods for solving ordinary differential equations were 
proposedby Milne (1953). He has some drawbacks such 
as low order of accuracy, error term and poor 
performance and this led to the introductionof hybrid 
methods. Hybrid methods were initially introduced to 
overcomezero-stability barrier that occurred in block 
methods as can be seen in Dahlquist(Dahlquist, 1956). 
Besides the ability to change step size, the other benefit 
of these methods  is  utilizing  data  off-step points  which 

contribute to the accuracyof the methods. 
This paper presents a three-step optimized block 

backward differentiationformulafor the numerical solution 
of stiff first-order differential equations. The basic 
properties of the methodsuch as zero stability, order, 
consistency, and convergence were examined. Several 
numerical problems will be solved and comparison will be 
made with other methods to show the efficiency of the 
proposed method (Table 1). This paper considers an 
approximate method for the solutionof stiff differential 
equation of first-order initial  value  problem  of  the  form, 
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Table 1. The exact solution, the computed solution and the error in the developed method for Problem 1. 
 

X Exact solution Computed solution Error in our method 

0.01 0.9048374180 0.9048374180 0.00000 

0.02 0.8187307531 0.8187307530 1.000000(-010) 

0.03 0.7408182207 0.7408182205 2.000000(-010) 

0.04 0.6703200460 0.6703200458 2.000000(-010) 

0.05 0.6065306597 0.6065306595 2.000000(-010) 

0.06 0.5488116361 0.5488116358 3.000000(-010) 

0.07 0.4965853038 0.4965853035 3.000000(-010) 

0.08 0.4493289641 0.4493289638 3.000000(-010) 

0.09 0.4065696597 0.4065696594 3.000000(-010) 

0.10 0.3678794412 0.3678794408 4.000000(-010) 

 
 
 
wheref (x, y) iscontinuousandsatisfiesthe existenceand 
uniquenesstheorem (Henrici, 1962).Recently many 
authors have applied hybrid block method with adifferent 
number of steps and hybrid points to find numerical 
solutionsfor the first-order differential equations (Sagir, 
2014; Raymond et al., 2018; Ramos, 2017; Areo and 
Adeniyi, 2014; Yakusak and Adeniyi, 2015; Yahaya and 
Tijjani, 2015; Fotta and Alabi, 2015; Sunday et al., 2015). 
In this paper, we optimizedthe local truncation errors to 
find three off-points in one stepto obtain the most 
accurate solution. 

The algorithm presented in this paper is based on block 
method and approximates the solution at several points 
(Raymond et al., 2018; Olanegan et al., 2015; Areo and 
Adeniyi, 2014; Yakusak and Adeniyi, 2015). Block 
methods were first introduced by Yahaya and Tijjani 
(2015) as a means of obtaining starting values for 
predictor-corrector algorithms and has since then been 
developed by several researchers (Milne, 1953; Fotta 
and Alabi, 2015; Sunday et al., 2015; Odejide and 
Adeniran, 2012), for general use. This paper presents a 
block method which preserves the Runge-Kutta 
traditional advantage of being self-starting and efficient. 
 
 

Definition 1: Stiff equations 
 

A stiffequation is a differential equation that is 
characterized as that whose exactsolution has a term of 

the form,
cxe

where c is a large positive constant (Sunday 

et al., 2015). 
 
 
Definition 2: Step-length or mesh-size 
 

A numerical method for solving the differential equation is 
based on the principle of discretization in which the 
approximate solutions are evaluated at each grid point. 

We consider the sequence of points }{ nx in the interval

],[ baI 
   

defined    by    bxxxxa n  ,...,210

; iii xxh  1 , 1)1(0  ni . The parameter ih  is called 

the step-size. If the solution, )(xy  to a linear multistep 

method is approximated by kiy in )1(0  ,  , then any 

numerical method that computes iny   by using the 

information at knii xxx  ,...,, 1  is called a K – step 

method. 
 
 

Definition 3: Maximal order  
 

A linear multistep method is said to be of maximal order if 

it has order k2  when k  is even and order 12 k  when 

k is odd (k = step-length) 
 
 

Definition 4: Interval of periodicity 
 

 A linear multistep method,  when applied to a  problem

yy n  , ,0 n represents the the order of the 

differential equation,  is said to have interval of periodicity

),0( h , if all the roots of 0)()( 


 h are complex 

and lie on a unit circle. 
 
 

Definition 5: P-stability 
 

A linear multistep method is said to be p-stable if its 

interval of periodicity is ),0( 
 

 
 

Definition 6: A-stability 
 

 A linear multistep method is said to be A-stable if its 

interval of periodicity is )0,( . 

 
 

MATHEMATICAL DERIVATION OF THE METHODS 
 

Here,  we  construct  the  main   method   and   additional 
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Table 2. Comparison of the newly developed method with Raymond et al. (2018) 
 

X Exact solution Computed solution Error in our method Raymond  et al  (2018) 

0.01 0.9900498337 0.9900498338 1.000000(-010) 1.959599 (-011) 

0.02 0.9801986733 0.9801986733 0.00000 2.477574 (-009) 

0.03 0.9704455335 0.9704455335 0.00000 4.181828 (-008) 

0.04 0.9607894392 0.9607894392 0.00000 3.095199 (-007) 

0.05 0.9512294245 0.9512294244 1.000000(-010) 1.458543 (-006) 

0.06 0.9417645336 0.9417645335 1.000000(-010) 1.319575 (-006) 

0.07 0.9323938199 0.9323938199 0.00000 1.197493 (-006) 

0.08 0.9231163464 0.9231163463 1.000000(-010) 1.105731 (-006) 

0.09 0.9139311853 0.9139311851 2.000000(-010) 1.165290 (-006) 

1.00 0.9048374180 0.9048374179 1.000000(-010) 1.769062 (-006) 

 
 
 

Table 3. The exact solution, computed solution and the error in the developed method for Problem 3. 
 

X Exact solution Computed solution Error in our method 

0.100000 0.0048374180 0.004837418030 3.000000(-011) 

0.200000 0.0187307531 0.01873075308 2.000000(-011) 

0.300000 0.0408182207 0.04081822051 1.900000(-010) 

0.400000 0.0703200460 0.07032004587 1.300000(-010) 

0.500000 0.1065306597 0.1065306596 1.000000(-010) 

0.600000 0.1488116361 0.1488116359 2.000000(-010) 

0.700000 0.1965853038 0.1965853036 2.000000(-010) 

0.800000 0.2493289641 0.2493289639 2.000000(-010) 

0.900000 0.3065696597 0.3065696595 2.000000(-010) 

1.000000 0.3678794412 0.3678794409 3.000000(-010) 

 
 
 
methods derived from its first derivative and are 
combined to form the Three-step Optimized Block 
Backward Differentiation Formula (TOBBDF) on the 

interval from nx  to 3 3n nx x h    where h is the chosen 

step-length and k is the step number. We assume that 

the exact solution ( )y x  on the interval  ,n n kx x   is 

locally represented by ( )Y x given by (Table 2): 

 

 
1

0

( ),
p q

j j

j

Y x b x
 



               (2) 

 

jb  are unknown coefficients to be determined and ( )j x

are polynomial basis function of degree p+q-1 such that 
the number of interpolation points p and the number of 
distinct collocation points q are respectively chosen to 
satisfy p = k and q > 0. The proposed class of method is 
thus constructed by specifying the following parameters:  
 

3

( ) , 0,..., , , 1, 3
3 !

j

j j

x
x j k p k q k

j
      .  

By imposing the following conditions: 
 

6

0

5
, 0,..., ,

2

j

j n i n i

j

b x y i 



              (3) 

 
6

0

1 , 3,j

j n i n i

j

jb x f i 



               (4) 

 

assuming that )( ihtYy nin  , denote the numerical 

approximation to the exact solution

 ( ), ' ,n i n i n n jy x f Y x ih y    , denote the 

approximation to '( )n iy x n  is the grid index (Table 3). 

Itshould be noted that Equation 3 and 4 lead to a system 
of seven equations that must be solved to obtain the 

coefficients , 0,1,...,6jb j  . The main method is then 

obtained by substituting the values of jb  into Equation 2. 

After some algebraic computation, the method yields the 
expression in the form Equatiion 5: 
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   
5/2

3 3

0

( ) ( )j n j n

j

Y t t y h t f  



 
                        (5) 

 

where
1 3 5

( ), 0, ,1, ,2,
2 2 2

j t j  and
3( )t are continuous 

coefficients. 
The continuous coefficients are also expressed as a 

function of 
2nx x

t
h


 given as, 

 

4 5 6 3 2

0

4975 1958 548 2351 58997 21509
( ) 1

1323 2205 6615 294 6615 4410
t t t t t t t

 
       
   

2 3 6 5 4

1

2

5006 5504 24 736 580 2902
( )

147 147 49 147 49 147
t t t t t t t

 
       
 

 

4 6 2 5 3

1

2096 176 8257 710 1712 10732
( )

49 147 147 49 147 147
t t t t t t t

 
      
   

2 5 6 4 3

3

2

69196 6256 2032 64348 11152 5480
( )

1323 441 1323 1323 147 441
t t t t t t t

 
       
 

 

6 2 4 3 5

2

635 52 4166 4393 12793 1366
( )

98 49 147 147 294 147
t t t t t t t

 
       
 

 

 

 

 

 

3 2 6 5 4

5

2

1648 5198 388 232 1936 394
( )

147 735 245 735 735 49
t t t t t t t

 
      
 

 

4 2 5 3 6

3

170 137 10 20 25 8
( )

441 441 147 147 49 441
t ht ht ht ht ht ht

 
      
 

 

 

The main method is obtained for k = 3 by evaluating 

Equation 5at 
3nx x  , which is equivalent to t = 1 to 

obtain the formula, 
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32

2
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147
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49

75

147

400

49
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49
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49
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
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



  nn

n
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n
n

n
n yyyyyyyhf

     (6)

 

 

to obtain the additional methods, differentiate Equation 5 
with respect to t we have, 
 

   
5

3 3

0

1
' ( ) ( ) ,j n j n

j

Y t t y h t f
h

  



 
  

 


                                    (7) 

 
Additional discrete methods are then obtained by 
evaluating Equation 5 at the points  
 

 1 2

1 3
, , , , ,

2 2
n n u n nx x x x x u    to give: 

3 1 2 1 3 5

2 2 2

3 1 2 1 3 5 1

2 2 2 2

3 1

1 1
300 21509 63900 28575 52200 54800 6984

4410

1 1
12 298 4320 1290 2235 2780 297

882

1 1
15 152 2460 1980

2205

n n n n n
n n n

n n n n
n n n n

n n n n

hf y y y y y y f
h

hf y y y y y y f
h

hf y y y
h

  
  

  
   

 

 
        

 

 
       

 

    2 1 3 5 1

2 2 2

3 1 2 1 3 5 3

2 2 2 2

3 1 2 1 3 5

2 2 2

1800 5680 408 (8)

1 1
30 157 6840 6165 1395 400 963

4410

1 1
60 167 4860 6045 1320 12560 2808

4410

n
n n n

n n n n
n n n n

n n n n
n n n

y y y f

hf y y y y y y f
h

hf y y y y y y
h

 
  

  
   

  
  

 
    

 

 
        

 

 
       

 
2nf 

 

 
The methods 6, and 8 are thus combined to give the 
TOBBDF. 
 
 
ORDER OF ACCURACY  OF THE TOBBDF 
 

The Three-step optimized block backward differentiation 
formulae can be represented by a matrix finite difference 
equation in block form as: 
 

,1

)0()1(

1

)0()1(

   FhBFhBYAYA
                  

(9) 

  
Where: 

1 1 3 2 5 3 1 5 2 3 1 1

2 2 2 2 2 2

1 1 3 2 5 3 1 5 2 3 1 1

2 2 2 2 2 2

, , , , , , , , , , ,

, , , , , , , , , , ,

T T

n n n n n n
n n n n n n

T

n n n n n n
n n n n n n

Y y y y y y y Y y y y y y y

F f f f f f f F f f f f f f

 

 

     
     

     
     

   
    
   

   
    
   

, 

 

for ,...2,1 and 0,6,..., 6n N  . 

And the matrices 
)1(A ,

)0(A ,
)1(B  and 

)0(B  are 6by 6 
matrices whose entries are given by the coefficients of 
Equation  12 (Fotta and Alabi, 2015) given as: 
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(1) (0)

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   
   
   

    
   
   
   
   

 

 

(1)

35 487 49 211 1
0

72 1920 360 5760 640

32 11 8 7 1
0

45 120 135 360 1080

27 243 13 27 1
0

40 640 40 640 640

,

32 4 32 7
0 0

45 15 45 45

35 325 25 1225 95
0

72 384 216 1152 3456

81 8 81 11
0 0

40 5 40 40

B B

 
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(0)

959
0 0 0 0 0

5760

169
0 0 0 0 0

1080

103
0 0 0 0 0

640

7
0 0 0 0 0

45

665
0 0 0 0 0

3456

11
0 0 0 0 0

40

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
Following Fatunla (Abdelrahim et al., 2016) and Lambert 
(Rufai et al., 2016), the local truncation error associated 
with each of the method in the TOBBDF can be defined 
to be the linear difference operator: 
 

    




 
1

0

11;
k

j

lknkknkjnj ffhyhtyL  ,       (10) 

 

where 2,,1,0,1  kll  . 

Assuming that  ty  is sufficiently differentiable, we can 

write the terms (10) as a Taylor series expression of 

 jnty   and    jnjn tytf   '  as: 

 

   
 





 
0

)(

!j

n

m

m

jn ty
m

jh
ty and

   
 

 





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
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1
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n
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jn ty
m

jh
ty          (11) 

 
Substituting Equation 11 into Equations 10, we obtain the 

expression: 
 

           ,'''; 2

210   tyhCtyhCthyCtyChtyL pp

p      
(12) 

 

where the constant coefficients 

ktmCm ,,2,1,,2,1,0,    are given as follows: 

 

 
 

where 0k  and 2,,1,0,1  kll  . 
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The block method in Equation 9 is said to have a 
maximal order of accuracy m if: 
 

     0,0,; 110

1  



mm

m CCCChhtyL  .     (13) 

 

Therefore, 1mC  is the error constant and 

   11

1

mm

m nC h y x



 the principal local truncation error at 

the point 
nx . 

Therefore the values of the error constant calculated for 
the ThreestepTOBBDF (Equation 12) are given as,

263 11 9 1 235 9
, , , , ,

1935360 120960 71680 15120 387072 4480

 
      
 

with order p 

=(6,6,6,6,6,6)
T
 and T is the transpose.

  
 
Consistency and convergence 
 
We note that the new block method (Equation 12) is 

consistent as it has order 1p , since the block method 

(11) is zero stable. According to Bothayna and 
Muhammed (2019)  
 
Convergence = zero stability + consistency. 
 
Hence the block method (Equation 12) converges. 

 
 
COMPUTING TECHNIQUE WITH THE TOBBDF 
 
In this section, the computational techniques are 
presented step by step. The method is implemented 
more efficiently as three-step block numerical integrators 
for the solution ofEquation 1 to simultaneously obtain the 

approximations 1 1 3 2 5 3

2 2 2

T

n n n
n n n

y y y y y y  
  

 
 
 

without 

requiring back values and predictors, taking

0,2, , 2n N  , over sub-intervals

   0 3 2, , , ,N Nx x x x , where N is the total number of 

points. For instant 1 1 3 2 5 3

2 2 2

0, 1,

T

n w y y y y y y
 

   
 

, are 

simultaneously obtained over the sub-interval 0 3,x x , as 

0y  is known from Equation 1. For 

7 4 9 5 11 6

2 2 2

1, 2,

T

n n n
n n n

n w y y y y y y  
  

 
   

 
are 

simultaneously obtained over the sub-interval 3 6,x x , as 

3y is known  from  the  previous  block.  Hence,  the  sub- 

 
 
 
 
intervals do not over-lap.  
 
 
Numerical examples 
 
In this section, practical performance of the new method 
is examinedon some test examples. We present the 
results obtained from thetest examples which include 
linear, mildly stiff and highly stiff problem of initial value 
problems found in the literature. The resultsare compared 
with the exact solutions. The results or absoluteerrors 
|y(x) − yn(x)| are presented side by side in the table of 
values. All computations were carried out using Maple 
Mathematical Software version 17. 0, on Acer Laptop, 
Window 10. 
 
 
Example 1 
 
Consider the mildly stiff initial value problem (Raymond et 
al., 2018; Yakusat et al., 2015): 
 

' , (0) 1, 0.1

( ) x

y y h

y x e

   


  

 
Example 2 
 
Consider the highly stiff initial value problem (Raymond et 
al.,2018)” 
 

' , (0) 1, 10, 0.1

( ) x

y y h

y x e 

 


    


 

 
 

Example 3 
 
Consider the first-order stiff initial value problem (Sunday 
et al., 2015): 
 

' , (0) 0, 0.1

( ) 1x

y x y h

y x x e

   

  
 

 
 
CONCLUSION 
 
This work centered on the development, analysis and 
implementation of three-step optimized block backward 
differentiation formulae for the numerical solution of stiff 
first-order differential equations. The method was 
developed via backward differential formulae through the 
optimization of three-step. The method is consistent, 
convergent, zero stable and efficient for solving first-order 
ordinary differential equations. The results are shown in 
Tables 1 to 3, Tables 1 and  3  show  the  exact  solution,  



 
 
 
 
computed solution and the error while in Table 2, the 
comparison of error in problem 3 were made. The results 
perform better than Raymond (2018), which has order 8 
against our method of order 6. Hence the developed 
method is realiable and efficient. 
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